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Abstract. Following the idea of [Far16], we develop the foundations of the geometric Langlands program
on the Fargues–Fontaine curve. In particular, we define a category of `-adic sheaves on the stack BunG of
G-bundles on the Fargues–Fontaine curve, prove a geometric Satake equivalence over the Fargues–Fontaine
curve, and study the stack of L-parameters. As applications, we prove finiteness results for the cohomology
of local Shimura varieties and general moduli spaces of local shtukas, and define L-parameters associated with
irreducible smooth representations of G(E), a map from the spectral Bernstein center to the Bernstein center,
and the spectral action of the category of perfect complexes on the stack of L-parameters on the category of
`-adic sheaves on BunG.
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CHAPTER I

Introduction

I.1. The local Langlands correspondence

The local Langlands correspondence aims at a description of the irreducible smooth representations π
of G(E), for a reductive group G over a local field E. Until further notice, we will simplify our life by
assuming thatG is split; the main text treats the case of general reductiveG, requiring only minor changes.

The case where E is archimedean, i.e. E = R or E = C, is the subject of Langlands’ classical work
[Lan89]. Based on the work of Harish-Chandra, cf. e.g. [HC66], Langlands associates to each π an L-
parameter, that is a continuous homomorphism

ϕπ :WE → Ĝ(C)

where WE is the Weil group of E = R,C (given by WC = C× resp. a nonsplit extension 1 → WC →
WR → Gal(C/R)→ 1), and Ĝ is the Langlands dual group. This is the split reductive group over Z whose
root datum is dual to the root datum of G. The map π 7→ ϕπ has finite fibres, and a lot of work has been
done on making the fibres, the so-called L-packets, explicit. If G = GLn, the map π 7→ ϕπ is essentially a
bijection.

Throughout this paper, we assume that E is nonarchimedean, of residue characteristic p > 0, with
residue field Fq. Langlands has conjectured that one can still naturally associate an L-parameter

ϕπ :WE → Ĝ(C)

to any irreducible smooth representation π of G(E). In the nonarchimedean case, WE is the dense sub-
group of the absolute Galois group Gal(E|E), given by the preimage of Z ⊂ Gal(Fq|Fq) generated by the
Frobenius x 7→ xq. This raises the question where such a parameter should come from. In particular,

(1) How does the Weil group WE relate to the representation theory of G(E)?
(2) How does the Langlands dual group Ĝ arise?

The goal of this paper is to give a natural construction of a parameter ϕπ (only depending on a choice
of isomorphism C ∼= Q`), and in the process answer questions (1) and (2).

I.2. The big picture

In algebraic geometry, to any ring A corresponds a space SpecA. The starting point of our investi-
gations is a careful reflection on the space SpecE associated with E.1 Note that the group G(E) is the

1Needless to say, the following presentation bears no relation to the historical developments of the ideas, which as usual
followed a far more circuitous route. We will discuss some of our original motivation in Section I.11 below.
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8 I. INTRODUCTION

automorphism group of the trivial G-torsor over SpecE , while the Weil group of E is essentially the ab-
solute Galois group of E , that is the (étale) fundamental group of SpecE. Thus, G(E) relates to coherent
information (especially G-torsors) on SpecE , while WE relates to étale information on SpecE. Moreover,
the perspective of G-torsors is a good one: Namely, for general groups G there can be nontrivial G-torsors
E on SpecE , whose automorphism groups are then the so-called pure inner forms of Vogan [Vog93]. Vogan
realized that from the perspective of the local Langlands correspondence, and in particular the parametriza-
tion of the fibres of π 7→ ϕπ , it is profitable to consider all pure inner forms together; in particular, he was
able to formulate a precise form of the local Langlands conjecture (taking into account the fibres of π 7→ ϕπ)
for pure inner forms of (quasi)split groups. All pure inner forms together arise by looking at the groupoid
of all G-bundles on SpecE: This is given by

[∗/G](SpecE) =
⊔

[α]∈H1
et(SpecE,G)

[∗/Gα(E)],

whereH1
et(SpecE,G) is the set ofG-torsors on SpecE up to isomorphism, andGα the corresponding pure

inner form ofG. Also, we already note that representations ofG(E) are equivalent to sheaves on [∗/G(E)]
(this is a tautology if G(E) were a discrete group; in the present context of smooth representations, it is
also true for the correct notion of “sheaf”), and hence sheaves on

[∗/G](SpecE) =
⊔

[α]∈H1
et(SpecE,G)

[∗/Gα(E)],

are equivalent to tuples (πα)[α] of representations of Gα(E).2

Looking at the étale side of the correspondence, we observe that the local Langlands correspondence
makes the Weil group WE of E appear, not its absolute Galois group Gal(E|E). Recall that WE ⊂
Gal(E|E) is the dense subgroup given as the preimage of the inclusion Z ⊂ Gal(Fq|Fq) ∼= Ẑ, where
Gal(Fq|Fq) is generated by its Frobenius morphism x 7→ xq. On the level of geometry, this change corre-
sponds to replacing a scheme X over Fq with the (formal) quotient XFq/Frob.

In the function field case E = Fq((t)), we are thus led to replace SpecE by Spec Ĕ/ϕZ where Ĕ =

Fq((t)). We can actually proceed similarly in general, taking Ĕ to be the completion of the maximal unram-
ified extension of E. For a natural definition of π1, one then has π1(Spec(Ĕ)/ϕZ) = WE — for example,
Spec Ĕ → Spec(Ĕ)/ϕZ is a WE-torsor, where Ĕ is a separable closure.

Let us analyze what this replacement entails on the other side of the correspondence: Looking at the
coherent theory of Spec Ĕ/ϕZ, one is led to study Ĕ-vector spacesV equipped withϕ-linear automorphisms
σ. This is known as the category of isocrystals IsocE . The category of isocrystals is much richer than
the category of E-vector spaces, which it contains fully faithfully. Namely, by the Dieudonné–Manin
classification, the category IsocE is semisimple, with one simple object Vλ for each rational number λ ∈ Q.
The endomorphism algebra of Vλ is given by the central simpleE-algebraDλ of Brauer invariant λ ∈ Q/Z.
Thus, there is an equivalence of categories

IsocE ∼=
⊕
λ∈Q

VectDλ ⊗ Vλ.

2The point of replacing [∗/G(E)] by [∗/G](SpecE) was also stressed by Bernstein.
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Here, if one writes λ = s
r with coprime integers s, r, r > 0, then Vλ ∼= Ĕr is of rank r with σ given by the

matrix 
0 1 0 . . .

0 1 0
. . . . . . . . .

0 0 1
πs 0 0


where π ∈ E is a uniformizer.

Above, we were consideringG-torsors on SpecE , thus we should now look atG-torsors in IsocE . These
are known as G-isocrystals and have been extensively studied by Kottwitz [Kot85], [Kot97]. Their study
has originally been motivated by the relation of isocrystals to p-divisible groups and accordingly a relation
of G-isocrystals to the special fibre of Shimura varieties (parametrizing abelian varieties with G-structure,
and thus p-divisible groups with G-structure). Traditionally, the set of G-isocrystals is denoted B(E,G),
and for b ∈ B(E,G) we write Eb for the corresponding G-isocrystal. In particular, Kottwitz has isolated
the class of basic G-isocrystals; for G = GLn, a G-isocrystal is just a rank n isocrystal, and it is basic
precisely when it has only one slope λ. There is an injection H1

et(SpecE,G) ↪→ B(E,G) as any G-torsor
on SpecE “pulls back” to a G-torsor in IsocE ; the image lands in B(E,G)basic. For any b ∈ B(E,G)basic,
the automorphism group of Eb is an inner form Gb of G; the set of such inner forms of G is known as the
extended pure inner forms of G. Note that for G = GLn, there are no nontrivial pure inner forms of G,
but all inner forms of G are extended pure inner forms, precisely by the occurence of all central simple
E-algebras as Hλ for some slope λ. More generally, if the center of G is connected, then all inner forms
of G can be realized as extended pure inner forms. Kaletha, [Kal14], has extended Vogan’s results on pure
inner forms to extended pure inner forms, giving a precise form of the local Langlands correspondence
(describing the fibres of π 7→ ϕπ) for all extended pure inner forms and thereby showing thatG-isocrystals
are profitable from a purely representation-theoretic point of view. We will actually argue below that it
is best to include Gb for all b ∈ B(E,G), not only the basic b; the resulting automorphism groups Gb are
then inner forms of Levi subgroups of G. Thus, we are led to consider the groupoid of G-torsors in IsocE ,

G-Isoc ∼=
⊔

[b]∈B(E,G)

[∗/Gb(E)].

Sheaves on this are then tuples of representations (πb)[b]∈B(E,G) ofGb(E). The local Langlands conjecture,
including its expected functorial behaviour with respect to passage to inner forms and Levi subgroups, then
still predicts that for any irreducible sheaf F — necessarily given by an irreducible representation πb of
Gb(E) for some b ∈ B(E,G) — one can associate an L-parameter ϕF :WE → Ĝ(C).

To go further, we need to bring geometry into the picture: Indeed, it will be via geometry that (sheaves
on the groupoid of) G-torsors on Spec Ĕ/ϕZ will be related to the fundamental group WE of Spec Ĕ/ϕZ.
The key idea is to study a moduli stack of G-torsors on Spec Ĕ/ϕZ.

There are several ways to try to define such a moduli stack. The most naive may be the following.
The category IsocE is an E-linear category. We may thus, for any E-algebra A, consider G-torsors in
IsocE ⊗E A. The resulting moduli stack will then actually be⊔

b∈B(E,G)

[∗/Gb],
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an Artin stack over E , given by a disjoint union of classifying stacks for the algebraic groups Gb. This
perspective is actually instrumental in defining theGb as algebraic groups. However, it is not helpful for the
goal of further geometrizing the situation. Namely, sheaves on [∗/Gb] are representations of the algebraic
group Gb, while we are interested in representations of the locally profinite group Gb(E).

A better perspective is to treat the choice of Fq as auxiliary, and replace it by a general Fq-algebra
R. In the equal characteristic case, we can then replace Ĕ = Fq((t)) with R((t)). This carries a Frobenius
ϕ = ϕR acting on R. To pass to the quotient SpecR((t))/ϕZ, we need to assume that the Frobenius of R
is an automorphism, i.e. that R is perfect. (The restriction to perfect R will become even more critical in
the mixed characteristic case. For the purpose of considering `-adic sheaves, the passage to perfect rings is
inconsequential, as étale sheaves on a schemeX and on its perfection are naturally equivalent.) We are thus
led to the moduli stack on perfect Fq-algebras

G-Isoc : {perfect Fq-algebras} → {groupoids} : R 7→ {G-torsors on SpecR((t))/ϕZ}.

These are also known as families of G-isocrystals over the perfect scheme SpecR. (Note the curly I in
G-Isoc, to distinguish it from the groupoid G-Isoc.)

This definition can be extended to the case of mixed characteristic. Indeed, if R is a perfect Fq-algebra,
the analogue of R[[t]] is the unique π-adically complete flat OE-algebra R̃ with R̃/π = R; explicitly, R̃ =
WOE (R) = W (R) ⊗W (Fq) OE in terms of the p-typical Witt vectors W (R) or the ramified Witt vectors
WOE (R). Thus, if E is of mixed characteristic, we define

G-Isoc : {perfect Fq-algebras} → {groupoids} : R 7→ {G-torsors on Spec(WOE (R)[
1
π ])/ϕ

Z}.

We will not use the stackG-Isoc in this paper. However, it has been highlighted recently among others
implicitly by Genestier–V. Lafforgue, [GL17], and explicitly by Gaitsgory, [Gai16, Section 4.2], and Zhu,
[Zhu20], and one can hope that the results of this paper have a parallel expression in terms of G-Isoc, so
let us analyze it further in this introduction. It is often defined in the following slightly different form.
Namely, v-locally on R, any G-torsor over R((t)) resp. WOE (R)[

1
π ] is trivial by a recent result of Anschütz

[Ans22]. Choosing such a trivialization, a family ofG-isocrystals is given by some element ofLG(R), where
we define the loop group

LG(R) = G(R((t))) (resp. LG(R) = G(WOE (R)[
1
π ])).

Changing the trivialization of the G-torsor amounts to σ-conjugation on LG, so as v-stacks

G-Isoc = LG/Ad,σLG

is the quotient of LG under σ-conjugation by LG.
The stack G-Isoc can be analyzed. More precisely, we have the following result.3

Theorem I.2.1. The prestack G-Isoc is a stack for the v-topology on perfect Fq-algebras. It admits a
stratification into locally closed substacks

G-Isocb ⊂ G-Isoc

3This result seems to be well-known to experts, but we are not aware of a full reference. For the v-descent (even arc-descent),
see [Iva23, Lemma 5.9]. The stratification is essentially constructed in [RR96]; the local constancy of the Kottwitz map is proved
in general in Corollary III.2.8. The identification of the strata in some cases is in [CS17, Proposition 4.3.13], and in general in
[HK22, Theorem 1.4].
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for b ∈ B(E,G), consisting of the locus where at each geometric point, the G-isocrystal is isomorphic to
Eb. Moreover, each stratum

G-Isocb ∼= [∗/Gb(E)]

is a classifying stack for the locally profinite group Gb(E).

The loop group LG is an ind-(infinite dimensional perfect scheme), so the presentation

G-Isoc = LG/Ad,σLG

is of extremely infinite nature. We expect that this is not an issue with the presentation, but that the stack
itself has no good finiteness properties; in particular note that all strata appear to be of the same dimension
0, while admitting nontrivial specialization relations. Xiao–Zhu (see [XZ17], [Zhu20]) have nonetheless
been able to define a category D(G-Isoc,Q`) of `-adic sheaves on G-Isoc, admitting a semi-orthogonal
decomposition into the various D(G-Isocb,Q`). Each D(G-Isocb,Q`) ∼= D([∗/Gb(E)],Q`) is equivalent
to the derived category of the category of smooth representations ofGb(E) (on Q`-vector spaces). Here, as
usual, we have to fix an auxiliary prime ` 6= p and an isomorphism C ∼= Q`.

At this point we have defined a stack G-Isoc, with a closed immersion

i : [∗/G(E)] ∼= G-Isoc1 ⊂ G-Isoc,

thus realizing a fully faithful embedding

i∗ : D(G(E),Q`) ↪→ D(G-Isoc,Q`)

of the derived category of smooth representations of G(E) into the derived category of Q`-sheaves on
G-Isoc. It is in this way that we “geometrize the representation theory of G(E)”.

The key additional structure that we need are the Hecke operators: These will simultaneously make the
Weil groupWE (i.e. π1(Spec Ĕ/ϕZ)) and, by a careful study, also the Langlands dual group Ĝ appear. Recall
that Hecke operators are related to modifications of G-torsors, and are parametrized by a point x of the
curve where the modification happens, and the type of the modification at x (which can be combinatorially
encoded in terms of a cocharacter of G — this eventually leads to the appearance of Ĝ). Often, the effect
of Hecke operators is locally constant for varying x. In that case, letting x vary amounts to an action of
π1(X), where X is the relevant curve; thus, the curve should now be Spec Ĕ/ϕZ.

Thus, if we want to define Hecke operators, we need to be able to consider modifications ofG-isocrystals.
These modifications ought to happen at a section of SpecR((t)) → SpecR (resp. a non-existent map
Spec(W (R) ⊗W (Fq) E) → SpecR). Unfortunately, the map R → R((t)) does not admit any sections.
In fact, we would certainly want to consider continuous sections; such continuous sections would then be
in bijection with maps Fq((t)) = Ĕ → R. In other words, in agreement with the motivation from the
previous paragraph, the relevant curve should be Spec Ĕ , or really Spec Ĕ modulo Frobenius — so we can
naturally hope to get actions of π1(Spec Ĕ/ϕZ) by the above recipe.

However, in order for this picture to be realized we need to be in a situation where we have continuous
maps Fq((t)) → R. In other words, we can only hope for sections if we put ourselves into a setting where
R is itself some kind of Banach ring.

This finally brings us to the setting considered in this paper. Namely, we replace the category of perfect
Fq-schemes with the category of perfectoid spaces Perf = PerfFq over Fq. Locally any S ∈ Perf is of the
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form S = Spa(R,R+) where R is a perfectoid Tate Fq-algebra: This means that R is a perfect topological
algebra that admits a topologically nilpotent unit $ ∈ R (called a pseudouniformizer) making it a Ba-
nach algebra over Fq(($)). Moreover, R+ ⊂ R is an open and integrally closed subring of powerbounded
elements. OftenR+ = R◦ is the subring of powerbounded elements, and we consequently use the abbrevia-
tion SpaR = Spa(R,R◦). The geometric (rank 1) points of S are given by SpaC for complete algebraically
closed nonarchimedean fields C , and as usual understanding geometric points is a key first step. We refer
to [SW20] for an introduction to adic and perfectoid spaces.

For any S = Spa(R,R+), we need to define the analogue of SpecR((t))/ϕZ, taking the topology of R
into account. Note that for discrete R′, we have

SpaR′((t)) = SpaR′ ×SpaFq SpaFq((t)),

and we are always free to replace SpecR′((t))/ϕZ by SpaR′((t))/ϕZ as they have the same category of vector
bundles. This suggests that the analogue of SpecR′((t)) is

Spa(R,R+)×SpaFq SpaFq((t)) = D∗
Spa(R,R+),

a punctured open unit disc over Spa(R,R+), with coordinate t. Note that

Spa(R,R+)×SpaFq SpaFq((t)) ⊂ SpaR+ ×SpaFq SpaFq[[t]] = SpaR+[[t]]

is the locus where t and $ ∈ R+ are invertible, where $ is a topologically nilpotent unit of R. The latter
definition can be extended to mixed characteristic: We let

Spa(R,R+)×̇SpaFq SpaE ⊂ SpaR+×̇SpaFq SpaOE := SpaWOE (R
+)

be the open subset where π and [$] ∈WOE (R
+) are invertible. This space is independent of the choice of

$ as for any other such$′, one has$|$′n and$′|$n for some n ≥ 1, and then the same happens for their
Teichmüller representatives. We note that the symbol ×̇ is purely symbolic: There is of course no map of
adic spaces SpaE → SpaFq along which a fibre product could be taken.

Definition I.2.2. The Fargues–Fontaine curve (for the local field E , over S = Spa(R,R+) ∈ Perf) is
the adic space over E defined by

XS = XS,E =
(
Spa(R,R+)×SpaFq SpaFq((t))

)
/ϕZ,

respectively
XS = XS,E =

(
Spa(R,R+)×̇SpaFq SpaE

)
/ϕZ,

where the Frobenius ϕ acts on (R,R+).

A novel feature, compared to the discussion of G-isocrystals, is that the action of ϕ is free and to-
tally discontinuous, so the quotient by ϕ is well-defined in the category of adic spaces. In fact, on YS =
Spa(R,R+)×̇SpaFq SpaE ⊂ SpaWOE (R

+) one can compare the absolute values of π and [$]. As both are
topologically nilpotent units, the ratio

rad = log(|[$]|)/ log(|π|) : |YS | → (0,∞)

gives a well-defined continuous map. The Frobenius on |YS |multiplies rad by q, proving that the action is
free and totally discontinuous.

We note that in the function field case E = Fq((t)), the space
YS = S ×SpaFq SpaFq((t)) = D∗

S
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is precisely a punctured open unit disc over S. In this picture, the radius function measures the distance to
the origin: Close to the origin, the radius map is close to 0, while close to the boundary of the open unit
disc it is close to∞. The quotient by ϕ is however not an adic space over S anymore, as ϕ acts on S. Thus,

XS = YS/ϕ
Z = D∗

S/ϕ
Z

is locally an adic space of finite type over S , but not globally so. This space, for S = SpaC a geometric
point, has been first studied by Hartl–Pink [HP04].

If S = SpaC is a geometric point but E is general, this curve (or rather a closely related schematic
version) has been extensively studied by Fargues–Fontaine [FF18], where it was shown that it plays a central
role in p-adic Hodge theory. From the perspective of adic spaces, it has been studied by Kedlaya–Liu [KL15].
In particular, in this case where S is a point, XS is indeed a curve: It is a strongly noetherian adic space
whose connected affinoid subsets are spectra of principal ideal domains. In particular, in this situation there
is a well-behaved notion of “classical points”, referring to those points that locally correspond to maximal
ideals. These can be classified. In the equal characteristic case, the description of

YS = D∗
S = S ×SpaFq SpaFq((t))

shows that the closed points are in bijection with maps S → SpaFq((t)) up to Frobenius; where now one
has to take the quotient under t 7→ tq. In mixed characteristic, the situation is more subtle, and brings us
to the tilting construction for perfectoid spaces.

Proposition I.2.3. If E is of mixed characteristic and S = SpaC is a geometric point, the classical
points of XC are in bijection with untilts C]|E of C , up to the action of Frobenius.

Here, we recall that for any complete algebraically closed field C ′|E , or more generally any perfectoid
Tate ring R, one can form the tilt

R[ = lim←−
x 7→xp

R,

where the addition is defined on the ring of integral elements in terms of the bijectionR[+ = lim←−x 7→xp
R+ ∼=

lim←−x 7→xp
R+/π, where now x 7→ xp is compatible with addition on R+/π. Then R[ is a perfectoid Tate

algebra of characteristic p. Geometrically, sending Spa(R,R+) to Spa(R[, R[+) defines a tilting functor
on perfectoid spaces T 7→ T [, preserving the underlying topological space and the étale site, cf. [SW20].

One sees that the classical points of XS , for S = SpaC a geometric point, are in bijection with untilts
S] of S together with a map S → SpaE , modulo the action of Frobenius. Recall from [SW20] that for any
adic space Z over W (Fq), one defines a functor

Z♦ : Perf→ Sets : S 7→ {S], f : S] → Z}

sending a perfectoid space S over Fq to pairs S] of an untilt of S , and a map S] → Z. If Z is an analytic
adic space, then Z♦ is a diamond, that is a quotient of a perfectoid space by a pro-étale equivalence relation.
Then the classical points of XS are in bijection with the S-valued points of the diamond

(Spa Ĕ)♦/ϕZ.

More generally, for any S ∈ Perf, maps S → (Spa Ĕ)♦/ϕZ are in bijection with degree 1 Cartier divisors
DS ⊂ XS , so we define

Div1 = (Spa Ĕ)♦/ϕZ.
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We warn the reader the action of the Frobenius here is a geometric Frobenius. In particular, it only exists
on (Spa Ĕ)♦, not on Spa Ĕ , in case E is of mixed characteristic. However, one still has π1(Div1) =WE .

This ends our long stream of thoughts on the geometry of SpecE: We have arrived at the Fargues–
Fontaine curve, in its various incarnations. To orient the reader, we recall them here:

(i) For any complete algebraically closed nonarchimedean field C|Fq , the curve XC = XC,E , a strongly
noetherian adic space overE , locally the adic spectrum of a principal ideal domain. One can also construct
a schematic version X

alg
C , with the same classical points and the same category of vector bundles. The

classical points are in bijection with untilts C]|E of C , up to Frobenius.
(ii) More generally, for any perfectoid space S ∈ Perf, the “family of curves” XS , again an adic space over
E , but no longer strongly noetherian. If S is affinoid, there is a schematic version X

alg
S , with the same

category of vector bundles.
(iii) The “mirror curve” Div1 = (Spa Ĕ)♦/ϕZ, which is only a diamond. For anyS ∈ Perf, this parametrizes
“degree 1 Cartier divisors on XS”.

A peculiar phenomenon here is that there is no “absolute curve” of which all the others are the base
change. Another peculiar feature is that the space of degree 1 Cartier divisors is not the curve itself.

Again, it is time to study G-torsors. This leads to the following definition.

Definition I.2.4. Let
BunG : Perf→ {groupoids} : S 7→ {G-torsors on XS}

be the moduli stack of G-torsors on the Fargues–Fontaine curve.

Remark I.2.5. Let us stress here that while “the Fargues–Fontaine curve” is not really a well-defined
notion, “the moduli stack of G-torsors on the Fargues–Fontaine curve” is.

AsXS maps towards Spa Ĕ/ϕZ, there is a natural pullback functorG-Isoc→ BunG(S). The following
result is in most cases due to Fargues [Far20], completed by Anschütz, [Ans19].

Theorem I.2.6. If S = SpaC is a geometric point, the map
B(G)→ BunG(S)/ ∼=

is a bijection. In particular, any vector bundle on XS is a direct sum of vector bundles OXS (λ) associated
to D−λ, λ ∈ Q.

Under this bijection, b ∈ B(G) is basic if and only if the correspondingG-torsor Eb onXS is semistable
in the sense of Atiyah–Bott [AB83].

However, it is no longer true that the automorphism groups are the same. On the level of the stack, we
have the following result.

Theorem I.2.7. The prestack BunG is a v-stack. It admits a stratification into locally closed substacks

ib : BunbG ⊂ BunG
for b ∈ B(G) consisting of the locus where at each geometric point, the G-torsor is isomorphic to Eb.
Moreover, each stratum

BunbG ∼= [∗/G̃b]
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is a classifying space for a group G̃b that is an extension of the locally profinite groupGb(E) by a “unipotent
group diamond”.

The semistable locus Bunss
G ⊂ BunG is an open substack, and

Bunss
G =

⊔
b∈B(G)basic

[∗/Gb(E)].

Remark I.2.8. The theorem looks formally extremely similar to Theorem I.2.1. However, there is a
critical difference, namely the closure relations are reversed: For BunG, the inclusion of BunbG for b ∈
B(G) basic is an open immersion while it was a closed immersion in Theorem I.2.1. Note that basic b ∈
B(G) correspond to semistableG-bundles, and one would indeed expect the semistable locus to be an open
substack. Generally, BunG behaves much like the stack of G-bundles on the projective line.

Remark I.2.9. We define a notion of Artin stacks in this perfectoid setting, and indeed BunG is an
Artin stack; we refer to Section I.4 for a more detailed description of our geometric results on BunG. This
shows that BunG has much better finiteness properties thanG-Isoc, even if it is defined on more exotic test
objects.

We can define a derived category of `-adic sheaves

D(BunG,Q`)

on BunG. This admits a semi-orthogonal decomposition into all D(BunbG,Q`), and

D(BunbG,Q`) ∼= D([∗/Gb(E)],Q`) ∼= D(Gb(E),Q`)

is equivalent to the derived category of smooth Gb(E)-representations.

Remark I.2.10. It is reasonable to expect that this category is equivalent to the categoryD(G-Isoc,Q`)
defined by Xiao–Zhu. However, we do not pursue this comparison here.

Finally, we can define the Hecke stack that will bring all key players together. Consider the global
Hecke stack HckG parametrizing pairs (E , E ′) of G-bundles on XS , together with a map S → Div1 giving
rise to a degree 1 Cartier divisor DS ⊂ XS , and an isomorphism

f : E|XS\DS ∼= E
′|XS\DS

that is meromorphic along DS . This gives a correspondence

BunG
h1←− HckG

h2−→ BunG×Div1.
To define the Hecke operators, we need to bound the modification, i.e. bound the poles of f along DS .
This is described by the local Hecke stack HckG, parametrizing pairs of G-torsors on the completion of
XS along DS , together with an isomorphism away from DS ; thus, there is a natural map HckG → HckG
from the global to the local Hecke stack. Geometrically,HckG admits a Schubert stratification in terms of
the conjugacy classes of cocharacters of G; in particular, there are closed Schubert cells HckG,≤µ for each
conjugacy class µ : Gm → G. By pullback, this defines a correspondence

BunG
h1,≤µ←−−− HckG,≤µ

h2,≤µ−−−→ BunG×Div1

where now h1,≤µ and h2,≤µ are proper. One can then consider Hecke operators

Rh2,≤µ,∗h
∗
1,≤µ : D(BunG,Λ)→ D(BunG×Div1,Λ).
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The following theorem ensures that Hecke operators are necessarily locally constant as one varies the
point of Div1, and hence give rise to representations of π1(Div1) =WE . In the following, we are somewhat
cavalier about the precise definition ofD(−,Q`) employed, and the notion ofWE-equivariant objects: The
fine print is addressed in the main text.

Theorem I.2.11. Pullback along the map Div1 → [∗/WE ] induces an equivalence

D(BunG×Div1,Q`) ∼= D(BunG×[∗/WE ],Q`) ∼= D(BunG,Q`)
BWE .

Thus, Hecke operators produceWE-equivariant objects inD(BunG,Q`), making the Weil group appear
naturally.

One also wants to understand how Hecke operators compose. This naturally leads to the study of
D(HckG,Q`) as a monoidal category, under convolution. Here, we have the geometric Satake equivalence.
In the setting of usual smooth projective curves (over C), this was established in the papers of Lusztig
[Lus83], Ginzburg [Gin90] and Mirković–Vilonen [MV07]. The theorem below is a first approximation;
we will actually prove a more precise version with Z`-coefficients, describing all perverse sheaves onHckG,
and applying to the Beilinson–Drinfeld Grassmannians in the spirit of Gaitsgory’s paper [Gai07].

Theorem I.2.12. There is a natural monoidal functor from Rep Ĝ to D(HckG,Q`).

Remark I.2.13. Our proof of Theorem I.2.12 follows the strategy of Mirković–Vilonen’s proof, and
in particular defines a natural symmetric monoidal structure on the category of perverse sheaves by using
the fusion product. This requires one to work over several copies of the base curve, and let the points
collide. It is a priori very surprising that this can be done in mixed characteristic, as it requires a space
like SpaQp×̇SpaFp SpaQp. Spaces of this type do however exist as diamonds, and this was one of the main
innovations of [SW20].

Remark I.2.14. Using a degeneration of the local Hecke stack, which is essentially theB+
dR-affine Grass-

mannian of [SW20], to the Witt vector affine Grassmannian, Theorem I.2.12 gives a new proof of Zhu’s
geometric Satake equivalence for the Witt vector affine Grassmannian [Zhu17]. In fact, we even prove a
version with Z`-coefficients, thus also recovering the result of Yu [Yu22].

Remark I.2.15. Regarding the formalism of `-adic sheaves, we warn the reader that we are cheating
slightly in the formulation of Theorem I.2.12; the definition ofD(BunG,Q`) implicit above is not the same
as the one implicit in Theorem I.2.12. With torsion coefficients, the problem would disappear, and in any
case the problems are essentially of technical nature.

Thus, this also makes the Langlands dual group Ĝ appear naturally. For any representation V of Ĝ, we
get a Hecke operator

TV : D(BunG,Q`)→ D(BunG,Q`)
BWE .

Moreover, the Hecke operators commute and
TV⊗W ∼= TV ◦ TW |∆(WE)

where we note that TV ◦TW naturally takes values inWE ×WE-equivariant objects; the restriction on the
right means the restriction to the action of the diagonal copy ∆(WE) ⊂WE ×WE .

At this point, the representation theory of G(E) (which sits fully faithfully in D(BunG,Q`)), the
Weil group WE , and the dual group Ĝ, all interact with each other naturally. It turns out that this
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categorical structure is precisely what is needed to construct L-parameters for (Schur-)irreducible objects
A ∈ D(BunG,Q`), and in particular for irreducible smooth representations of G(E). We will discuss the
construction of L-parameters below in Section I.9.

We note that the whole situation is exactly parallel to the Betti geometric Langlands situation consid-
ered by Nadler–Yun [NY19], and indeed the whole strategy can be described as “the geometric Langlands
program on the Fargues–Fontaine curve”. It is curious that our quest was to understand the local Langlands
correspondence in an arithmetic setting, for potentially very ramified representations, and eventually we
solved it by relating it to the global Langlands correspondence in a geometric setting, in the everywhere
unramified setting.

In the rest of this introduction, we give a more detailed overview of various aspects of this picture:

(i) The Fargues–Fontaine curve (Section I.3);
(ii) The geometry of the stack BunG (Section I.4);
(iii) The derived category of `-adic sheaves on BunG (Section I.5);
(iv) The geometric Satake equivalence (Section I.6);
(v) Finiteness of the cohomology of Rapoport–Zink spaces, local Shimura varieties, and more general mod-
uli spaces of shtukas (Section I.7);
(vi) The stack of L-parameters (Section I.8);
(vii) The construction of L-parameters (Section I.9);
(viii) The spectral action (Section I.10);
(ix) The origin of the ideas fleshed out in this paper (Section I.11).

These items largely mirror the chapters of this paper, and each chapter begins with a reprise of these
introductions.

I.3. The Fargues–Fontaine curve

The Fargues–Fontaine curve has been studied extensively in the book of Fargues–Fontaine [FF18] and
further results, especially in the relative situation, have been obtained by Kedlaya–Liu [KL15]. In the first
chapter, we reprove these foundational results, thereby also collecting and unifying certain results (proved
often only for E = Qp).

The first results concern the Fargues–Fontaine curve XC = XS when S = SpaC for some complete
algebraically closed nonarchimedean field C|Fq. We define a notion of classical points of XC in that case;
they form a subset of |XC |. The basic finiteness properties of XC are summarized in the following result.

Theorem I.3.1. The adic space XC is locally the adic spectrum Spa(B,B+) where B is a principal
ideal domain; the classical points of Spa(B,B+) ⊂ XC are in bijection with the maximal ideals of B. For
each classical point x ∈ XC , the residue field of x is an untilt C] of C over E , and this induces a bijection
of the classical points of XC with untilts C] of C over E , taken up to the action of Frobenius.

In the equal characteristic case, Theorem I.3.1 is an immediate consequence of the presentation XC =
D∗
C/ϕ

Z and classical results in rigid-analytic geometry. In the p-adic case, we use tilting to reduce to the
equal characteristic case. At one key turn, in order to understand Zariski closed subsets of XC , we use the
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result that Zariski closed implies strongly Zariski closed [BS22]. Using these ideas, we are able to give an
essentially computation-free proof.

A key result is the classification of vector bundles.

Theorem I.3.2. The functor from IsocE to vector bundles on XC induces a bijection on isomorphism
classes. In particular, there is a unique stable vector bundle OXC (λ) of any slope λ ∈ Q, and any vector
bundle E can be written as a direct sum of stable bundles.

We give a new self-contained proof of Theorem I.3.2, making critical use of the v-descent results for
vector bundles obtained in [Sch17a] and [SW20], and basic results on the geometry of Banach–Colmez
spaces established here. The proof in the equal characteristic case by Hartl–Pink [HP04] and the proof
of Kedlaya in the p-adic case [Ked04] relied on heavy computations, while the proof of Fargues–Fontaine
[FF18] relied on the description of the Lubin–Tate and Drinfeld moduli spaces of π-divisible O-modules.
Our proof is related to the arguments of Colmez in [Col02].

Allowing general S ∈ PerfFq , we define the moduli space of degree 1 Cartier divisors as Div1 =

Spd Ĕ/ϕZ. Given a map S → Div1, one can define an associated closed Cartier divisor DS ⊂ XS ; lo-
cally, this is given by an untilt DS = S] ⊂ XS of S over E , and this embeds Div1 into the space of closed
Cartier divisors on XS (justifying the name). Another important result is the following ampleness result,
cf. [KL15, Proposition 6.2.4], which implies that one can define an algebraic version of the curve, admitting
the same theory of vector bundles.

Theorem I.3.3. Assume that S ∈ Perf is affinoid. For any vector bundle E on XS , the twist E(n) is
globally generated and has no higher cohomology for all n� 0. Defining the graded ring

P =
⊕
n≥0

H0(XS ,OXS (n))

and the scheme Xalg
S = ProjP , there is a natural map of locally ringed spaces XS → X

alg
S , pullback along

which defines an equivalence of categories of vector bundles, preserving cohomology.

If S = SpaC for some complete algebraically closed nonarchimedean field C , then Xalg
C is a regular

noetherian scheme of Krull dimension 1, locally the spectrum of a principal ideal domain, and its closed
points are in bijection with the classical points of XC .

We also need to understand families of vector bundles, i.e. vector bundles E onXS for general S. Here,
the main result is the following.

Theorem I.3.4. Let S ∈ Perf and let E be a vector bundle onXS . Then the function taking a point s ∈
S to the Harder–Narasimhan polygon of E|Xs defines a semicontinuous function onS. If it is constant, then
E admits a global Harder–Narasimhan stratification, and pro-étale locally onS one can find an isomorphism
with a direct sum ofOXS (λ)’s.

In particular, if E is everywhere semistable of slope 0, then E is pro-étale locally trivial, and the category
of such E is equivalent to the category of pro-étale E-local systems on S.

The key to proving Theorem I.3.4 is the construction of certain global sections of E . To achieve this, we
use v-descent techniques, and an analysis of the spaces of global sections of E ; these are known as Banach–
Colmez spaces, and were first introduced (in slightly different terms) in [Col02].
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Definition I.3.5. Let E be a vector bundle on XS . The Banach–Colmez space BC(E) associated with
E is the locally spatial diamond over S whose T -valued points, for T ∈ PerfS , are given by

BC(E)(T ) = H0(XT , E|XT ).
Similarly, if E is everywhere of only negative Harder–Narasimhan slopes, the negative Banach–Colmez
space BC(E [1]) is the locally spatial diamond over S whose T -valued points are

BC(E [1])(T ) = H1(XT , E|XT ).

Implicit here is that this functor actually defines a locally spatial diamond. For this, we calculate some
key examples of Banach–Colmez spaces. For example, if E = OXS (λ) with 0 < λ ≤ [E : Qp] (resp. all
positive λ if E is of equal characteristic), then BC(E) is representable by a perfectoid open unit disc (of
dimension given by the numerator of λ). A special case of this is the identification of BC(OXS (1)) with
the universal cover of a Lubin–Tate formal group law, yielding a very close relation between Lubin–Tate
theory, and thus local class field theory, and the Fargues–Fontaine curve; see also [Far18]. On the other
hand, for larger λ, or negative λ, Banach–Colmez spaces are more exotic objects; for example, the negative
Banach–Colmez space

BC(OXC (−1)[1]) ∼= (A1
C])

♦/E

is the quotient of the affine line by the translation action of E ⊂ A1
C]

. We remark that our proof of the
classification theorem, Theorem I.3.2, ultimately relies on the negative result that BC(OXC (−1)[1]) is not
representable by a perfectoid space!4

For the proof of Theorem I.3.4, a key result is that projectivized Banach–Colmez spaces

(BC(E) \ {0})/E×

are proper — they are the relevant analogues of “families of projective spaces over S”. In particular, their
image in S is a closed subset, and if the image is all of S , then we can find a nowhere vanishing section of E
after a v-cover, as then the projectivized Banach–Colmez space is a v-cover of S. From here, Theorem I.3.4
follows easily.

I.4. The geometry of BunG

Let us discuss the geometry of BunG. Here, G can be any reductive group over a nonarchimedean local
fieldE , with residue field Fq of characteristic p. Recall that Kottwitz’ setB(G) = B(E,G) ofG-isocrystals
can be described combinatorially, by two discrete invariants. The first is the Newton point

ν : B(G)→ (X∗(T )
+
Q)

Γ,

where T is the universal Cartan of G and Γ = Gal(E|E). More precisely, any G-isocrystal E defines a
slope morphism D → GĔ where D is the diagonalizable group with cocharacter group Q; its definition
reduces to the case of GLn, where it amounts to the slope decomposition of isocrystals. Isomorphisms of
G-isocrystals lead to conjugate slope morphisms, and this defines the map ν.

The other map is the Kottwitz invariant
κ : B(G)→ π1(GE)Γ.

4Actually, we only know this for sure ifE is p-adic; in the function field case, we supply a small extra argument circumventing
the issue.
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Its definition is indirect, starting from tori, passing to the case of G with simply connected derived group,
and finally to the general case by z-extensions. Then Kottwitz shows that

(ν, κ) : B(G)→ (X∗(T )
+
Q)

Γ × π1(GE)Γ
is injective. Moreover, κ induces a bijection between B(G)basic and π1(GE)Γ. The non-basic elements can
be described in terms of Levi subgroups.

Using ν and κ, one can define a partial order on B(G) by declaring b ≤ b′ if κ(b) = κ(b′) and νb ≤ νb′
with respect to the dominance order.

Up to sign, one can think of ν , resp. κ, as the Harder–Narasimhan polygon, resp. first Chern class, of a
G-bundle.

Theorem I.4.1. The prestack BunG satisfies the following properties.

(i) The prestack BunG is a stack for the v-topology.
(ii) The points |BunG | are naturally in bijection with Kottwitz’ set B(G) of G-isocrystals.
(iii) The map

ν : |BunG | → B(G)→ (X∗(T )
+
Q)

Γ

is semicontinuous, and
κ : |BunG | → B(G)→ π1(GE)Γ

is locally constant. Equivalently, the map |BunG | → B(G) is continuous whenB(G) is equipped with the
order topology.
(iv) For any b ∈ B(G), the corresponding subfunctor

ib : BunbG = BunG×|BunG |{b} ⊂ BunG

is locally closed, and isomorphic to [∗/G̃b], where G̃b is a v-sheaf of groups such that G̃b → ∗ is representable
in locally spatial diamonds with π0G̃b = Gb(E). The connected component G̃◦

b ⊂ G̃b of the identity is
cohomologically smooth of dimension 〈2ρ, νb〉.
(v) In particular, the semistable locus Bunss

G ⊂ BunG is open, and given by

Bunss
G
∼=

⊔
b∈B(G)basic

[∗/Gb(E)].

(vi) For any b ∈ B(G), there is a map
πb :Mb → BunG

that is representable in locally spatial diamonds, partially proper and cohomologically smooth, whereMb

parametrizes G-bundles E together with an increasing Q-filtration whose associated graded is, at all geo-
metric points, isomorphic to Eb with its slope grading. The v-stackMb is representable in locally spatial
diamonds, partially proper and cohomologically smooth over [∗/Gb(E)].
(vii) The v-stack BunG is a cohomologically smooth Artin stack of dimension 0.

As examples, let us analyze the case of GL1 and GL2. For GL1, and general tori, everything is semistable,
so

Pic := BunGL1
∼=

⊔
Z
[∗/E×].
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For GL2, the Kottwitz invariant gives a decomposition

BunGL2 =
⊔
α∈1

2Z

BunαGL2
.

Each connected component has a unique semistable point, given by the basic element b ∈ B(GL2)basic with
κ(b) = α. For b ∈ B(GL2)basic ∼= 1

2Z, the corresponding group Gb(E) is given by GL2(E) when b ∈ Z,
and by D× when b ∈ 1

2Z \ Z, where D|E is the quaternion algebra.
The non-semistable points of BunGL2 are given by extensions of line bundles, which are of the form

O(i)⊕O(j) for some i, j ∈ Z, with 2α = i+j. Let us understand the simplest degeneration inside BunGL2 ,
which is fromO(12) toO ⊕O(1). The individual strata here are

[∗/D×], [∗/Aut(O ⊕O(1))].
Here

Aut(O ⊕O(1)) =
(
E× BC(O(1))
0 E×

)
.

Here BC(O(1)) is representable by a perfectoid open unit disc SpdFq[[t1/p
∞
]].

In this case, the local chartMb for BunGL2 parametrizes rank 2 bundles E written as an extension
0→ L → E → L′ → 0

such that at all geometric points, L ∼= O and L′ ∼= O(1). Fixing such isomorphisms defines a E× × E×-
torsor

M̃b →Mb

with M̃b = BC(O(−1)[1]) a “negative Banach–Colmez space”. This local chart shows that the local struc-
ture of BunG is closely related to the structure of negative Banach–Colmez spaces. It also shows that while
the geometry of BunG is quite nonstandard, it is still fundamentally a finite-dimensional and “smooth”
situation.

For general G, we still get a decomposition into connected components

BunG =
⊔

α∈π1(G)Γ

BunαG

and each connected component BunαG admits a unique semistable point.
By a recent result of Viehmann [Vie21], the map |BunG | → B(G) is a homeomorphism. This had

previously been proved forG = GLn by Hansen [Han17] based on [BFH+22]; that argument was extended
to some classical groups in unpublished work of Hamann.

Let us say some words about the proof of Theorem I.4.1. Part (i) has essentially been proved in [SW20],
and part (ii) follows from the result of Fargues and Anschütz, Theorem I.2.6. In part (iii), the statement
about ν reduces to GLn by an argument of Rapoport–Richartz [RR96], where it is Theorem I.3.4. The
statement about κ requires more work, at least in the general case: If the derived group of G is simply con-
nected, one can reduce to tori, which are not hard to handle. In general, one approach is to use z-extensions
G̃ → G to reduce to the case of simply connected derived group. For this, one needs that BunG̃ → BunG
is a surjective map of v-stacks; we prove this using Beauville–Laszlo uniformization. Alternatively, one
can use the abelianized Kottwitz set of Borovoi [Bor98], which we prove to behave well relatively over a
perfectoid space S. Part (iv) is a also consequence of Theorem I.3.4. Part (v) is a consequence of parts (iii)
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and (iv). The key point is then part (vi), which will imply (vii) formally. (One can, and we do, also prove
part (vii) directly. Part (vi) is however critical for the other results we prove below.) The properties ofMb

itself are easy to establish — the analysis for GL2 above generalizes easily to show that M̃b is a successive
extension of negative Banach–Colmez spaces. The key difficulty is to prove that

πb :Mb → BunG
is cohomologically smooth. Note that as we are working with perfectoid spaces, there are no tangent spaces,
and we cannot hope to prove smoothness via deformation theory. To attack this problem, we nonetheless
prove a general “Jacobian criterion of cohomological smoothness”. The setup here is the following.

Let S be a perfectoid space, and let Z → XS be a smooth map of (sousperfectoid) adic spaces; this
means that Z is an adic space that is locally étale over a finite-dimensional ball over XS . In this situation,
we can define a v-sheafMZ → S parametrizing sections of Z → XS , i.e. the S′-valued points, for S′/S a
perfectoid space, are given by the maps s : XS′ → Z lifting XS′ → XS . For each such section, we get the
vector bundle s∗TZ/XS on S′, where TZ/XS is the tangent bundle. Naively, deformations of S′ → MZ ,
i.e. ofXS′ → Z overXS′ → XS , should correspond to global sectionsH0(XS′ , s∗TZ/XS ), and obstructions
to H1(XS′ , s∗TZ/XS ). If s∗TZ/XS has everywhere only positive Harder–Narasimhan slopes, then this
vanishes locally on S′. By analogy with the classical situation, we would thus expect the open subspace

Msm
Z ⊂MZ ,

where s∗TZ/XS has positive Harder–Narasimhan slopes, to be (cohomologically) smooth over S. Our key
geometric result confirms this, at least if Z → XS is quasiprojective.

Theorem I.4.2. Assume that Z → XS can, locally on S , be embedded as a Zariski closed subset of an
open subset of (the adic space) PnXS . ThenMZ → S is representable in locally spatial diamonds, compact-
ifiable, and of locally finite dim. trg. Moreover, the open subsetMsm

Z ⊂ MZ is cohomologically smooth
over S.

In the application, the space Z → XS will be the flag variety parametrizing Q-filtrations on a given
G-torsor E on XS . ThenMb will be an open subset ofMsm

Z .
The proof of Theorem I.4.2 requires several innovations. The first is a notion of formal smoothness, in

which infinitesimal thickenings (that are not available in this perfectoid setting) are replaced by small étale
neighborhoods. This leads to a notion with a close relation to the notion of absolute neighborhood retracts
[Bor67] in classical topology. We prove that virtually all examples of cohomologically smooth maps are also
formally smooth, including Banach–Colmez spaces and BunG. We also prove thatMsm

Z → S is formally
smooth, which amounts to some delicate estimates, spreading sections XT0 → Z into small neighborhoods
of T0 ⊂ T , for any Zariski closed immersion T0 ⊂ T of affinoid perfectoid spaces — here we crucially
use the assumption that all Harder–Narasimhan slopes are positive. Coupled with the theorem that Zariski
closed implies strongly Zariski closed [BS22] this makes it possible to writeMsm

Z , up to (cohomologically
and formally) smooth maps, as a retract of a space that is étale over a ball over S. Certainly in classical
topology, this is not enough to ensure cohomological smoothness — a coordinate cross is a retract of R2

— but it does imply that the constant sheaf F` is universally locally acyclic over S. For this reason, and
other applications to sheaves on BunG as well as geometric Satake, we thus also develop a general theory of
universally locally acyclic sheaves in our setting. To finish the proof, we use a deformation to the normal
cone argument to show that the dualizing complex is “the same” as the one for the Banach–Colmez space
BC(s∗TZ/XS ).
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I.5. `-adic sheaves on BunG

For our results, we need to define the category of `-adic sheaves on BunG. More precisely, we will define
for each Z`-algebra Λ a category

D(BunG,Λ)
of sheaves of Λ-modules on BunG. If Λ is killed by some power of `, such a definition is the main achieve-
ment of [Sch17a]. Our main interest is however the case Λ = Q`. In the case of schemes (of finite type
over an algebraically closed field), the passage from torsion coefficients to Q`-coefficients is largely formal:
Roughly,

D(X,Q`) = Ind(lim←−
n

Db
c(X,Z/`nZ)⊗Z` Q`).

Behind this definition are however strong finiteness results for constructible sheaves; in particular, the
morphism spaces between constructible sheaves are finite. For BunG, or for the category of smooth repre-
sentations, there are still compact objects (given by compactly induced representations in the case of smooth
representations), but their endomorphism algebras are Hecke algebras, which are infinite-dimensional. A
definition along the same lines would then replace all Hecke algebras by their `-adic completions, which
would drastically change the category of representations.

Our definition ofD(BunG,Λ) in general involves some new ideas, employing the idea of solid modules
developed by Clausen–Scholze [CS] in the context of the pro-étale (or v-)site; in the end, D(BunG,Λ) is
defined as a certain full subcategory

Dlis(BunG,Λ) ⊂ D�(BunG,Λ)

of the category D�(BunG,Λ) of solid complexes of Λ-modules on the v-site of BunG. The formalism of
solid sheaves, whose idea is due to Clausen and the second author, is developed in Chapter VII. It presents
some interesting surprises; in particular, there is always a left adjoint f\ to pullback f∗, satisfying base
change and a projection formula. (In return, Rf! fails to exist in general.)

Theorem I.5.1. Let Λ be any Z`-algebra.

(i) Via excision triangles, there is an infinite semiorthogonal decomposition ofD(BunG,Λ) into the various
D(BunbG,Λ) for b ∈ B(G).
(ii) For each b ∈ B(G), pullback along

BunbG ∼= [∗/G̃b]→ [∗/Gb(E)]

gives an equivalence
D([∗/Gb(E)],Λ) ∼= D(BunbG,Λ),

and D([∗/Gb(E)],Λ) ∼= D(Gb(E),Λ) is equivalent to the derived category of the category of smooth
representations of Gb(E) on Λ-modules.
(iii) The category D(BunG,Λ) is compactly generated, and a complex A ∈ D(BunG,Λ) is compact if and
only if for all b ∈ B(G), the restriction

ib∗A ∈ D(BunbG,Λ) ∼= D(Gb(E),Λ)

is compact, and zero for almost all b. Here, compactness in D(Gb(E),Λ) is equivalent to lying in the thick
triangulated subcategory generated by c-IndGb(E)

K Λ as K runs over open pro-p-subgroups of Gb(E).
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(iv) On the subcategory D(BunG,Λ)ω ⊂ D(BunG,Λ) of compact objects, there is a Bernstein–Zelevinsky
duality functor

DBZ : (D(BunG,Λ)ω)op → D(BunG,Λ)ω

with a functorial identification
RHom(A,B) ∼= π\(DBZ(A)⊗L

Λ B)

for B ∈ D(BunG,Λ), where π : BunG → ∗ is the projection. The functor DBZ is an equivalence, and
D2
BZ is naturally equivalent to the identity. It is compatible with usual Bernstein–Zelevinsky duality on

D(Gb(E),Λ) for basic b ∈ B(G).
(v) An object A ∈ D(BunG,Λ) is universally locally acyclic (with respect to BunG → ∗) if and only if for
all b ∈ B(G), the restriction

ib∗A ∈ D(BunbG,Λ) ∼= D(Gb(E),Λ)

is admissible, i.e. for all pro-p open subgroups K ⊂ Gb(E), the complex (ib∗A)K is perfect. Universally
locally acyclic complexes are preserved by Verdier duality, and satisfy Verdier biduality.

This theorem extends many basic notions from representation theory — finitely presented objects,
admissible representations, Bernstein–Zelevinsky duality, smooth duality — to the setting ofD(BunG,Λ).

Parts (i) and (ii) are easy whenΛ is `-power torsion. In general, their proofs invoke the precise definition
ofD(BunG,Λ) = Dlis(BunG,Λ) and are somewhat subtle. Part (iii) uses that ib∗ admits a left adjoint, which
will then automatically preserve compact objects (inducing compact generators). Using the diagram

[∗/Gb(E)]
qb←−Mb

πb−→ BunG,

this left adjoint is defined as πb\q∗b . The verification that this is indeed a left adjoint amounts in some sense
to the assertion thatMb is “strictly local” along the closed subspace [∗/Gb(E)] ⊂Mb in the sense that for
all A ∈ D(Mb,Λ), the restriction

RΓ(Mb, A)→ RΓ([∗/Gb(E)], A)

is an isomorphism. This builds on a detailed analysis of the topological nature ofMb, in particular that
M̃b \ ∗ is a spatial diamond, and Theorem I.5.2 below. For part (iv), the constructions in (iii) imply the
existence of DBZ(A) on a class of generators, thus in general, and similar arguments to the ones in (iii)
prove the biduality. Finally, part (v) is essentially a formal consequence.

The key cohomological result for the proof is the following result, applied to M̃b \ ∗ (or quotients of
it). It plays on the subtle point that the point ∗ is not quasiseparated.

Theorem I.5.2. Let X be a spatial diamond such that f : X → ∗ is partially proper, and of finite
dim. trg. Then for any affinoid perfectoid space S , the base change XS = X × S naturally admits two
ends. Taking compactly supported cohomology with respect to one end (but no support condition at the
other end), one has

RΓ∂-c(XS , A) = 0

for all A ∈ D+
� (X,Z`) (resp. all A ∈ D�(X,Z`) if f is `-cohomologically smooth).

As an example, if X = SpaFq((t)), then XS = D∗
S is an open unit disc over S , whose two ends are the

origin and the boundary, and one has
RΓ∂-c(D∗

S ,Z`) = 0.



I.6. THE GEOMETRIC SATAKE EQUIVALENCE 25

In particular, the cohomology of SpaFq[[t]] agrees with sections on the closed point, showing that SpaFq[[t]]
is “strictly local”. The same phenomenon is at work forMb.

I.6. The geometric Satake equivalence

In order to define the Hecke operators, we need to prove the geometric Satake equivalence, taking
representations of the dual group Ĝ to sheaves on the local Hecke stack. In order to analyze compositions
of Hecke operators, it will in fact be necessary to analyze modifications at several points.

Thus, for any finite set I , we consider the moduli space (Div1)I parametrizing degree 1 Cartier divisors
Di ⊂ XS , i ∈ I . Locally on S , each Di defines an untilt S]i of S over E , and one can form the completion
B+ of OXS along the union of the Di. Inverting the Di defines a localization B of B+. One can then
define a positive loop group L+

(Div1)IG and loop group L(Div1)IG, with values given byG(B+) resp.G(B);
for brevity, we will simply write L+G and LG here. One can then define the local Hecke stack

HckIG = [L+G\LG/L+G]→ (Div1)I .

For d = |I|, this is in fact already defined over the moduli space Divd = (Div1)d/Σd of degree d Cartier
divisors. We will often break symmetry, and first take the quotient on the right to define the Beilinson–
Drinfeld Grassmannian

GrIG = LG/L+G→ (Div1)I

so that
HckIG = L+G\GrIG .

The Beilinson–Drinfeld Grassmannian GrIG → (Div1)I is a small v-sheaf that can be written as an in-
creasing union of closed subsheaves that are proper and representable in spatial diamonds, by bounding the
relative position; this is one main result of [SW20]. On the other hand, L+G can be written as an inverse
limit of truncated positive loop groups, which are representable in locally spatial diamonds and cohomo-
logically smooth; moreover, on each bounded subset, it acts through such a finite-dimensional quotient.
This essentially reduces the study of all bounded subsets ofHckIG to Artin stacks.

In particular, one can write the local Hecke stack as an increasing union of closed substacks that are qua-
sicompact over (Div1)I , by bounding the relative position. In the following, we assume that the coefficients
Λ are killed by some power of `, so that we can use the theory from [Sch17a]. Let

Det(HckIG,Λ)bd ⊂ Det(HckIG,Λ)
be the full subcategory of all objects with quasicompact support over (Div1)I . This is a monoidal category
under convolution ?. Here, we use the convolution diagram

HckIG×(Div1)I HckIG
(p1,p2)←−−−− L+G\LG×L+G LG/L+G

m−→ HckIG
and define

A ? B = Rm∗(p
∗
1A⊗L

Λ p
∗
2B).

The map m is ind-proper (its fibres are GrIG), and in particular proper on any bounded subset; thus, proper
base change ensures that this defines an associative monoidal structure.

On Det(HckIG,Λ)bd, one can define a relative perverse t-structure (where an object is perverse if and
only if it is perverse over any geometric fibre of (Div1)I ). For this t-structure, the convolution ? is left
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t-exact (and t-exactness only fails for issues related to non-flatness over Λ). To prove that there is a well-
defined t-structure, and the preservation of perversity under convolution, we adapt Braden’s theorems
[Bra03] on hyperbolic localization, and a degeneration to the Witt vector affine Grassmannian [Zhu17],
[BS17]. We will discuss hyperbolic localization further below.

We remark that there is no general theory of perverse sheaves in p-adic geometry, the issue being that
it is difficult to unambiguously assign a dimension to a point of an adic space (cf. [Tem21] for what is
known about topological transcendence degrees of points, and the subtleties especially in characteristic p).
In particular, we would not know how to define a notion of perverse sheaf on (Div1)I in general, which
is the reason we revert to asking perversity only in the fibres. Here, we use that all geometric fibres of
the stackHckIG → (Div1)I have only countably many points enumerated explicitly in terms of dominant
cocharacters µi, and one can assign by hand the dimension

∑
i〈2ρ, µi〉 of the corresponding open Schubert

cells.

Remark I.6.1. Inspired by this, we realized that for any map f : X → S locally of finite type between
schemes, one can define a relative perverse t-structure, with relative perversity equivalent to perversity on
all geometric fibres, cf. [HS23].

Moreover, one can restrict to the complexes A ∈ Det(HckIG,Λ)bd that are universally locally acyclic
over (Div1)I . This condition is also preserved under convolution.

Definition I.6.2. The Satake category

SatIG(Λ) ⊂ Det(HckIG,Λ)bd

is the category of all A ∈ Det(HckIG,Λ)bd that are perverse, flat over Λ (i.e., for all Λ-modules M , also
A⊗L

Λ M is perverse), and universally locally acyclic over (Div1)I .

Intuitively, SatIG(Λ) are the “flat families of perverse sheaves on HckIG → (Div1)I”, where flatness
refers both to the geometric aspect of flatness over (Div1)I (encoded in universal local acyclicity) and the
algebraic aspect of flatness in the coefficients Λ. The Satake category SatIG(Λ) is a monoidal category under
convolution. Moreover, it is covariantly functorial in I .

In fact, the monoidal structure naturally upgrades to a symmetric monoidal structure. This relies on
the fusion product, for which it is critical to allow general finite sets I . Namely, given finite sets I1, . . . , Ik ,
letting I = I1 t . . . t Ik , one has an isomorphism

HckIG×(Div1)I (Div1)I;I1,...,Ik ∼=
k∏
j=1

HckIjG ×(Div1)I (Div1)I;I1,...,Ik

where (Div1)I;I1,...,Ik ⊂ (Div1)I is the open subset where xi 6= xi′ whenever i, i′ ∈ I lie in different Ij ’s.
The exterior tensor product then defines a functor

�kj=1 :

k∏
j=1

SatIjG (Λ)→ SatI;I1,...,IkG (Λ)

where SatI;I1,...,IkG (Λ) is the variant of SatIG(Λ) forHckIG×(Div1)I (Div1)I;I1,...,Ik . However, the restriction
functor

SatIG(Λ)→ SatI;I1,...,IkG (Λ)
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is fully faithful, and the essential image of the exterior product lands in its essential image. Thus, we get a
natural functor

∗kj=1 :

k∏
j=1

SatIjG (Λ)→ SatIG(Λ),

independent of the ordering of the Ij . In particular, for any I , we get a functor

SatIG(Λ)× SatIG(Λ)→ SatItIG (Λ)→ SatIG(Λ),
using functoriality of SatJG(Λ) in J , which defines a symmetric monoidal structure ∗ on SatIG(Λ), commut-
ing with ?. This is called the fusion product. In general, for any symmetric monoidal category (C, ∗) with a
commuting monoidal structure ?, the monoidal structure ? necessarily agrees with ∗; thus, the fusion prod-
uct refines the convolution product. (As usual in geometric Satake, we actually need to change ∗ slightly
by introducing certain signs into the commutativity constraint, depending on the parity of the support of
the perverse sheaves.)

Moreover, restricting A ∈ SatIG(Λ) to GrIG and taking the pushforward to (Div1)I , all cohomology
sheaves are local systems of Λ-modules on (Div1)I . By a version of Drinfeld’s lemma, these are equivalent
to representations of W I

E on Λ-modules. This defines a symmetric monoidal fibre functor

F I : SatIG(Λ)→ RepW I
E
(Λ),

where RepW I
E
(Λ) is the category of continuous representations of W I

E on finite projective Λ-modules. Us-
ing a version of Tannaka duality, one can then build a Hopf algebra in the Ind-category of RepW I

E
(Λ) so

that SatIG(Λ) is given by its category of representations (internal in RepW I
E
(Λ)). For any finite set I , this

is given by the tensor product of I copies of the corresponding Hopf algebra for I = {∗}, which in turn is
given by some affine group scheme G

∧

over Λ with WE-action.

Theorem I.6.3. There is a canonical isomorphism G

∧∼= ĜΛ with the Langlands dual group, under
which the action of WE on G

∧

agrees with the usual action of WE on Ĝ up to an explicit cyclotomic twist.
If √q ∈ Λ, the cyclotomic twist can be trivialized, and SatIG(Λ) is naturally equivalent to the category of
(ĜoWE)

I -representations on finite projective Λ-modules.

This theorem is thus a version of the theorem of Mirković–Vilonen [MV07], coupled with the refine-
ments of Gaitsgory [Gai07] for general I . (We remark that we formulate a theorem valid for any Λ, not
necessarily regular; such a formulation does not seem to be in the literature. Also, we give a purely local
proof: Most proofs require a globalization on a (usual) curve.) Contrary to Mirković–Vilonen, we actually
construct an explicit pinning of G

∧

. For the proof, one can restrict to Λ = Z/`nZ; passing to a limit over
n, one can actually build a group scheme over Z`. Its generic fibre is reductive, as the Satake category with
Q`-coefficients is (geometrically) semisimple: For this, we again use the degeneration to the Witt vector
affine Grassmannian and the decomposition theorem for schemes. To identify the reductive group, we ar-
gue first for tori, and then for rank 1 groups, where everything reduces to G = PGL2 which is easy to
analyze by using the minuscule Schubert cell. Here, the pinning includes a cyclotomic twist as of course
the cohomology of the minuscule Schubert variety P1 of GrPGL2 contains a cyclotomic twist. Afterwards,
we apply hyperbolic localization in order to construct symmetric monoidal functors SatG → SatM for any
Levi M of G, inducing dually maps M

∧

→ G

∧

. This produces many Levi subgroups of G

∧

Q` from which it
is easy to get the isomorphism with ĜQ` , including a pinning. As these maps M

∧

→ G

∧

are even defined



28 I. INTRODUCTION

integrally, and Ĝ(Z`) ⊂ Ĝ(Q`) is a maximal compact open subgroup by Bruhat–Tits theory, generated by
the rank 1 Levi subgroups, one can then deduce that G

∧∼= Ĝ integrally, again with an explicit (cyclotomic)
pinning.

We will also need the following addendum regarding a natural involution. Namely, the local Hecke
stackHckG has a natural involution sw given by reversing the roles of the twoG-torsors; in the presentation
in terms of LG, this is induced by the inversion on LG. Then sw∗ induces naturally an involution of
SatG(Λ), and this involution can be upgraded to a symmetric monoidal functor commuting with the fibre
functor, thus realizing a WE-equivariant automorphism of G

∧∼= Ĝ.

Proposition I.6.4. The action of sw∗ on SatG induces the automorphism of Ĝ that is the Chevalley
involution of the split group Ĝ, conjugated by ρ̂(−1).

Critical to all of our arguments is the hyperbolic localization functor. In the setting of the Beilinson–
Drinfeld Grassmannian, assume that P+, P− ⊂ G are two opposite parabolics, with common Levi M . We
get a diagram

GrIP+

q+

||

p+

##
GrIG GrIM .

GrIP−

q−
bb

p−
;;

We get two “constant term” functors

CT+ = R(p+)!(q
+)∗,CT− = R(p−)∗R(q

−)! : Det(GrIG,Λ)bd → Det(GrIM ,Λ)bd,

and one can construct a natural transformation CT− → CT+. The functor CT+ corresponds classically to
the Satake transform, of integrating along orbits under the unipotent radical ofU+. Hyperbolic localization
claims that the transformation CT− → CT+ is an equivalence when restricted toL+G-equivariant objects.
This has many consequences; note that CT+ is built from left adjoint functors while CT− is built from right
adjoint functors, so if they are isomorphic, hyperbolic localization has the best of both worlds. In particular,
hyperbolic localization commutes with all colimits and all limits, preserves (relative) perversity, universal
local acyclicity, commutes with any base change, etc. .

This is in fact a special case of the following more general assertion. Let S be any small v-stack, and
f : X → S be a proper map that is representable in spatial diamonds with dim. trg f < ∞. Assume that
there is an action of Gm on X/S , where Gm(R,R

+) = R×. The fixed points X0 ⊂ X of the Gm-action
form a closed substack. We assume that one can define an attractor locus X+ ⊂ X and a repeller locus
X− ⊂ X , given by disjoint unions of locally closed subspaces, on which the t ∈ Gm-action admits a limit
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as t→ 0 (resp. t→∞). We get a diagram

X+

q+

~~

p+

!!
X X0,

X−

q−
``

p−
==

generalizing (bounded parts of) the above diagram if one chooses a cocharacterµ : Gm → Gwhose dynamic
parabolics are P+, P−. One can define

L+ = R(p+)!(q
+)∗, L− = R(p−)∗R(q

−)! : Det(X,Λ)→ Det(X
0,Λ)

and a natural transformation L− → L+. The following is our version of Braden’s theorem [Bra03], cf. also
[Ric19].

Theorem I.6.5. The transformationL− → L+ is an equivalence when restricted to the essential image
of Det(X/Gm,Λ)→ Det(X,Λ).

The proof makes use of the following principle: If Y → S is partially proper with a Gm-action such
that the quotient stack Y /Gm is qcqs over S , then again Y admits two ends, and the partially compactly
supported cohomology of Y with coefficients in any A ∈ Det(Y /Gm,Λ) vanishes identically.

I.7. Cohomology of moduli spaces of shtuka

At this point, we have defined
D(BunG,Λ),

and using the geometric Satake equivalence and the diagram

HckIG
q //

h1{{

h2

&&

HckIG

BunG BunG×(Div1)I

one can define the Hecke operator

TV = Rh2∗(h
∗
1 ⊗L

Λ q
∗SV ) : D(BunG,Λ)→ D(BunG×(Div1)I ,Λ)

for any V ∈ SatIG(Λ), where SV is the corresponding sheaf on HckIG. This works at least if Λ is killed by
some power of `. We can in fact extend this functor to all Z`-algebras Λ. Moreover, its image lies in the full
subcategory of those objects that are locally constant in the direction of (Div1)I , thereby giving a functor

TV : D(BunG,Λ)→ D(BunG,Λ)BW
I
E

to the category of W I
E-equivariant objects in D(BunG,Λ). The proof is surprisingly formal: One reduces

to I = {∗} by an inductive argument, and then uses that Div1 = Spd Ĕ/ϕZ is still just a point. More
precisely, one uses that

D(BunG,Λ)→ D(BunG× Spd Ê,Λ)
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is an equivalence.

Remark I.7.1. To defineD(BunG,Λ)BW
I
E , we need to upgradeD(BunG,Λ) to a condensed∞-category;

then it is the notion of W I
E-equivariant objects for the condensed group W I

E .

A first consequence of our results is that TV , forgetting theW I
E-equivariance, preserves finiteness prop-

erties. Note that TV ◦TW ∼= TV⊗W as the geometric Satake equivalence is monoidal. This formally implies
that TV is left and right adjoint to TV ∗ . From here, it is not hard to prove the following result.

Theorem I.7.2. The functor TV : D(BunG,Λ) → D(BunG,Λ) preserves compact objects and uni-
versally locally acyclic objects. Moreover, it commutes with Bernstein–Zelevinsky and Verdier duality in
the sense that there are natural isomorphisms DBZ(TV (A)) ∼= Tsw∗V ∨(DBZ(A)) and RHom(TV (A),Λ) ∼=
T(sw∗V )∨RHom(A,Λ).

Here sw∗ is the involution of SatIG which by Proposition I.6.4 is induced by the Chevalley involution
of Ĝ, conjugated by ρ̂(−1).

This theorem has concrete consequences for the cohomology of moduli spaces of shtukas. For simplic-
ity, we formulate it here with coefficients in a Λ-algebra that is killed by `n for some n; for the general
formulation, we would need to discuss more precisely the foundational issues surrounding the derived cat-
egories. In [SW20, Lecture XXIII], for any collection {µi}i of conjugacy classes of cocharacters with fields
of definition Ei/E and b ∈ B(G), there is defined a tower of moduli spaces of local shtukas

fK : (Sht(G,b,µ•),K)K⊂G(E) →
∏
i∈I

Spd Ĕi

as K ranges over compact open subgroups of G(E), equipped with compatible étale period maps

πK : Sht(G,b,µ•),K → Grtw
G,

∏
i∈I Spd Ĕi,≤µ•

.

Here, Grtw
G,

∏
i∈I Spd Ĕi

→
∏
i∈I Spd Ĕ is a certain twisted form of the convolution affine Grassmannian,

cf. [SW20, Section 23.5]. Let W be the exterior tensor product �i∈IVµi of highest weight representa-
tions, and SW the corresponding sheaf on Grtw

G,
∏
i∈I Spd Ĕi

. We continue to write SW for its pullback to
Sht(G,b,µ•),K .

Corollary I.7.3. The sheaf

RfK!SW ∈ D([∗/Gb(E)]×
∏
i∈I

Spd Ĕi,Λ)

is equipped with partial Frobenii, thus descends to an object of

D([∗/Gb(E)]×
∏
i∈I

Spd Ĕi/ϕZ
i ,Λ).

This object lives in the full subcategory

D(Gb(E),Λ)B
∏
i∈IWEi ⊂ D([∗/Gb(E))]×

∏
i∈I

Spd Ĕi/ϕZ
i ,Λ),
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and its restriction to D(Gb(E),Λ) is compact. In particular, for any admissible representation ρ of Gb(E),
the object

RHomGb(E)(RfK!SW , ρ) ∈ D(Λ)B
∏
i∈IWEi

is a representation of
∏
i∈IWEi on a perfect complex of Λ-modules. Taking the colimit over K , this gives

rise to a complex of admissible G(E)-representations

lim−→
K

RHomGb(E)(RfK!SW , ρ)

equipped with a
∏
i∈IWEi-action.

If ρ is compact, then so is
lim−→
K

RHomGb(E)(RfK!SW , ρ)

as a complex of G(E)-representations.

Specializing to I = {∗} and µ minuscule, we get local Shimura varieties, and this proves the finiteness
properties of [RV14, Proposition 6.1] unconditionally, as well as [RV14, Remark 6.2 (iii)]. We note that
those properties seem inaccessible using only the definition of the moduli spaces of shtukas, i.e. without the
use of BunG.

I.8. The stack of L-parameters

Let us discuss the other side of the Langlands correspondence, namely (the stack of) L-parameters. This
has been previously done by Dat–Helm–Kurinczuk–Moss [DHKM20] and Zhu [Zhu20]. One wants to
define a scheme whose Λ-valued points, for a Z`-algebra Λ, are the continuous 1-cocycles

ϕ :WE → Ĝ(Λ).

(Here, we endow Ĝwith its usualWE-action, that factors over a finite quotientQ ofWE . As discussed above,
the difference between the two actions disappears over Z`[

√
q], and we find it much more convenient to use

the standard normalization here, so that we can sometimes make use of the algebraic group ĜoQ.)
There seems to be a mismatch here, in asking for an algebraic stack, but continuous cocycles. Interest-

ingly, there is a way to phrase the continuity condition that produces a scheme. Namely, we consider Λ as
a condensed Z`-algebra that is “relatively discrete over Z`”. Abstract Z`-modulesM embed fully faithfully
into condensed Z`-modules, via sending M to Mdisc ⊗Z`,disc Z`.

Theorem I.8.1. There is a scheme Z1(WE , Ĝ) over Z` whose Λ-valued points, for a Z`-algebra Λ, are
the condensed 1-cocycles

ϕ :WE → Ĝ(Λ),

where we regard Λ as a relatively discrete condensed Z`-algebra. The schemeZ1(WE , Ĝ) is a union of open
and closed affine subschemesZ1(WE/P, Ĝ) asP runs through open subgroups of the wild inertia subgroup
of WE , and each Z1(WE/P, Ĝ) is a flat local complete intersection over Z` of dimension dimG.

The point here is that the inertia subgroup ofWE has a Z`-factor, and this can map in interesting ways
to Λ when making this definition. To prove the theorem, following [DHKM20] and [Zhu20] we define
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discrete dense subgroupsW ⊂WE/P by discretizing the tame inertia, and the restrictionZ1(WE/P, Ĝ)→
Z1(W, Ĝ) is an isomorphism, where the latter is clearly an affine scheme.

We can also prove further results about the Ĝ-action onZ1(WE , Ĝ), or more precisely eachZ1(WE/P, Ĝ).
For this result, we need to make a very minor assumption on `.

Theorem I.8.2. Assume that ` does not divide the order of π0Z(G) (equivalently, ` does not divide
the order of π1(Ĝ)tor). Then H i(Ĝ,O(Z1(WE/P, Ĝ))) = 0 for i > 0 and the formation of the invariants
O(Z1(WE/P, Ĝ))

Ĝ commutes with any base change. The algebra O(Z1(WE/P, Ĝ))
Ĝ admits an explicit

presentation in terms of excursion operators,

O(Z1(WE/P, Ĝ))
Ĝ = colim(n,Fn→W )O(Z1(Fn, Ĝ))

Ĝ

where the colimit runs over all maps from a free group Fn to W ⊂WE/P , and Z1(Fn, Ĝ) ∼= Ĝn with the
simultaneous twisted Ĝ-conjugation.

Moreover, the∞-category Perf(Z1(WE/P, Ĝ)/Ĝ) is generated under cones and retracts by the image
of Rep(Ĝ) → Perf(Z1(WE/P, Ĝ)/Ĝ), and Ind Perf(Z1(WE/P, Ĝ)) is equivalent to the ∞-category of
modules overO(Z1(WE/P, Ĝ)) in Ind Perf(∗/Ĝ).

All of these results also hold with Q`-coefficients, without the assumption on `.

With Q`-coefficients, these results are simple, as the representation theory of Ĝ is semisimple. How-
ever, with Z`-coefficients, these results are quite subtle, and we need to dive into modular representation
theory of reductive groups. In fact, we give a new perspective on (and provide some new examples of) the
phenomenon that restriction along an embedding H ⊂ G of reductive groups preserves representations
admitting a good filtration.

Theorem I.8.3. Let G be a reductive group over an algebraically closed field L of characteristic `. Let
P be a finite solvable group of order prime to ` acting on G. The fixed point group H = GP is a smooth
linear algebraic group with H◦ reductive, and with π0H of order prime to `.

In this situation, for any representation V ofG admitting a goodG-filtration, also V |H◦ admits a good
H◦-filtration.

The case of Levi subgroups is a classical theorem, while the case P = Z/2Z was known as Brundan’s
conjecture and proved by exhaustive case-by-case analysis in [Bru98], [vdK01]. We give a new proof that
works uniformly in all cases.

We also prove that in the situation of the theorem, the image of Perf(∗/G) → Perf(∗/H) generates
the whole category under cones and retracts. In the first version, we proved this by a very explicit (and
exhausting) analysis of all possible cases, but there is now a uniform proof.

I.9. Construction of L-parameters

Finally, we can discuss the construction of L-parameters. Assume first for simplicity that Λ = Q` with
fixed√q ∈ Q`, and let A ∈ D(BunG,Q`) be any Schur-irreducible object, i.e. End(A) = Q`. For example,
A could correspond to an irreducible smooth representation of G(E), taking the extension by zero along
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[∗/G(E)] ↪→ BunG. Then, following V. Lafforgue [Laf18], we can define excursion operators as follows.
For any representation V of (ĜoWE)

I over Q`, together with maps

α : Q` → V |Ĝ, β : V |Ĝ → Q`

when restricted to the action of the diagonal copy Ĝ ⊂ (Ĝ oWE)
I , and elements γi ∈ WE for i ∈ I , we

can define the endomorphism

A
Tα−→ TV (A)

(γi)i∈I−−−−→ TV (A)
Tβ−→ A

of A, defining an element of Q`. With all the formalism in place, the following result is essentially due to
V. Lafforgue [Laf18, Proposition 11.7].

Proposition I.9.1. There is a unique continuous semisimple L-parameter

ϕA :WE → Ĝ(Q`)

such that for all (I, V, α, β, (γi)i∈I) as above, the excursion operator

A
Tα−→ TV (A)

(γi)i∈I−−−−→ TV (A)
Tβ−→ A

is given by multiplication with the scalar

Q`
α−→ V

(ϕA(γi)i∈I)−−−−−−−→ V
β−→ Q`.

Note that in fact, the excursion operators define elements in the Bernstein center ofG(E), as they define
endomorphisms of the identity functor. From this perspective, let us make the following definition.

Definition I.9.2.

(i) The Bernstein center of G(E) is

Z(G(E),Λ) = π0End(idD(G(E),Λ)) = lim←−
K⊂G(E)

Z(Λ[K\G(E)/K])

where K runs over open pro-p subgroups of G(E), and Λ[K\G(E)/K] = EndG(E)(c-IndG(E)
K Λ) is the

Hecke algebra of level K.
(ii) The geometric Bernstein center of G is

Zgeom(G,Λ) = π0End(idDlis(BunG,Λ)).

Inside Zgeom(G,Λ), we let Zgeom
Hecke(G,Λ) be the subring of all endomorphisms f : id → id commuting

with Hecke operators, in the sense that for all V ∈ Rep(ĜI) and A ∈ Dlis(BunG,Λ), one has TV (f(A)) =
f(TV (A)) ∈ End(TV (A)).
(iii) The spectral Bernstein center of G is

Z spec(G,Λ) = O(Z1(WE , Ĝ)Λ)
Ĝ,

the ring of global functions on the quotient stack Z1(WE , Ĝ)Λ/Ĝ.

The inclusion D(G(E),Λ) ↪→ Dlis(BunG,Λ) induces a map of algebra Zgeom(G,Λ)→ Z(G(E),Λ).
Now the construction of excursion operators, together with Theorem I.8.2 imply the following. Here

Λ is a Z`[
√
q]-algebra such that the order of π0Z(G) is invertible in Λ.
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Proposition I.9.3. There is a canonical map

Z spec(G,Λ)→ Zgeom
Hecke(G,Λ) ⊂ Z

geom(G,Λ),

and in particular a map
ΨG : Z spec(G,Λ)→ Z(G(E),Λ).

The construction of L-parameters above is then a consequence of this map on Bernstein centers. The
existence of such an integral map is due to Helm–Moss [HM18] in the case G = GLn.

Remark I.9.4. In the function-field case, a similar construction has been given by Genestier–Lafforgue
[GL17]. Li-Huerta [LH23] has proved that these constructions agree.

We make the following conjecture regarding independence of `. For its formulation, we note that
there is a natural Q-algebraZ spec(G,Q) whose base change to Q` isZ spec(G,Q`) for any ` 6= p; in fact, one
can take the global functions on the stack of L-parameters that are continuous for the discrete topology
(i.e. trivial on an open subgroup of WE); see also [DHKM20].

Conjecture I.9.5. There is a (necessarily unique) map Z spec(G,Q(
√
q)) → Z(G(E),Q(

√
q)) that

after base extension to any Q` for ` 6= p recovers the composite

Z spec(G,Q`(
√
q))→ Zgeom(G,Q`(

√
q))→ Z(G(E),Q`(

√
q)).

This would ensure that the L-parameters we construct are independent of ` in the relevant sense. Fur-
ther conjectures about this map and its relation to the stable Bernstein center have been formulated by
Haines [Hai14] (see also [BKV15], [SS13, Section 6]). In particular, it is conjectured that for G quasisplit,
the map ΨG is injective, and its image can be characterized as those elements of the Bernstein center of
G(E) whose corresponding distribution is invariant under stable conjugation.

One can also construct the map to the Bernstein center in terms of moduli spaces of local shtukas, as
follows. For simplicity, we discuss this again only ifΛ is aZ/`n-algebra for somen. Given I and V as above,
we can consider a variant Sht(G,1,V ),K of the spaces Sht(G,b,≤µ•),K considered above, where the bound is
given by the support of V and we fix the element b = 1. They come with an étale period map

πK : Sht(G,1,V ),K → Grtw
G,

∏n
i=1 Spd Ĕ

and a perverse sheaf SV . When restricted to the geometric diagonal

x : Spd Ê →
n∏
i=1

Spd Ĕ,

they become a corresponding moduli space of shtukas with one leg

f∆K : Sht(G,1,V |Ĝ) → Spd Ê

with the sheaf SV |Ĝ . The sheaf SV |Ĝ admits maps α (resp. β) from (resp. to) the sheaf i∗Λ, where i :

G(E)/K = Sht(G,1,Q`),K ↪→ Sht(G,1,V |Ĝ),K is the subspace of shtukas with no legs. This produces an
endomorphism

c-IndG(E)
K Λ

α−→ Rf∆K!SV |Ĝ = (RfK!SV )x
(γi)i∈I−−−−→ (RfK!SV )x = Rf∆K!SV |Ĝ

β−→ c-IndG(E)
K Λ.



I.10. THE SPECTRAL ACTION 35

Here, the action of (γi)i∈I is defined by Corollary I.7.3. It follows from the definitions that this is precisely
the previous construction applied to the representation c-IndG(E)

K Λ. Note that these endomorphisms are
G(E)-equivariant, so define elements in the Hecke algebra

Λ[K\G(E)/K] = EndG(E)(c-IndG(E)
K Λ);

in fact, these elements are central (as follows by comparison to the previous construction). Taking the
inverse limit over K , one gets the elements in the Bernstein center of G(E).5

Concerning the L-parameters we construct, we can prove the following basic results.

Theorem I.9.6.

(i) If G = T is a torus, then π 7→ ϕπ is the usual Langlands correspondence.
(ii) The correspondence π 7→ ϕπ is compatible with twisting.
(iii) The correspondence π 7→ ϕπ is compatible with central characters (cf. [Bor79, 10.1]).
(iv) The correspondence π 7→ ϕπ is compatible with passage to congradients (cf. [AV16]).
(v) If G′ → G is a map of reductive groups inducing an isomorphism of adjoint groups, π is an irreducible
smooth representation ofG(E) and π′ is an irreducible constitutent of π|G′(E), then ϕπ′ is the image of ϕπ
under the induced map Ĝ→ Ĝ′.
(vi) IfG = G1×G2 is a product of two groups and π is an irreducible smooth representation ofG(E), then
π = π1�π2 for irreducible smooth representations πi ofGi(E), and ϕπ = ϕπ1×ϕπ2 under Ĝ = Ĝ1× Ĝ2.
(vii) If G = ResE′|EG

′ is the Weil restriction of scalars of a reductive group G′ over some finite separable
extension E′|E , so that G(E) = G′(E′), then L-parameters for G|E agree with L-parameters for G′|E′.
(viii) The correspondence π 7→ ϕπ is compatible with parabolic induction.
(ix) For G = GLn and supercuspidal π, the correspondence π 7→ ϕπ agrees with the usual local Langlands
correspondence [LRS93], [HT01], [Hen00].

Note that parts (viii) and (ix) together say that for GLn and general π, the L-parameter ϕπ is what is
usually called the semisimple L-parameter.

I.10. The spectral action

The categorical structure we have constructed actually produces something better. Let Λ be the ring of
integers in a finite extension of Q`(

√
q). We have the stable∞-category C = Dlis(BunG,Λ)ω of compact

objects, which is linear over Λ, and functorially in the finite set I an exact monoidal functor RepΛ(Ĝ o
Q)I → EndΛ(C)BW

I
E that is linear over RepΛ(Q

I); here, EndΛ(C) denotes the stable ∞-category of Λ-
linear endofunctors of C , and we regard it as being enriched in condensed Λ-modules via regarding C as
enriched in relatively discrete condensed Λ-modules. A first version of the following theorem is due to
Nadler–Yun [NY19] in the context of Betti geometric Langlands, and a more general version appeared in the
work of Gaitsgory–Kazhdan–Rozenblyum–Varshavsky [GKRV22]. Both references, however, effectively

5When the second author gave his Berkeley lectures [SW20], this was the construction of excursion operators that we envis-
aged. Note that a key step here is that the cohomology of moduli spaces of local shtukas defines a local system on (Div1)I . It is
however not clear how to prove this purely in terms of moduli spaces of shtukas. In the global function field case, this result has
been obtained by Xue [Xue20].
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assume that G is split, work only with characteristic 0 coefficients, and work with a discrete group in place
of WE . At least the extension to Z`-coefficients is a nontrivial matter.

Note that Z1(WE , Ĝ) is not quasicompact, as it has infinitely many connected components; it can be
written as the increasing union of open and closed quasicompact subschemes Z1(WE/P, Ĝ). We say that
an action of Perf(Z1(WE , Ĝ)/Ĝ) on a stable∞-category C is compactly supported if for all X ∈ C the
functor Perf(Z1(WE , Ĝ)/Ĝ)→ C (induced by acting on X) factors over some Perf(Z1(WE/P, Ĝ)/Ĝ).

Theorem I.10.1. Assume that ` does not divide the order of π0Z(G). Let C be a small Λ-linear stable
∞-category. Then giving, functorially in the finite set I , an exact RepΛ(Q

I)-linear monoidal functor

Rep(ĜoQ)I → EndΛ(C)BW
I
E

is equivalent to giving a compactly supported Λ-linear action of

Perf(Z1(WE , Ĝ)Λ/Ĝ).

Here, given a compactly supported Λ-linear action of Perf(Z1(WE , Ĝ)Λ/Ĝ), one can produce such an exact
RepΛ(Q

I)-linear monoidal functor

RepΛ(ĜoQ)I → EndΛ(C)BW
I
E

functorially in I by composing the exact RepΛ(Q
I)-linear symmetric monoidal functor

Rep(ĜoQ)I → Perf(Z1(WE , Ĝ)Λ/Ĝ)
BW I

E

with the action of Perf(Z1(WE , Ĝ)Λ/Ĝ).
The same result holds true with Λ a field over Q`, for any prime `.

Here, the exact RepΛ(Q
I)-linear symmetric monoidal functor

RepΛ(ĜoQ)I → Perf(Z1(WE , Ĝ)Λ/Ĝ)
BW I

E

is induced by tensor products and the exact RepΛ(Q)-linear symmetric monoidal functor

RepΛ(ĜoQ)→ Perf(Z1(WE , Ĝ)Λ/Ĝ)
BWE

corresponding to the universal Ĝ o Q-torsor, with the universal WE-equivariance as parametrized by
Z1(WE , Ĝ)/Ĝ.

The key part of the proof is actually the final part of Theorem I.8.2 above, which effectively describes
Perf(Z1(WE/P, Ĝ)/Ĝ) in terms of generators and relations, as does the present theorem.

In particular, we get an action of Perf(Z1(WE , Ĝ)Λ/Ĝ) on Dlis(BunG,Λ), suitably compatible with
the Hecke action.

With everything in place, it is now obvious that the main conjecture is the following, cf. [AG15],
[BZCHN20], [Zhu20], [Hel23]:6

6The previous version of this manuscript made a seemingly less precise conjecture by asking for the existence of a functor
instead of noting that it must necessarily be realized as a right adjoint and hence is unique if it exists. This uniqueness was pointed
out to us in particular by Hansen [Han24].
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Conjecture I.10.2. Assume thatG is quasisplit and choose Whittaker data consisting of a BorelB ⊂ G
and generic character ψ : U(E) → O×

L of the unipotent radical U ⊂ B, where L/Q` is some algebraic
extension; also fix√q ∈ OL. Let n be the order of π0Z(G) and let Λ = OL[ 1n ]. Let

Wψ ∈ Dlis(BunG,Λ)

be the Whittaker sheaf, which is the sheaf concentrated on Bun1
G corresponding to the Whittaker repre-

sentation c-IndG(E)
U(E)ψ, and let

Ind Perfqc(Z1(WE , Ĝ)Λ/Ĝ)→ Dlis(BunG,Λ) :M 7→ ActM (Wψ)

be defined as the colimit-preserving extension of the spectral action Act onWψ. Then the corresponding
right adjoint functor is fully faithful when restricted to the compact objects, and induces an equivalence of
(Perf(Z1(WE , Ĝ)Λ/Ĝ)-linear small stable)∞-categories

D(BunG,Λ)ω ∼= D
b,qc
coh,Nilp(Z

1(WE , Ĝ)Λ/Ĝ).

We inverted the order n of π0Z(G) here, because only then the spectral action has been constructed.
We are not sure what to expect without inverting n. (In fact, we would not be surprised if the notion of
“nilpotent singular support” that we use has to be modified at bad primes.)

Here, we use the notion of complexes of coherent sheaves with nilpotent singular support, see [AG15].
More precisely, Db,qc

coh,Nilp is the ∞-category of bounded complexes with quasicompact support, coherent
cohomology, and nilpotent singular support. With characteristic 0 coefficients, or at banal primes `, the
condition of nilpotent singular support is actually automatic.

IfWψ is the Whittaker sheaf and we note ∗ the spectral action, the conjecture thus says that

Perfqc(Z1(WE , Ĝ)Λ/Ĝ) −→ D(BunG,Λ)
M 7−→M ∗Wψ

is fully faithful and extends to an equivalence of stable∞-categories

Db,qc
coh,Nilp(Z

1(WE , Ĝ)Λ/Ĝ) ∼= D(BunG,Λ)ω.

Recall that the right-hand side containsD(G(E),Λ)ω fully faithfully, so in particular this∞-category
should embed fully faithfully into the left-hand side. This has been conjectured by Hellmann in [Hel23]
and Ben-Zvi–Chen–Helm–Nadler [BZCHN20] have proved parts of this (they use Q`-coefficients, and
work with split groups and the Bernstein component corresponding to representations with Iwahori fixed
vector).

Remark I.10.3. Consider the conjecture with coefficients in Q`. Ideally, the conjecture should also
include a comparison of t-structures. Unfortunately, we did not immediately see a good candidate for
matching t-structures. Ideally, this would compare the perverse t-structure on the left (which is well-
defined, for abstract reasons, and appears at least implicitly in [CS17], [CS19a]; it seems to be the “correct”
t-structure for questions of local-global compatibility) with some “perverse-coherent” t-structure on the
right. If so, the equivalence would also yield a bijection between irreducible objects in the abelian hearts.
On the left-hand side, these irreducible objects would then be enumerated by pairs (b, πb) of an element
b ∈ B(G) and an irreducible smooth representation πb ofGb(E), by using intermediate extensions. On the
right-hand side, they would likely correspond to a Frobenius-semisimple L-parameter ϕ : WE → Ĝ(Q`)
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together with an irreducible representation of the centralizer Sϕ of ϕ. Independently of the categorical
conjecture, one can wonder whether these two sets are in fact canonically in bijection.7

I.11. The origin of the ideas

Finally, let us give some account of the historical developments of these ideas, from our own biased
perspective. Let us first recall some of our early work in the direction of local Langlands correspondences.
Fargues [Far04] has proved that in the cohomology of basic Rapoport–Zink spaces for GLn (and U(3))
and general minuscule cocharacters, an appropriate version of the local Langlands correspondence is real-
ized. Moreover, Fargues [Far08] has proved the duality isomorphism between the Lubin–Tate and Drinfeld
tower. Already at this point Fargues thought of this as an attempt to geometrize the Jacquet-Langlands cor-
respondence, see [Far08, Theorem 2 of the Préambule]. On the other hand, Scholze [Sch13] has given a new
proof of the local Langlands correspondence for GLn. His results pointed to the idea that there ought to
exist certain sheaves on the moduli stack of p-divisible groups (which, when restricted to perfect schemes,
can be regarded as a “part” of the stack GLn -Isoc considered above), giving a certain geometrization of
the local Langlands correspondence, then formulated as a certain character sheaf property (inspired by the
character formulas in [Sch13]). Related observations were also made by Boyer (cf. e.g. [Boy09]) and in un-
published work of Dat. However, Scholze was always uneasy with the very bad geometric properties of the
stack of p-divisible groups.

At this point, both of us had essentially left behind local Langlands to study other questions. Fargues
found the fundamental curve of p-adic Hodge theory in his work with Fontaine [FF18]; an initial critical
motivation for Fargues was a development of “p-adic Hodge theory without Galois actions”, i.e. for fields
like Cp. Indeed, this was required in some of his work on Rapoport–Zink spaces. On the other hand,
Scholze developed perfectoid spaces [Sch12], motivated by the weight-monodromy conjecture. After his
talk at a conference in Princeton in March 2011, Weinstein gave a talk about his results on the Lubin–Tate
tower at infinite level, which made it clear that it is in fact a perfectoid space. Scholze at the time was
already eager to understand the isomorphism between Lubin–Tate and Drinfeld tower, and it now became
clear that it should really be an isomorphism of perfectoid spaces. This was worked out in [SW13]. At
the time of writing of [SW13], the perspective of the Fargues–Fontaine curve had already become central,
and we realized that the isomorphism of the towers simply amounts to two dual descriptions of the space
of minuscule modifications OnX → OX(

1
n) on the Fargues–Fontaine curve, depending on which bundle

is fixed and which one is the modification. This was the first clear connection between local Langlands
(as encoded in the cohomology of Lubin–Tate and Drinfeld space) and the theory of vector bundles on
the Fargues–Fontaine curve, which Scholze had however not taken seriously enough. Moreover, Fargues
had noted in [FF18], in the proof of “weakly admissible implies admissible”, that modifications of vector
bundles were playing an important role: the Hodge filtration of a filtered ϕ-module allows one to define
a new vector bundle by modifying the vector bundle associated to an isocrystal i.e. by “applying a Hecke
correspondence” as he said in the talk [Far10] at the conference in honor of Jean-Marc Fontaine.

This duality perspective also put the two dual period morphisms into the center of attention: The
Hodge–de Rham period mapping, and the Hodge–Tate period mapping (which are swapped under the du-
ality isomorphism). Thinking about the Lubin–Tate tower as part of the moduli space of elliptic curves,
Scholze then realized that the Hodge–Tate period map even exists globally on the moduli space of elliptic

7This question has been answered affirmatively by Bertoloni Meli–Oi [BMO22]. Hansen [Han24] has moreover made progress
in understanding possibly matching t-structures, by introducing the hadal t-structure on BunG.
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curves with infinite level (on the level of Berkovich topological spaces, this had also been observed by Far-
gues before). Moreover, Scholze realized that the Hodge–Tate period map gives a substitute for the map
from the moduli space of elliptic curves to the moduli space of p-divisible groups, and that the sheaves
he sought for a geometric interpretation of [Sch13] have a better chance of existing on the target of the
Hodge-Tate period map, which is simply a projective space over Cp; he sketched these ideas in an MSRI
talk [Sch14]. (Again, Dat has had similar ideas.) Eventually, this perspective was used in his work with
Caraiani [CS17], [CS19a] to study torsion in the cohomology of Shimura varieties. The work with Cara-
iani required the classification of G-torsors on the Fargues–Fontaine curve, which was proved by Fargues
[Far20].

Increasingly taking the perspective of studying all geometric objects by mapping only perfectoid spaces
in, the idea of diamonds emerged quickly, including the possibility of getting several copies of SpecQp

(the earliest published incarnation of this idea is [Wei17]), and of defining general moduli spaces of p-adic
shtukas. These ideas were laid out in Scholze’s Berkeley course [SW20] during the MSRI trimester in Fall
2014. The eventual goal was always to adapt V. Lafforgue’s work [Laf18] to the case of p-adic fields; the
original strategy was to define the desired excursion operators via the cohomology of moduli spaces of
local shtukas. At the beginning of the trimester, Scholze was still very wary about the geometric Lang-
lands program, as it did not seem to be able to incorporate the subtle arithmetic properties of supercuspidal
representations of p-adic groups. It was thus a completely unexpected conceptual leap that in fact the best
perspective for the whole subject is to view the local Langlands correspondence as a geometric Langlands cor-
respondence on the Fargues–Fontaine curve, which Fargues suggested over a coffee break at MSRI (partly
inspired by having thought intensely about the space of G-bundles on the curve in relation to [Far20]).
Fargues was taking the perspective of Hecke eigensheaves then, seeking to construct for any (discrete) L-
parameter ϕ an associated Hecke eigensheaf Aϕ on BunG with eigenvalue ϕ. This should define a functor
ϕ 7→ Aϕ, and thus carry an action of the centralizer group Sϕ ⊂ Ĝ ofϕ, and the corresponding Sϕ-isotypic
decomposition of Aϕ should realize the internal structures of the L-packets. Moreover, the Hecke eigen-
sheaf property should imply the Kottwitz conjecture [RV14, Conjecture 7.3] on the cohomology of local
Shimura varieties. This made everything come together. In particular, it gave a compelling geometric ori-
gin for the internal structure of L-packets, and also matched the recent work of Kaletha [Kal14] who used
basic G-isocrystals for the fine study of L-packets.

Unfortunately, the conjecture was formulated on extremely shaky grounds: It presumed that one could
work with the moduli stack BunG as if it were an object of usual algebraic geometry. Of course, it also
presumed that there is a version of geometric Satake, etc.pp. On the other hand, we realized that once we
could merely formulate Fargues’ conjecture, enough machinery is available to apply Lafforgue’s ideas [Laf18]
to get the “automorphic-to-Galois” direction and define (semisimple)L-parameters (as Genestier–Lafforgue
[GL17] did in equal characteristic).

Since then, it has been a long and very painful process. The first step was to give a good definition of
the category of geometric objects relevant to this picture, i.e. diamonds. In particular, one had to prove
that the relevant affine Grassmannians have this property. This was the main result of the Berkeley course
[SW20]. For the proof, the concept of v-sheaves was introduced, which has since taken on a life of its own
also in algebraic geometry (cf. [BM21]). (Generally, v-descent turned out to be an extremely powerful proof
technique. We use it here to reprove the basic theorems about the Fargues–Fontaine curve, recovering the
main theorems of [FF18] and [KL15] with little effort.) Next, one had to develop a 6-functor formalism for
the étale cohomology of diamonds, which was achieved in [Sch17a], at least with torsion coefficients. The
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passage toQ`-coefficients requires more effort than for schemes, and we will comment on it below. A central
technique of [Sch17a] is pro-étale descent, and more generally v-descent. In fact, virtually all theorems of
[Sch17a] are proved using such descent techniques, essentially reducing them to profinite collections of
geometric points. It came as a surprise to Scholze that this process of disassembling smooth spaces into
profinite sets has any power in proving geometric results, and this realization gave a big impetus to the
development of condensed mathematics (which in turn fueled back into the present project).

At this point, it became possible to contemplate Fargues’ conjecture. In this respect, the first result
that had to be established is that Det(BunG,Z/`nZ) is well-behaved, for example satisfies Verdier bidual-
ity for “admissible” sheaves. We found a proof, contingent on the cohomological smoothness of a certain
“chart” πb : Mb → BunG for BunG near any b ∈ B(G); this was explained in Scholze’s IHÉS course
[Sch17b]. While for G = GLn, the cohomological smoothness of πb could be proved by a direct attack,
in general we could only formulate it as a special case of a general “Jacobian criterion of smoothness” for
spaces parametrizing sections of Z → XS for some smooth adic space Z over the Fargues–Fontaine curve.
Proving this Jacobian criterion required three further key ideas. The first is the notion of “formal smooth-
ness”, where liftings to infinitesimal thickenings (that do not exist in perfectoid geometry) are replaced
by liftings to actual small open (or étale) neighborhoods. The resulting notion is closely related to the
notion of absolute neighborhood retracts in classical topology [Bor67]. Through some actual “analysis”, it
is not hard to prove that the space of sections is formally smooth. Unfortunately, this does not seem to
be enough to guarantee cohomological smoothness. The first issue is that formal smoothness does not im-
ply any finite-dimensionality. Here, the second key idea comes in, which is Bhatt’s realization [BS22] that
Zariski closed immersions are strongly Zariski closed in the sense of [Sch15, Section II.2] (contrary to a claim
made by Scholze there). At this point, it would be enough to show that spaces that are formally smooth and
Zariski closed in a finite-dimensional perfectoid ball are cohomologically smooth. Unfortunately, despite
many tries, we are still unable to prove that even the different notions of dimension of [Sch17a] (Krull di-
mension, dim. trg, cohomological dimension) agree for such spaces. This may well be the most important
foundational open problem in the theory:

Problem I.11.1. Let X ⊂ B̃nC be Zariski closed, where B̃n is a perfectoid ball. Show that X has a
well-behaved dimension.

In fact, we find it crazy that we are able to prove all sorts of nontrivial geometric results without ever
being able to unambiguously talk about dimensions!

Our attacks on this failing, a third key idea comes in: Namely, the notion of universally locally acyclic
sheaves, that we also developed independently in order to prove geometric Satake. It is easy to see that
formal smoothness plus finite-dimensionality implies that the constant sheaf is universally locally acyclic;
it remains to see that the dualizing sheaf is invertible. This can be proved by a deformation to the normal
cone (using universal local acyclicity to spread the result on the normal cone to a neighborhood). We found
this argument at a conference in Luminy in July 2018; an inspiration to use a deformation to the normal
cone may have been Clausen’s use in the proof of the “linearization hypothesis”.

These results are enough to show that Det(BunG,Z/`nZ) is well-behaved, and are already enough to
prove new finiteness results on the cohomology of Rapoport–Zink spaces (with torsion coefficients). Our
next emphasis was on geometric Satake. This essentially required the theory of universally locally acyclic
sheaves, and a version of Braden’s hyperbolic localization theorem [Bra03]. We were able to find substitutes
for both. Regarding universally locally acyclic sheaves, we were able to prove analogues of most basic
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theorems, however we failed to prove that in general they are preserved under relative Verdier duality (even
while we could check it by hand in all relevant cases). Lu–Zheng [LZ22] then found a new characterization
of universally locally acyclic sheaves, making stability under relative Verdier duality immediate. Their
arguments immediately transport to our setting. Eventually we used a slightly different characterization,
but in spirit the argument is still the same as theirs. Regarding hyperbolic localization, we could not follow
Braden’s arguments that rely on nice coordinate choices. Instead, we reduce all arguments to the following
(simple to prove) principle: If X is a (partially proper) space with a Gm-action such that [X/Gm] is qcqs,
andA ∈ Det([X/Gm],Λ), then the partially compactly supported cohomology ofX with coefficients inA
vanishes. The idea here is that the Gm-action contracts X towards one of the ends. Afterwards, the proof
of geometric Satake largely follows the lines of [MV07], although there are certain improvements in the
argument; in particular, we give a simple reduction to groups of rank 1, and pin the isomorphism with the
dual group.

Using these results, one has all ingredients in place, but only working with torsion coefficients. One can
formally pass to `-adically complete sheaves, but this leads to studying representations on BanachQ`-vector
spaces, which is very unnatural. During this time, Clausen came to Bonn, and Clausen and Scholze started
to develop condensed mathematics, and the theory of solid modules [CS]. They realized that one could also
define solid Z`-sheaves on schemes or diamonds, and that this makes it possible to study representations on
discrete Q`- or Q`-vector spaces, as desired. We take this up here, and first define solid Z`-sheaves on any
small v-stack, together with some 5-functor formalism (involving relative homology in place of compactly
supported cohomology; its right adjoint is then pullback, so there are only 5 functors), and afterwards pass
to a certain subcategory of “lisse-étale” sheaves to define the desired category Dlis(BunG,Q`), with exactly
the desired properties.

In the meantime, there was related work in the geometric Langlands program by Nadler–Yun [NY19]
and Gaitsgory–Kazhdan–Rozenblyum–Varshavsky [GKRV22] that implied that the categorical structures
we have now constructed —D(BunG,Q`) together with the action of Hecke operators — formally induce
an action of the category of perfect complexes on the stack of L-parameters on D(BunG,Q`), giving a
categorical upgrade to the construction of L-parameters based on excursion operators. (We were aware
of some weak form of this, when restricted to elliptic parameters; this was discussed in the last lecture of
[Sch17b], based on some unpublished results of Anschütz.) Here, we make the effort of proving a result with
Z`-coefficients.
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I.13. Notation

Throughout most of this paper,E denotes a nonarchimedean local field with residue field Fq of charac-
teristic p > 0, and we fix an algebraic closure k = Fq of Fq. Then Ĕ is the completed unramified extension
ofE with residue field k. We also fix a separable closureE ofE , with absolute Galois group Γ = Gal(E|E),
containing the Weil groupWE , inertia subgroup IE , and wild inertiaPE . The letterP usually denotes open
subgroups of PE , but is occasionally also used to denote a finite p-group (or more generally finite solvable
group of order prime to `).

The groupG is usually a reductive group overE; reductive groups are always assumed to be connected.
For any topological space X , we denote by X the sheaf taking any S (in the relevant test category,

usually a perfectoid space) to the continuous maps from |S| to X . This is in the spirit of the passage from
topological spaces to condensed sets, see [CS]. We make occasional use of the condensed language, but do
not make use of any nontrivial results from [CS]. In particular, our discussion of solid `-adic sheaves is
self-contained.

We will occasionally use the “animated” terminology, see [CS], [ČS19b]. In particular, we use the term
anima for what is variously called spaces in [Lur09],∞-groupoids, or homotopy types, and for any ring A,
the∞-category of animatedA-algebras is the∞-category obtained from simplicialA-algebras by inverting
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weak equivalences. Thus, animated A-algebras are freely generated under sifted colimits by polynomial
algebras A[X1, . . . , Xn].

If C is an (∞-)category equipped with an action of a groupG, we write CBG for the (∞-)category ofG-
equivariant objects in C. Note that the data here is really a functor BG→ Cat∞, and CBG is by definition
the limit of this diagram. (It would be more customary to write CG, but this leads to inconsistent notation.)
Also, we often write classifying stacks as ∗/G instead of BG as the letter B also denotes Borel subgroups
(and we strongly prefer ∗/B to BB), and appears in Kottwitz’ set B(G).





CHAPTER II

The Fargues–Fontaine curve and vector bundles

The goal of this chapter is to define the Fargues–Fontaine curve, in its various incarnations, and the cat-
egory of vector bundles on the Fargues–Fontaine curve. Throughout this chapter, we fix a nonarchimedean
local field E with residue field Fq of characteristic p. We let OE ⊂ E be the ring of integers, and π a uni-
formizing element in E.

For any perfectoid space S over Fq , we introduce a curve YS , to be thought of as the hypothetical
product S ×SpaFq SpaOE , together with an open subset YS ⊂ YS given by the locus where π 6= 0. This
carries a Frobenius ϕ induced from the Frobenius on S , and XS is the quotient YS/ϕZ.

The first results concern the Fargues–Fontaine curve XC = XS when S = SpaC for some complete
algebraically closed nonarchimedean field C|Fq. We define a notion of classical points of XC in that case;
they form a subset of |XC |. The basic finiteness properties of XC are summarized in the following result.

Theorem II.0.1 (Proposition II.1.11, Corollary II.1.12, Definition/Proposition II.1.22). The adic space
YC is locally the adic spectrum Spa(B,B+) where B is a principal ideal domain; the classical points of
Spa(B,B+) ⊂ YC are in bijection with the maximal ideals of B. For each classical point x ∈ YC , the
residue field of x is an untiltC] ofC overOE , and this induces a bijection of the classical points of YC with
untilts C] of C overOE . A similar result holds true for YC ⊂ YC , and the quotient XC = YC/ϕ

Z.

In the equal characteristic case, this is an immediate consequence of YC = DC and classical results in
rigid-analytic geometry. In the p-adic case, we use tilting to reduce to the equal characteristic case. More
precisely, if E is p-adic and E∞ is the completion of E(π1/p

∞
), then YC ×SpaOE SpaOE∞ is perfectoid,

with tilt given by a perfectoid open unit disc D̃C . The corresponding map |D̃C | → |YC | induces a surjective
map on classical points, see Proposition II.1.8. At one key turn, in order to understand Zariski closed subsets
of YC , we use the result that Zariski closed subspaces are invariant under tilting, to reduce to D̃C . More
precisely, we recall the following result.

Proposition II.0.2 ([Sch15, Section II.2], [BS22, Remark 7.5], [Sch17a, Definition 5.7, Theorem 5.8]).
Let S = Spa(R,R+) be an affinoid perfectoid space with tilt S[ = Spa(R[, R[+). Then a closed subspace
Z ⊂ |S| is the vanishing locus of an ideal I ⊂ R if and only if Z ⊂ |S| ∼= |S[| is the vanishing locus of
an ideal J ⊂ R[. In that case, there is a universal perfectoid space SZ → S such that |SZ | → |S| factors
over Z , and SZ = Spa(T, T+) is affinoid perfectoid with |SZ | → Z a homeomorphism, R→ T surjective,
R+ → T+ almost surjective, and T+ is the integral closure of R+ in T .

A key result is the classification of vector bundles.
Theorem II.0.3 (Theorem II.2.14). The functor from IsocE to vector bundles onXC induces a bijection

on isomorphism classes. In particular, there is a unique stable vector bundle OXC (λ) of any slope λ ∈ Q,
and any vector bundle E can be written as a direct sum of stable bundles.

45
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We give a new self-contained proof of the classification theorem, making critical use of the v-descent
results for vector bundles obtained in [Sch17a] and [SW20], and basic results on the geometry of Banach–
Colmez spaces established here.

Allowing general S ∈ PerfFq , we define the moduli space of degree 1 Cartier divisors as Div1 =

Spd Ĕ/ϕZ. Given a map S → Div1, one can define an associated closed Cartier divisor DS ⊂ XS ; lo-
cally, this is given by an untilt DS = S] ⊂ XS of S over E , and this embeds Div1 into the space of closed
Cartier divisors on XS . Another important result is the following ampleness result, cf. [KL15, Proposition
6.2.4], which implies that one can define an algebraic version of the curve, admitting the same theory of
vector bundles.

Theorem II.0.4 (Theorem II.2.6, Proposition II.2.7, Proposition II.2.9). Assume that S ∈ Perf is
affinoid. For any vector bundle E onXS , the twist E(n) is globally generated and has no higher cohomology
for all n� 0. Defining the graded ring

P =
⊕
n≥0

H0(XS ,OXS (n))

and the scheme Xalg
S = ProjP , there is a natural map of locally ringed spaces XS → X

alg
S , pullback along

which defines an equivalence of categories of vector bundles, preserving cohomology.

If S = SpaC for some complete algebraically closed nonarchimedean field C , then Xalg
C is a regular

noetherian scheme of Krull dimension 1, locally the spectrum of a principal ideal domain, and its closed
points are in bijection with the classical points of XC .

We also need to understand families of vector bundles, i.e. vector bundles E onXS for general S. Here,
the main result is the following, which is originally due to Kedlaya–Liu [KL15].

Theorem II.0.5 (Theorem II.2.19, Corollary II.2.20). Let S ∈ Perf and let E be a vector bundle on
XS . Then the function taking a point s ∈ S to the Harder–Narasimhan polygon of E|Xs defines a semi-
continuous function on S. If it is constant, then E admits a global Harder–Narasimhan stratification, and
pro-étale locally on S one can find an isomorphism with a direct sum ofOXS (λ)’s.

In particular, if E is everywhere semistable of slope 0, then E is pro-étale locally trivial, and the category
of such E is equivalent to the category of pro-étale E-local systems on S.

The key to proving this theorem is the construction of certain global sections of E . To achieve this, we
use v-descent techniques, and an analysis of the spaces of global sections of E ; these are known as Banach–
Colmez spaces, and were first introduced (in slightly different terms) by Colmez [Col02]; see also le Bras’
thesis [LB18].

Definition II.0.6. Let E be a vector bundle onXS . The Banach–Colmez space BC(E) associated with
E is the locally spatial diamond over S whose T -valued points, for T ∈ PerfS , are given by

BC(E)(T ) = H0(XT , E|XT ).

Similarly, if E is everywhere of only negative Harder–Narasimhan slopes, the negative Banach–Colmez
space BC(E [1]) is the locally spatial diamond over S whose T -valued points are

BC(E [1])(T ) = H1(XT , E|XT ).
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Implicit here is that this functor actually defines a locally spatial diamond. For this, we calculate some
key examples of Banach–Colmez spaces. For example, if E = OXS (λ) with 0 < λ ≤ [E : Qp] (resp. all
positive λ if E is of equal characteristic), then BC(E) is representable by a perfectoid open unit disc (of
dimension given by the numerator of λ). A special case of this is the identification of BC(OXS (1)) with
the universal cover of a Lubin–Tate formal group law, yielding a very close relation between Lubin–Tate
theory, and thus local class field theory, and the Fargues–Fontaine curve. This case actually plays a special
role in getting some of the theory started, and we recall it explicitly in Section II.2.1. On the other hand, for
larger λ, or negative λ, Banach–Colmez spaces are more exotic objects; for example, the negative Banach–
Colmez space

BC(OXC (−1)[1]) ∼= (A1
C])

♦/E

is the quotient of the affine line by the translation action of E ⊂ A1
C]

.
A key result is Proposition II.2.16, stating in particular that projectivized Banach–Colmez spaces

(BC(E) \ {0})/E×

are proper — they are the relevant analogues of “families of projective spaces over S”. In particular, their
image in S is a closed subset, and if the image is all of S , then we can find a nowhere vanishing section of E
after a v-cover, as then the projectivized Banach–Colmez space is a v-cover of S.

II.1. The Fargues–Fontaine curve

II.1.1. The curve YC . Recall that for any perfect Fq-algebra R, there is a unique π-adically complete
flat OE-algebra R̃ such that R̃ = R/π. There is a unique multiplicative lift [·] : R → R̃ of the identity
R→ R, called the Teichmüller lift. Explicitly, one can take

R̃ =WOE (R) =W (R)⊗̂W (Fq)OE
in terms of the ramified Witt vectors; here the completion is the π-adic completion. (In the case E =
Fq((π)) is of equal characteristic, this becomes simply R[[π]].)

The construction of the Fargues–Fontaine curve is based on this construction on the level of perfectoid
spaces S over Fq. Its construction is done in three steps. First, one constructs a curve YS , an adic space over
OE , which carries a Frobenius action ϕ. Passing to the locus YS = YS \ {π = 0}, i.e. the base change to E ,
the action of ϕ is free and totally discontinuous, so that one can pass to the quotient XS = YS/ϕ

Z, which
will be the Fargues–Fontaine curve.

We start by constructing YS in the affinoid case. More precisely, if S = Spa(R,R+) is an affinoid
perfectoid space over Fq , and $ ∈ R+ is a pseudouniformizer (i.e. a topologically nilpotent unit of R), we
let

YS = SpaWOE (R
+) \ V ([$]).

HereWOE (R
+) has the (π, [$])-adic topology. These objects do not depend on the choice of $, as for any

choice of $,$′ ∈ R, one has $|$′n, $′|$n for some n > 0. The q-th power Frobenius of R+ induces an
automorphism ϕ of YS . To construct the Fargues–Fontaine curve, we will eventually remove V (π) from
YS and quotient by ϕ, but for now we recall some properties of YS .

Proposition II.1.1. The above defines an analytic adic space YS overOE . Letting E∞ be the comple-
tion of E(π1/p

∞
), the base change

YS ×SpaOE SpaOE∞
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is a perfectoid space, with tilt given by

S ×Fq SpaFq[[t1/p
∞
]] = DS,perf,

a perfectoid open unit disc over S.

Proof. One can cover YS by the subsets YS,[0,n] := {|π|n ≤ |[$]| 6= 0} ⊂ YS , which are rational
subsets of SpaWOE (R

+), where n > 0 is some integer that we assume to be a power of p for simplicity.
Then

YS,[0,n] = Spa(BS,[0,n], B+
S,[0,n])

where
BS,[0,n] =WOE (R

+)〈 π
n

[$]
〉[ 1

[$] ]

and B+
S,[0,n] ⊂ BS,[0,n] is the integral closure of WOE (R

+)〈 πn[$]〉. To see that YS is an adic space (i.e. the
structure presheaf is a sheaf) andYS×SpaOESpaOE∞ is perfectoid, it is enough to prove thatBS,[0,n]⊗̂OEOE∞

is a perfectoid Tate algebra. Indeed, the algebraBS,[0,n] splits offBS,[0,n]⊗̂OEOE∞ as a direct factor as topo-
logical BS,[0,n]-module, and hence the sheaf property for perfectoid spaces gives the result for YS,[0,n] and
thus all of YS (cf. the sousperfectoid property of [HK20], [SW20, Section 6.3]). Using the Frobenius auto-
morphism of (R,R+), one can in fact assume that n = 1.

Let us abbreviate
A = BS,[0,1]⊗̂OEOE∞

and A+ ⊂ A the integral closure of B+
S,[0,1]⊗̂OEOE∞ . In particular

A+
0 = (WOE (R

+)⊗̂OEOE∞)[( π
[$])

1/p∞ ]∧[$] ⊂ A
+,

and A = A+
0 [

1
[$] ]. Note that

A+
0 /[$] = (R+/$ ⊗Fq OE∞/π)[t

1/p∞

1 ]/(π1/p
m − [$]1/p

m
t
1/pm

1 ) ∼= R+/$[t
1/p∞

1 ].

This implies already that A+
0 is integral perfectoid by [BMS18, Lemma 3.10 (ii)], and thus necessarily

(cf. [BMS18, Lemma 3.21]) A+
0 → A+ is an almost isomorphism and A+

0 [
1
[$] ]
∼= A is perfectoid. More-

over, one can see that the tilt of A is given by R〈t1/p
∞

1 〉, where t]1 =
π
[$] , which corresponds to the subset

{|t| ≤ |$| 6= 0} ⊂ S ×Fq SpaFq[[t1/p
∞
]] = DS,perf. �

Proposition II.1.2. For any perfectoid space T over Fq , giving an untilt T ] of T together with a map
T ] → YS of analytic adic spaces is equivalent to giving an untilt T ] together with a map T ] → SpaOE ,
and a map T → S. In other words, there is a natural isomorphism

Y♦
S
∼= SpdOE × S.

Proof. Changing notation, we need to see that for any perfectoid space T over OE , giving a map
T → YS is equivalent to giving a map T [ → S. Without loss of generality, assume that T = Spa(A,A+)
is affinoid. Giving a map T → YS is equivalent to giving a map WOE (R

+) → A+ such that the image
of [$] in A is invertible. By the universal property of WOE (R

+) in case R+ is perfect, this is equivalent
to giving a map R+ → (A+)[ such that the image of $ in A[ is invertible. But this is precisely a map
T [ = Spa(A[, A[+)→ S = Spa(R,R+). �
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In particular, there is a natural map

|YS | ∼= |Y♦
S | ∼= | SpdOE × S| → |S|.

The following proposition ensures that we may glue YS for general S , i.e. for any perfectoid space S
there is an analytic adic space YS equipped with an isomorphism

Y♦
S
∼= SpdOE × S

(and in particular a map |YS | → |S|) such that for U = Spa(R,R+) ⊂ S an affinoid subset, the corre-
sponding pullback of YS is given by YU .

Proposition II.1.3. If S′ ⊂ S is an affinoid subset, then YS′ → YS is an open immersion, with

|YS′ | //

��

|YS |

��
|S′| // |S|

cartesian.

Proof. Let Z ⊂ YS be the open subset corresponding to |YS | ×|S| |S′| ⊂ |YS |. Then by functoriality
of the constructions, we get a natural map of adic spaces YS′ → Z. To see that it is an isomorphism, we
can check after base change to OE∞ (as the maps on structure sheaves are naturally split injective). The
base change of YS′ and Z become perfectoid, and hence it suffices to see that one gets an isomorphism after
passing to diamonds, where it follows from Proposition II.1.2. �

Next, we recall the “sections of YS → S”.

Proposition II.1.4 ([SW20, Proposition 11.3.1]). Let S be a perfectoid space over Fq. The following
objects are in natural bijection.

(i) Sections of Y♦
S → S;

(ii) Morphisms S → SpdOE ;
(iii) Untilts S] overOE of S.

Moreover, given an untilt S] overOE of S , there is a natural closed immersion of adic spaces

S] ↪→ YS
that presents S] as a closed Cartier divisor in YS .

Proof. The equivalence of (i), (ii) and (iii) is a direct consequence of Proposition II.1.2. Thus, let S]
be an untilt of S over OE . We may work locally, so assume S = Spa(R,R+) is affinoid. Then S] =
Spa(R], R]+) is affinoid perfectoid as well, and

R]+ =WOE (R
+)/ξ

for some nonzerodivisor ξ ∈ WOE (R
+) that can be chosen to be of the form π − a[$] for some a ∈

WOE (R
+) and suitable topologically nilpotent $ ∈ R (choose $ ∈ R+ a pseudouniformizing element
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such that $]|π, and write π = $]θ(a) for some a). To see that S] defines a closed Cartier divisor in YS ,
that is to say the sequence

0→ OYS
ξ−→ OYS → i∗OS] → 0

is exact with i : S] ↪→ YS , we need to see that for any open affinoid U = Spa(A,A+) ⊂ YS with affinoid
perfectoid pullback V = Spa(B,B+) ⊂ S], the sequence

0→ A
ξ−→ A→ B → 0

is exact. To see this, we are free to localize near S] = V (ξ) ⊂ YS . In particular, replacing S by V [, we can
assume that V = S]. In that case, any neighborhood of S] = V (ξ) in YS contains {|ξ| ≤ |[$]|n} for some
n > 0, so we can assume that U is of this form.

Endow A with the spectral norm, where we normalize the norm on each completed residue field of YS
by |[$]| = 1

q . We claim that with this choice of norm, one has

|ξa| ≥ q−n|a|

for all a ∈ A. In particular, this implies that ξ : A→ A is injective, and has closed image (as the preimage of
any Cauchy sequence in the image is a Cauchy image). On the other hand, R] is the separated completion
of A/ξ, so B = A/ξ.

To verify the claimed inequality, it is enough to see that the norm of |a| is equal to the supremum
norm over {|ξ| = |[$]|n}. In fact, it is enough to consider the points in the Shilov boundary, i.e. those
points Spa(C,OC)→ U that admit a specialization Spa(C,C+)→ YS whose image is not contained in U ;
any such is necessarily contained in {|ξ| = |[$]|n}. This will in fact hold for all functions on U ×SpaOE
SpaOE∞ , for which the claim reduces to the tilt, which is an affinoid subset of DS,perf. By approximation, it
then reduces to the case of affinoid subsets of DS , where it is well-known that the maximum is taken on the
Shilov boundary. (Note that this question immediately reduces to the case that S is a geometric point.) �

Remark II.1.5. The preceding Cartier divisor satisfies the stronger property of being a “relative Cartier
divisor” in the sense that for all s ∈ S its pullback to YSpa(K(s),K(s)+) is a Cartier divisor.

Now let us analyze the case S = SpaC for some complete algebraically closed nonarchimedean field
over Fq.

Example II.1.6. Assume thatE = Fq((t)) is of equal characteristic. ThenYC = DC is an open unit disc
over C , with coordinate t. In particular, inside |YC |, we have the subset of classical points |YC |cl ⊂ |YC |,
which can be identified as

|YC |cl = {x ∈ C | |x| < 1}.
Note that these classical points are in bijection with maps OE → C (over Fq), i.e. with “untilts of C over
OE”.

With suitable modifications, the same picture exists also when E is of mixed characteristic.

Definition/Proposition II.1.7. Any untiltC] ofC overOE defines a closed Cartier divisor SpaC] ↪→
YS , and in particular a closed point of |YC |. This induces an injection from the set of such untilts to |YC |.

The set of classical points |YC |cl ⊂ |YC | is defined to be the set of such points.
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Proof. We have seen that any untilt C] defines such a map SpaC] ↪→ YS . As it is a closed Cartier
divisor, the corresponding point is closed in |YC |. One can recover C] as the completed residue field at the
point, together with the map WOE (OC) → OC] , which induces the isomorphism OC ∼= O[C] and thus
C ∼= (C])[, giving the untilt structure on C]; this shows that the map is injective. �

Recall thatYC is preperfectoid. In fact, if one picks a uniformizer π ∈ E and letsE∞ be the completion
of E(π1/p

∞
), then YC ×OE OE∞ is perfectoid, and its tilt is given by

SpaC × SpaO[E∞
∼= SpaC × SpaFq[[t1/p

∞
]].

Thus, we get a map

|DC | = | SpaC × SpaFq[[t]]| ∼= | SpaC × SpaFq[[t1/p
∞
]]| ∼= |YC ×OE OE∞ | → |YC |.

Proposition II.1.8. Under this map, the classical points |DC |cl = {x ∈ C | |x| < 1} ⊂ |DC | are
exactly the preimage of the classical points |YC |cl ⊂ |YC |.

Unraveling the definitions, one sees that the map

{x ∈ C | |x| < 1} = |DC |cl → |YC |cl

sends anyx ∈ C with |x| < 1 to the closed point defined by the ideal (π−[x]). In particular, the proposition
shows that any classical point of YC can be written in this form.

Proof. This is clear as classical points are defined in terms of maps of diamonds, which are compatible
with this tilting construction on topological spaces. �

The formation of classical points is also compatible with changing C in the following sense.

Proposition II.1.9. Let C ′|C be an extension of complete algebraically closed nonarchimedean fields
over Fq , inducing the map YC′ → YC . A point x ∈ |YC | is classical if and only if its preimage in |YC′ | is
a classical point. Moreover, if x ∈ |YC | is a rank-1-point that is not classical, then there is some C ′|C such
that the preimage of x contains a nonempty open subset of |YC′ |.

In other words, one can recognize classical points as those points that actually stay points after any base
change; all other rank 1 points actually contain whole open subsets after some base change.

Proof. It is clear that if x is classical, then its preimage is a classical point. Conversely, if x ∈ |YC |
is a rank 1 point, and S = SpdK(x), the point x is given by a morphism S → SpaC × SpdOE . If the
preimage of x is a classical point, the induced morphismS → SpaC becomes an isomorphism after pullback
via SpaC ′ → SpaC. Since S is a v-sheaf ([Sch17a, Proposition 11.9]) and SpaC ′ → SpaC a v-cover, the
morphism S → SpaC is an isomorphism, and thus x is a classical point.

Now assume that x is nonclassical rank-1-point; we want to find C ′|C such that the preimage of x
contains an open subset of |YC′ |. By Proposition II.1.8, it is enough to prove the similar result for DC ,
using that |DC′ | → |YC′ | is open.1 Thus, assume x ∈ |DC | is a non-classical point. Let C ′ be a completed
algebraic closure of the corresponding residue field. Then the preimage of x in |DC′ | has a tautological

1Any quasicompact open of |DC′ | is the base change of a quasicompact open of |YC′ ×Spa OE SpaOE′ | for a finite extension
E′|E. Passing to the Galois hull of E′ and taking the orbit of the open subset under the Galois group, the openness of the image
follows from the map being a quotient map, as is any surjective quasicompact map of analytic adic spaces.
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section x̃ ∈ DC′(C ′) which is a classical point, and the preimage of x contains a small disc B(x̃, r) ⊂ DC′

for some r > 0. Indeed, this follows from the description of the rank 1 points of DC as being either the
Gauss norm for some disc B(x, r0) ⊂ DC of radius r0 > 0, or the infimum of such over a decreasing
sequence of balls (but with radii not converging to zero). See Lemma II.1.10. �

Lemma II.1.10. Let x ∈ DC(C), ρ ∈ (0, 1], and xρ ∈ |DC | be the Gauss norm with radius ρ centered
at x. The preimage of xρ in |DC(xρ)| contains the open disk with radius ρ centered at xρ ∈ DC(xρ)(C(xρ)).

Proof. We can suppose x = 0. The point xρ is given by the morphism C〈T 〉 → C(xρ) that sends T
to t. Let y ∈ |DC(xρ)|. This corresponds to a morphism C(xρ)〈T 〉 → C(xρ)(y). Let us note u ∈ C(xρ)(y)
the image of T via the preceding map. Suppose y lies in the open disk with radius ρ centered at xρ. This
means |u− t| < ρ = |t|. Let us remark that this implies that for any n ≥ 1,

|un − tn| = |u− t||un−1 + . . .+ tn−1| ≤ |u− t|ρn−1 < ρn.

For f =
∑

n≥1 anT
n ∈ C〈T 〉, one then has

|
∑
n≥1

an(u
n − tn)| < sup

n≥1

|an|ρn = |
∑
n≥1

ant
n|.

We deduce that
|
∑
n≥1

anu
n| = |

∑
n≥1

ant
n| = |f(xρ)|. �

There is in fact another characterization of the classical points in terms of maximal ideals.

Proposition II.1.11. Let U = Spa(B,B+) ⊂ YC be an affinoid subset. Then for any maximal ideal
m ⊂ B, the quotient B/m is a nonarchimedean field, inducing an injection Spm(B) ↪→ |U |. This gives a
bijection between Spm(B) and |U |cl := |U | ∩ |YC |cl ⊂ |YC |.

Proof. First, if x ∈ |U |cl, then it corresponds to a closed Cartier divisor SpaC] ↪→ U ⊂ YC , and thus
defines a maximal ideal ofB, yielding an injection |U |cl ↪→ Spm(B). We need to see that this is a bijection.

Note that using the tilting map |DC | → |YC |, one sees that the preimage of U in |DC | has only finitely
many connected components (any quasicompact open subset of |DC | has finitely many connected compo-
nents); we can thus assume that U is connected. In that case, we claim that any nonzero element f ∈ B
vanishes only at classical points of |U |. By Proposition II.1.9, it suffices to see that for any nonempty open
subset U ′ ⊂ U , the map O(U) → O(U ′) is injective. In fact, if V (f) contains a nonclassical point, it
also contains a nonclassical rank 1 point as V (f) is generalizing, then after base changing to some C ′|C ,
V (f) contains an open subset U ′, and this is impossible ifO(U) ↪→ O(U ′). For this it suffices to prove that
O(V ) ↪→ O(V ′)where V is a connected component ofU⊗̂OEOE∞ , and V ′ the intersection ofU ′⊗̂OEOE∞

with this connected component. Now for any g ∈ O(V )\{0}, V (g) 6= V , as perfectoid spaces are uniform
(and hence vanishing at all points implies vanishing). We thus have to prove that for any Zariski closed
subset Z ( V , V ′ 6⊂ Z.

By Proposition II.0.2, it suffices to prove the similar property for open subsets V ′ ⊂ V ⊂ DC,perf,
with V connected. But then V ′ = W ′

perf and V = Wperf for W ′ ⊂ W ⊂ DC , and O(V ) → O(V ′) is
topologically free (with basis ti, i ∈ [0, 1) ∩ Z[p−1]) over the corresponding map O(W ) → O(W ′) of
classical Tate algebras over C , for which injectivity is classical. �
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The previous proposition implies that, once U is connected, the rings B are principal ideal domains
(cf. [Ked16]).

Corollary II.1.12. Let U = Spa(B,B+) ⊂ YC be an affinoid subset. Then U has finitely many
connected components. Assuming that U is connected, the ring B is a principal ideal domain.

Proof. We have already seen in the preceding proof that U has finitely many connected components.
Passing to one component, we can assume that U is connected. Each maximal ideal of B is principal, as it
comes from a closed Cartier divisor on U . Now take any nonzero f ∈ B. We have seen (in the preceding
proof) that the vanishing locus of f is contained in |U |cl, and it is also closed in |U |. It is thus a spectral
space with no nontrivial specializations, and therefore a profinite set. We claim that it is in fact discrete.
For this, let x ∈ V (f) be any point. We get a generator ξx ∈ B for the corresponding maximal ideal.
We claim that there is some n ≥ 1 such that f = ξnxg where g does not vanish at x. Assume otherwise.
Note that the spectral norm onU is given by the supremum over finitely many points, the Shilov boundary
of U (cf. proof of Proposition II.1.4). We may normalize ξx so that its norm at all of these finitely many
points is ≥ 1. Then for any n, if f = ξnxgn, one has ||gn|| ≤ ||f ||. But inside the open neighborhood
Ux = {|ξx| ≤ |[$]|} of x, this implies that ||f ||Ux ≤ |[$]|n||f || for all n, and thus ||f ||Ux = 0 as n →∞.
Thus, f vanishes on all of Ux, which is a contradiction.

By the above, we can write f = ξnxg where g does not vanish at x. But then g does not vanish in a
neighborhood of x, and therefore x ∈ V (f) is an isolated point, and hence V (f) is profinite and discrete,
and thus finite. Enumerating these points x1, . . . , xm, we can thus write f = ξn1

x1 · · · ξ
nm
xm g where g does

not vanish at x1, . . . , xm, and thus vanishes nowhere, and hence is a unit. This finishes the proof. �

Remark II.1.13. The main new ingredient compared to [Ked16] or [FF18, Theorem 2.5.1] that allows
us to shorten the proof is Proposition II.0.2, i.e. the use of the fact (proved in [BS22]) that “Zariski closed
implies strongly Zariski closed” in the terminology of [Sch15, Section II.2].

Later (cf. Proposition IV.7.3), we will also need the following lemma about non-classical points of
YC = YC ×SpaOE SpaE.

Lemma II.1.14. There is a point x ∈ |YC |, with completed residue field K(x), such that the induced
map Gal(K(x)|K(x))→ IE is surjective, where IE is the inertia subgroup of the absolute Galois group of
E.

Note that a priori we have a map Gal(K(x)|K(x)) → Gal(E|E), but it is clear that its image is con-
tained in IE , as K(x) contains Ĕ.

Proof. In fact, we can be explicit: Looking at the surjection

|D∗
C | → |YC |

from the tilting construction, the image of any Gaußpoint (corresponding to a disc of radius r, 0 < r < 1,
around the origin) will have the desired property. This follows from the observation that this locus of
Gauß points lifts uniquely to |YC ×Spa Ĕ SpaE′| for any finite extension E′|Ĕ. In fact, this cover admits
a similar surjection from a punctured open unit disc over C , and there is again one Gauß point for each
radius (i.e. the set of Gauß points maps isomorphically to (0,∞) via rad : |YC | → (0,∞)). �
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II.1.2. The Fargues–Fontaine curve. Now we can define the Fargues–Fontaine curve.

Definition II.1.15. For any perfectoid space S over Fq , the relative Fargues–Fontaine curve is

XS = YS/ϕ
Z

where
YS = YS ×SpaOE SpaE = YS \ V (π),

which for affinoid S = Spa(R,R+) with pseudouniformizer $ is given by
YS = SpaWOE (R

+) \ V (π[$]).

To see that this is well-formed, we note the following proposition, cf. [SW20, Lecture 12].

Proposition II.1.16. The action ofϕ onYS is free and totally discontinuous. In fact, ifS = Spa(R,R+)
is affinoid and $ ∈ R is a pseudouniformizer, one can define a map

rad : |YS | −→ (0,∞)

taking any point x ∈ YS with rank-1-generalization x̃ to log |[$](x̃)|/ log |π(x̃)|. This factorizes through
the Berkovich space quotient of |YS | and satisfies rad ◦ ϕ = q · rad.

For any interval I = [a, b] ⊂ (0,∞) with rational ends (possibly with a = b), there is the open subset

YS,I = {|π|b ≤ |[$]| ≤ |π|a} ⊂ rad−1(I) ⊂ YS
which is in fact a rational open subset of SpaWOE (R

+) and thus affinoid,
YS,I = Spa(BS,I , B+

S,I),

and one can form XS as the quotient of YS,[1,q] via the identification ϕ : YS,[1,1] ∼= YS,[q,q]. In particular,
XS is qcqs in case S is affinoid.

Proof. This follows directly from the definitions. �

In terms of the preceding radius function, the end 0 corresponds to the boundary divisor (π), and∞ to
the boundary divisor ([$]).

For each s ∈ S corresponding to a map Spa(K(s),K(s)+) → S , functoriality defines a morphism
XK(s),K(s)+ → XS . We way think of XS as the collection of curves (XK(s),K(s)+)s∈S , the one defined
and studied in [FF18], merged in a “family of curves”. Although XS does not sit over S , the absolute
Frobenius ϕ× ϕ of S × Spd(E) acts trivially on the topological space and one has

|XS | ∼= |X♦
S | ∼= |S × Spd(E)/ϕZ × id| ∼= |S × Spd(E)/id× ϕZ| −→ |S|.

Thus the topological space |XS | sits over |S|, and for all S the map |XS | → |S| is qcqs. Here, we used the
following identification of the diamond.

Proposition II.1.17. There is a natural isomorphism

Y ♦
S
∼= S × Spd(E),

descending to an isomorphism
X♦
S
∼= (S × Spd(E))/ϕZ × id.

Proof. This is immediate from Proposition II.1.2. �
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Moreover, we have the following version of Proposition II.1.4.

Proposition II.1.18. The following objects are naturally in bijection.

(i) Sections of Y ♦
S → S;

(ii) Maps S → Spd(E);
(iii) Untilts S] over E of S.

Given such a datum, in particular an untiltS] overE ofS , there is a natural closed immersionS] ↪→ YS
presenting S] as a closed Cartier divisor in YS . The composite map S] → YS → XS is still a closed
Cartier divisor, and depends only on the composite S → Spd(E) → Spd(E)/ϕZ. In this way, any map
S → Spd(E)/ϕZ defines a closed Cartier divisor D ⊂ XS ; this gives an injection of Spd(E)/ϕZ into the
space of closed Cartier divisors on XS .

Proof. This is immediate from Proposition II.1.4. �

Definition II.1.19. A closed Cartier divisor of degree 1 on XS is a closed Cartier divisor D ⊂ XS

that arises from a map S → Spd(E)/ϕZ. Equivalently, it arises locally on S from an untilt S] overE of S.

The quotient Spd(E)/ϕZ that occurs here is the quotient in the category of v-sheaves; but we note that
it agrees with the quotient computed in the category of sheaves on PerfFq for the topology of open covers.
In particular, “locally on S” in the preceding definition can be taken to mean v-locally, or on open subsets
of |S|.

In particular, we see that the moduli space Div1 of degree 1 closed Cartier divisors is given by

Div1 = Spd(E)/ϕZ.

Note that something strange is happening in the formalism here: Usually the curve itself would represent
the moduli space of degree 1 Cartier divisors!

Remark II.1.20. In [Far18, Définition 2.6] Fargues gives a definition of a Cartier divisor of degree 1
on XS equivalent to the preceding one, similar to the definition of a relative Cartier divisor in classical
algebraic geometry.

In the next proposition and elsewhere, we write ∗ for the v-sheaf taking any S ∈ PerfFq to a point ∗;
one could also write ∗ = Spd(Fq).

Proposition II.1.21. The map Div1 → ∗ is proper, representable in spatial diamonds, and cohomolog-
ically smooth.

Proof. First, Spd(E) → ∗ is representable in locally spatial diamonds and cohomologically smooth
by [Sch17a, Proposition 24.5] (for E = Qp, which formally implies the case of E finite over Qp, and the
equal characteristic case is handled in the proof). As | Spd(E) × S| ∼= |YS | → |S|, we see that ϕZ acts
totally discontinuously with quotient | Spd(E)/ϕZ× S| ∼= |XS | → |S| being qcqs in case |S| is qcqs; thus,
Spd(E)/ϕZ → ∗ is representable in spatial diamonds, in particular qcqs. Then being proper follows from
the valuative criterion [Sch17a, Proposition 18.3]. �
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In particular, the map
|XS | = |Div1 × S| −→ |S|

is open and closed. We can thus picture XS as being “a proper and smooth family over S”.
Further motivation for Definition II.1.19 is given by the following.

Definition/Proposition II.1.22. The classical points of XC are |XC |cl := |YC |cl/ϕZ ⊂ |XC | =
|YC |/ϕZ. They are in bijection with (Spd(E)/ϕZ)(C) = Div1(C), i.e. are given untilts of C over E up to
Frobenius, or by degree 1 closed Cartier divisors on XC . For any affinoid open subset U = Spa(B,B+) ⊂
XC , the maximal ideals ofB are in bijection with |U |cl = |U | ∩ |XC |cl. Any such U has only finitely many
connected components, and if U is connected, then B is a Dedekind domain.2

Proof. This follows immediately from Proposition II.1.11 and Corollary II.1.12 if U lifts to YC . In
general, YC → XC is locally split, so the result is true locally on U ; and then it easily follows by gluing in
general. �

II.2. Vector bundles on the Fargues–Fontaine curve

Let us recall a few basic facts about the cohomology of vector bundles. Suppose S = Spa(R,R+) is
affinoid perfectoid. Then YS is ”Stein”, one has YS =

⋃
I⊂(0,∞) Y(R,R+),I where

(i) as before I is a compact interval with rational ends
(ii) Y(R,R+),I is affinoid sous-perfectoid
(iii) for I1 ⊂ I2, the restriction morphismO(Y(R,R+),I2)→ O(Y(R,R+),I1) has dense image.

Let F be a vector bundle on YS . Point (2) implies that H i(YS,I ,F|Y(R,R+),I
) = 0 when i > 0. Point (3)

implies that R1 lim←−I Γ(Y(R,R+),I ,F) = 0 ([Gro61, 0.13.2.4]). We thus have H i(YS ,F) = 0 when i > 0.

Thus, if E is a vector bundle on XS , one has

RΓ(XS , E) =
[
H0(YS , E|YS )

ϕ−1−−−→ H0(YS , E|YS )].

In particular, this vanishes in degree > 1.
Moreover, one has the following important (cohomological) descent result.

Proposition II.2.1. Let S be a perfectoid space over Fq and E a vector bundle on XS . The functor
taking any T ∈ PerfS to

RΓ(XT , E|XT )

is a v-sheaf of complexes. In fact, the functor taking any T ∈ PerfS to H0(YT , E|YT ) is a v-sheaf, whose
cohomology vanishes in case T is affinoid.

Moreover, sending S to the groupoid of vector bundles on XS defines a v-stack.

2The results on the Picard group ofXC proved below actually imply thatB is a principal ideal domain – the map Pic(XC) →
Pic(B) is surjective, the source is Z and generated by any classical point outside of U , so the map is zero and hence Pic(B) = 0.
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Proof. By the displayed formula for RΓ(XS , E) as Frobenius fixed points, it suffices to prove the
result about YT . We can assume that S = Spa(R,R+) is affinoid, pick a pseudouniformizer $ ∈ R, and
one can further reduce to the similar claim for YT,I for any compact interval I with rational ends. Then
E|YT,I is a retract of OnYT,I , so we can reduce to the structure sheaf. We need to see that for any v-cover
T = Spa(R′, R′+), the corresponding Čech complex

0→ O(YS,I)→ O(YT,I)→ O(YT×ST,I)→ . . .

of E-Banach spaces is exact. This can be checked after taking a completed tensor product with E∞ =

E(π1/p
∞
)∧. In that case, all algebras become perfectoid, and YT,I ×E E∞ → YS,I ×E E∞ is a v-cover of

affinoid perfectoid spaces, so the result follows from [Sch17a, Theorem 8.7, Proposition 8.8].
Similarly, one proves v-descent for the groupoid of vector bundles, cf. [SW20, Lemma 17.1.8, Proposi-

tion 19.5.3]. �

If [E1 → E0] is a complex of vector bundles on XS sitting in homological degrees [0, 1], such that
H0(XT , E1|XT ) = 0 for all T ∈ PerfS , we let

BC([E1 → E0]) : T 7→ H0(XT , [E1 → E0]|XT )

be the corresponding v-sheaf on PerfS . We refer to this as the Banach–Colmez space associated with [E1 →
E0]. We will usually apply this only when either of E1 and E0 is zero.

Let us also recall the basic examples of vector bundles. Already here it is useful to fix an algebraically
closed field k|Fq , e.g. k = Fq. Let Ĕ = WOE (k)[

1
π ], the complete unramified extension of E with residue

field k, equipped with its Frobenius automorphism σ. Recall that, functorially in S ∈ Perfk , there is a
natural exact ⊗-functor

Isock −→ Bun(XS)

(D,ϕ) 7−→ E(D,ϕ)

from the category of isocrystals (of a finite-dimensional Ĕ-vector space D equipped with a σ-linear auto-
morphism ϕ : D

∼−→ D) to the category of vector bundles onXS , defined via descendingD⊗Ĕ OYS toXS

via ϕ ⊗ ϕ. We denote by OXS (n) the image of (Ĕ, π−nσ) (note the change of sign — the functor E re-
verses slopes); more generally, if (Dλ, ϕλ) is the simple isocrystal of slope λ ∈ Q in the Dieudonné–Manin
classification, we letOXS (−λ) = E(Dλ, ϕλ).

II.2.1. Lubin–Tate formal groups. The claim of this paper is that the Fargues–Fontaine curve enables
a geometrization of the local Langlands correspondence. As a warm-up, let us recall the relation between
OXS (1) and local class field theory in the form of Lubin–Tate theory.

Up to isomorphism, there is a unique 1-dimensional formal group G over OĔ with action by OE ,
such that the two induced actions on Lie G coincide; this is “the” Lubin–Tate formal group G = GLT of
E. Fixing a uniformizer π ∈ E , we normalize this as follows. First, any Lubin–Tate formal group law
over OE is the unique (up to unique isomorphism) lift of a 1-dimensional formal group over k whose Lie
algebra has the correct OE-action. Now, if E is p-adic then Gk is classified by Dieudonné theory by a
finite projective WOE (k)-module M equipped with a σ-linear isomorphism F : M [ 1π ]

∼= M [ 1π ] such that
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M ⊂ F (M) ⊂ 1
πM .3 Here, we take M = WOE (k) with F = 1

πσ. One can similarly define G in equal
characteristic, but actually we will explain a different way to pin down the choice just below; under our
normalization, G is already defined overOE .

After passing to the generic fibre, GE is isomorphic to the additive group Ga, compatibly with the
OE-action, and one can choose a coordinate on G ∼= SpfOE [[X]] so that explicitly, the logarithm map is
given by

logG : GE → Ga,E : X 7→ X + 1
πX

q + 1
π2X

q2 + . . .+ 1
πnX

qn + . . . .

Regarding the convergence of logG, we note that in fact it defines a map of rigid-analytic varieties (i.e. adic
spaces locally of finite type over E)

logG : Gad
E
∼= DE → Gad

a,E

from the open unit disc
Gad
E
∼= SpaOE [[X]]×SpaOE SpaE

to the adic space corresponding to Ga. From the formula, one sees that in small enough discs it defines
an isomorphism, and via rescaling by powers of π (which on the level of Gad

E defines finite étale covers of
degree q, while it is an isomorphism on Gad

a,E), one sees that one has an exact sequence

0→ Gad
E [π

∞]→ Gad
E → Gad

a,E → 0

on the big étale site of adic spaces over SpaE , where Gad
E [π

∞] ⊂ Gad
E is the torsion subgroup. This is, in

fact, the generic fibre of G[π∞] =
⋃
nG[π

n] over SpaOE , and each G[πn] = SpaAn is represented by
some finite OE-algebra An of degree qn. Inductively, G[πn−1] ⊂ G[πn] giving a map An → An−1; after
inverting π, this is split, and the other factor is a totally ramified extension En|E. Then

Gad
E [π

∞] =
⋃
n

SpaAn[ 1π ] =
⊔
n

SpaEn.

We also need the “universal cover” of G, defined as
G̃ = lim←−

×π
G ∼= SpfOE [[X̃1/p∞ ]],

where the inverse limit is over the multiplication by π maps. The isomorphism with SpfOE [[X̃1/p∞ ]] is
evident modulo π, but as this gives a perfect algebra, we see that in fact the isomorphism lifts uniquely to
OE . Explicitly, the coordinate X̃ is given by

X̃ = lim
n→∞

Xqn

n

where Xn is the coordinate on the n-th copy of G in the formula G̃ = lim←−×π G; in fact, X̃ ≡ Xqn
n modulo

πn. In particular, the logarithm map

logG : G̃E → GE → Ga,E

is given by the series∑
i∈Z

πiX̃q−i = limn→∞π
nlogG(Xn) = limn→∞logG([π

n]G(Xn)).

3As in [SW20, p. 99], we renormalize usual covariant Dieudonné theory for p-divisible groups by dividing F by p; and then
in the case of π-divisible OE-modules as here, we base change along W (k)⊗Zp OE → WOE (k).
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Note that for any π-adically completeOE-algebra A, one has

G̃(A) ∼= G̃(A/π) = HomOE (E/OE , G(A/π))[ 1π ].

Indeed, the first equality follows fromOE [[X̃1/p∞ ]] being relatively perfect overOE , and the second equal-
ity by noting that any element of G(A/π) is πn-torsion for some n. A different description based on
G̃ = SpfOE [[X̃1/p∞ ]] is

G̃(A) = lim←−
x7→xp

A◦◦ = A[,◦◦ ⊂ A[,

the subset of topologically nilpotent elements of the tilt.
This is related to the line bundleOXS (1) as follows.

Proposition II.2.2. LetS = Spa(R,R+) be an affinoid perfectoid space overFq and letS] = Spa(R], R]+)
be an untilt of S over E , giving rise to the closed immersion S] ↪→ XS . Let OXS (1) be the line bundle on
XS corresponding to the isocrystal (E, π−1). Then the map

G̃(R]+) ∼= R◦◦ → H0(YS ,OYS ) : X 7→
∑
i∈Z

πi[Xq−i ]

defines a natural isomorphism

G̃(R]+) ∼= H0(XS ,OXS (1)) = H0(YS ,OYS )
ϕ=π.

Under this isomorphism, the map

H0(XS ,OXS (1))→ H0(S],OS]) = R]

of evaluation at S] is given by the logarithm map

logG : G̃(R]+)→ G(R]+)→ R].

Proof. The compatibility with the logarithm map is clear from the explicit formulas. Assume first
that E is of characteristic p. Then H0(YS ,OYS ), where Y = D∗

S is a punctured open unit disc over S , can
be explicitly understood as certain power series

∑
i∈Z riπ

i with coefficients ri ∈ R (subject to convergence
conditions as i→ ±∞). Then

H0(XS ,OXS (1)) = H0(YS ,OYS )
ϕ=π

amounts to those series such that ri = rqi+1 for all i ∈ Z. Thus, all ri are determined by r0, which in turn
can be any topologically nilpotent element of R. This gives the desired isomorphism

H0(XS ,OXS (1)) ∼= R◦◦ = G̃(R+) = G̃(R]+)

(as G̃ = SpaOE [[X̃1/p∞ ]] and R] = R).
IfE is p-adic, then we argue as follows. First, as in the proof of Proposition II.2.5 below, one can rewrite

H0(XS ,OXS (1)) as Bϕ=π
R,[1,∞] where

BR,[1,∞] = O(Y[1,∞]), for Y[1,∞] = {|[$]| ≤ |π| 6= 0} ⊂ SpaWOE (R
+).

By the contracting property of Frobenius, one can also replace BR,[1,∞] with the crystalline period ring
B+

crys of R]+/π here, and then [SW13, Theorem A] gives the desired

Bϕ=π
R,[1,∞] = HomOE (E/OE , G(R]+/π))[ 1π ] = G̃(R]+/π) = G̃(R]+).
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That this agrees with the explicit formula follows from [SW13, Lemma 3.5.1]. �

Recall also that the field E∞ obtained as the completion of the union of all En is perfectoid — in
fact, one has a closed immersion SpfOE∞ ↪→ G̃ = SpfOE [[X̃1/p∞ ]], which induces an isomorphism
SpfO[E∞ ∼= SpfFq[[X1/p∞ ]]. Over E∞, we have an isomorphismOE ∼= (TπG)(OE∞) ⊂ G̃(OE∞). By the
last proposition, if S] lives over E∞, we get a nonzero section ofOXS (1), vanishing at S] ⊂ XS .

Proposition II.2.3. For any perfectoid space S with untilt S] overE∞, the above construction defines
an exact sequence

0→ OXS → OXS (1)→ OS] → 0

ofOXS -modules.

Proof. The above constructions show that one has a map OXS → I(1) where I ⊂ OXS is the ideal
sheaf of S], which by Proposition II.1.18 is a line bundle. To see that this map is an isomorphism, it suffices
to check on geometric points, so we can assume that S = SpaC for some complete algebraically closed
extensionC of Fq. We have now fixed some nonzero global section ofOXS (1), which by Proposition II.2.2
corresponds to some nonzero topologically nilpotent X̃ ∈ C ; explicitly this section is given by

f =
∑
i∈Z

πi[X̃q−i ] ∈ H0(YC ,OYC )
ϕ=π.

This is the base change of the function∑
i∈Z

πiX̃q−i ∈ O((SpaOE [[X̃1/p∞ ]])E \ V (X̃))

under the induced map
YC → SpaOE [[X̃1/p∞ ]])E \ V (X̃),

so it is enough to determine the vanishing locus of this function. But note that under the identification
G̃ = SpfOE [[X̃1/p∞ ]], this is precisely the logarithm function

logG : G̃ad
E \ {0} → Gad

a,E ;

thus, it is enough to determine the vanishing locus of the logarithm function. But this is precisely⊔
n

SpaE∞ ⊂ G̃ad
E \ {0},

with a simple zero at each of these points. This gives exactly the claimed statement. �

Corollary II.2.4 ([Far18, Proposition 2.12]). There is a well-defined map BC(O(1)) \ {0} → Div1
sending a nonzero section f ∈ H0(XS ,OXS (1)) to the closed Cartier divisor given by V (f). This descends
to an isomorphism

(BC(O(1)) \ {0})/E× ∼= Div1.

Proof. Note that BC(O(1)) ∼= SpdFq[[X1/p∞ ]] by Proposition II.2.2, and hence BC(O(1)) \ {0} ∼=
SpaFq((X1/p∞)) is representable by a perfectoid space. In fact, it is naturally isomorphic to SpdE∞ =

SpaE[∞, and the previous proposition ensures that the map to Div1 is well-defined and corresponds to the
projection SpdE∞ → SpdE → SpdE/ϕZ = Div1. Here, the first map SpdE∞ → SpdE is a quotient
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under O×
E , and the second map SpdE → SpdE/ϕZ then corresponds to the quotient by πZ, as ϕ = π on

BC(O(1)). �

In particular, if one works on Perfk , then Div1 = Spd Ĕ/ϕZ, whose πet
1 is given by the absolute Galois

group of E. On the other hand, the preceding gives a canonical E×-torsor, giving a natural map from the
absolute Galois group of E to the profinite completion of E×. By comparison with Lubin–Tate theory,
this is the usual Artin reciprocity map, see [Far18, Section 2.3] for more details.

II.2.2. Absolute Banach–Colmez spaces. In this section, we analyze the Banach–Colmez spaces in the
case E = E(D) for some isocrystal D = (D,ϕ). We then sometimes write BC(D) and BC(D[1]) for the
corresponding functors on Perfk; or also BC(O(λ)), BC(O(λ)[1]) for λ ∈ Q whenD = D−λ. These are in
fact already defined for all S ∈ PerfFq .

Proposition II.2.5. Let λ ∈ Q.

(i) If λ < 0, then H0(XS ,OXS (λ)) = 0 for all S ∈ PerfFq . Moreover, the projection from

BC(O(λ)[1]) : S 7→ H1(XS ,OXS (λ))
to the point ∗ is relatively representable in locally spatial diamonds, partially proper, and cohomologically
smooth.
(ii) For λ = 0, the map

E → BC(O)
is an isomorphism of pro-étale sheaves, and the pro-étale sheafification of S 7→ H1(XS ,OXS ) vanishes. In
particular, for all S one gets an isomorphism

RΓproet(S,E)→ RΓ(XS ,OXS ).

(iii) For λ > 0, one has H1(XS ,OXS (λ)) = 0 for all affinoid S ∈ PerfFq , and the projection from

BC(O(λ)) : S 7→ H0(XS ,OXS (λ))
to the point ∗ is relatively representable in locally spatial diamonds, partially proper, and cohomologically
smooth.
(iv) If 0 < λ ≤ [E : Qp] (resp. for all positive λ if E is of equal characteristic), there is an isomorphism

BC(O(λ)) ∼= Spd k[[x1/p
∞

1 , . . . , x1/p
∞

r ]]

where λ = r/s with coprime integers r, s > 0.

Proof. For all statements, we can reduce to the case λ = n ∈ Z by replacing E by its unramified
extension of degree s. Regarding the vanishing of H1(XS ,OXS (n)) for n > 0 and S = Spa(R,R+)
affinoid, pick a pseudouniformizer $ ∈ R. In terms of the presentation of XS as gluing YS,[1,q] along
ϕ : YS,[1,1] ∼= YS,[q,q], it suffices to see that

ϕ− πn : BR,[1,q] → BR,[1,1]

is surjective. Any element of BR,[1,1] can be written as the sum of an element of BR,[0,1][ 1π ] and an element
of [$]BR,[1,∞]. Here the ringsBR,[0,1] = O(YS,[0,1]) andBR,[1,∞] = O(YS,[1,∞]) correspond to the affinoid
subsets

YS,[0,1] = {|π| ≤ |[$]| 6= 0} ⊂ SpaWOE (R
+)
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resp.
YS,[1,∞] = {|[$]| ≤ |π| 6= 0} ⊂ SpaWOE (R

+).

(We warn the reader that YS,[0,1] and YS,[1,∞] are not contained in YS = YS,(0,∞); we hope this clash of
notation will not cause confusion.) If f ∈ BR,[0,1], then the series

g = ϕ−1(f) + πnϕ−2(f) + π2nϕ−3(f) + . . .

converges inBR,[0,q] (with its evident definition) and thus inBR,[1,q], and f = ϕ(g)−πng. The same then
applies to elements of BR,[0,1][ 1π ]. On the other hand, if f ∈ [$]BR,[1,∞], then the series

g = −π−nf − π−2nϕ(f)− π−3nϕ2(f)− . . .

converges in BR,[1,q], and f = ϕ(g)− πng.
In fact, the same arguments prove that the map

[BR,[1,∞]
ϕ−πn−−−→ BR,[1,∞]]→ [BR,[1,q]

ϕ−πn−−−→ BR,[1,1]]

is a quasi-isomorphism. Indeed, we have a short exact sequence

0→WOE (R
+)[ 1π ]→ BR,[1,∞] ⊕BR,[0,q][ 1π ]→ BR,[1,q] → 0

(obtained from sheafyness of WOE (R
+)[ 1π ] when endowed with the π-adic topology on WOE (R

+)), and
similarly

0→WOE (R
+)[ 1π ]→ BR,[1,∞] ⊕BR,[0,1][ 1π ]→ BR,[1,1] → 0.

Therefore, it suffices to see that the maps

BR,[0,q][
1
π ]

ϕ−πn−−−→ BR,[0,1][
1
π ]

and
WOE (R

+)[ 1π ]
ϕ−πn−−−→WOE (R

+)[ 1π ]

are isomorphisms. In both cases, this follows from convergence of ϕ−1 + πnϕ−2 + π2nϕ−3 + . . . on these
algebras, giving an explicit inverse.

For part (iv), note that in equal characteristic one can describe O(YS,I) = BR,I , for S = Spa(R,R+)
affinoid, explicitly as power series

∑
i∈Z riπ

i with ri ∈ R, satisfying some convergence conditions as i →
±∞. Taking the part where ϕ = πn, we require ϕ(ri) = ri+n, and we see that we can freely choose
r1, . . . , rn. The required convergence holds precisely when all ri are topologically nilpotent, giving the
isomorphism in that case. If E is p-adic, we can reduce to E = Qp (but now λ rational, 0 < λ ≤ 1), taking
a pushforward of the sheaf along XS,E = XS,Qp ×Qp E → XS,Qp . In that case, the result follows from the
equality H0(XS ,OXS (λ)) = Bϕr=ps

R,[1,∞] proved above, and [SW13, Theorem A, Proposition 3.1.3 (iii)].

In particular, for affinoid S we can choose a fibrewise nonzero map OXS → OXS (1), by taking a map
S → BC(O(1)) ∼= SpdFq[[x1/p

∞
]] sending x to a pseudouniformizer. By Proposition II.2.3, for any n ∈ Z,

we get an exact sequence
0→ OXS (n)→ OXS (n+ 1)→ OS] → 0.

Applying this for n > 0, we get inductively an exact sequence

0→ BC(O(n))|S → BC(O(n+ 1))|S → (A1
S])

♦ → 0.
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Starting with the base case n = 1 already handled, this allows one to prove part (iii) by induction, using
[Sch17a, Proposition 23.13].

Now for part (ii), we use the sequence for n = 0. In that case, for S = Spa(R,R+), we get an exact
sequence

0→ H0(XS ,OXS )→ H0(XS ,OXS (1))→ R] → H1(XS ,OXS )→ 0

where the map in the middle can be identified with the logarithm map of the universal cover of the Lubin–
Tate formal group. This is pro-étale locally surjective, with kernel given by E , proving (ii).

Finally, for part (i), we first treat the case n = −1, where we get an exact sequence

0→ E → (A1
S])

♦ → BC(O(−1)[1])|S → 0

showing in particular the vanishing of H0(XS ,OXS (−1)) = 0. As E → (A1
S]
)♦ is a closed immersion,

the result follows from [Sch17a, Proposition 24.2]. Now for n < −1, the result follows by induction from
the sequence

0→ (A1
S])

♦ → BC(O(−n)[1])|S → BC(O(−n+ 1)[1])|S → 0

and [Sch17a, Proposition 23.13]. �

II.2.3. The algebraic curve. We recall the following important ampleness result.

Theorem II.2.6 ([KL15, Proposition 6.2.4]). Let S = Spa(R,R+) be an affinoid perfectoid space over
Fq and let E be any vector bundle on XS . Then there is an integer n0 such that for all n ≥ n0, the vector
bundle E(n) is globally generated, i.e. there is a surjective map

OmXS → E(n)

for some m ≥ 0, and moreover H1(XS , E(n)) = 0.

Proof. Pick a pseudouniformizer $ ∈ R, thus defining a radius function on YS . Write XS as the
quotient of YS,[1,q] along the isomorphism ϕ : YS,[1,1] ∼= YS,[q,q]. Correspondingly, E is given by some
finite projective BR,[1,q]-module M[1,q], with base changes M[1,1] and M[q,q] to BR,[1,1] and BR,[q,q], and an
isomorphism ϕM :M[q,q]

∼=M[1,1], linear over ϕ : BR,[q,q] ∼= BR,[1,1].

For convenience, we first reduce to the case that M[1,q] is free (cf. [KL15, Corollary 1.5.3]). Indeed,
pick a surjection ψ : F[1,q] := Bm

R,[1,q] → M[1,q]. We want to endow the source with a similar ϕ-module
structure ϕF : F[q,q]

∼= F[1,1] (with obvious notation), making ψ equivariant. For this, we would like to
find a lift

F[q,q]
ϕF //

ψ

��

F[1,1]

ψ

��
M[q,q]

ϕM // M[1,1]

such that ϕF is an isomorphism. Let N[1,q] = ker(ψ), with base change N[q,q], N[1,1]. Choosing a splitting
F[1,q]

∼= M[1,q] ⊕ N[1,q], we see that we could find ϕF if there is an isomorphism ϕ∗N[q,q]
∼= N[1,1] of

BR,[1,1]-modules. But in the Grothendieck group of finite projective BR,[1,1]-modules, both are given by
[Bm

R,[1,1]]− [M[1,1]]. But equality in the Grothendieck group is the same thing as stable isomorphism; thus,
after possibly adding a free module (i.e. increasing m), they are isomorphic, giving the claim.
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Thus, we can assume that M[1,q]
∼= Bm

R,[1,q] is a free BR,[1,q]-module, and then

ϕM = A−1ϕ

for some matrixA ∈ GLm(BR,[1,1]). Actually, repeating the above argument starting with the presentation
of XS as the quotient of YS,[q−1,q] via identifying YS,[q−1,1] with YS,[1,q], one can ensure that

A ∈ GLm(BR,[q−1,1]).

Twisting byOXS (n) amounts to replacing A by Aπn. Let us choose integers N and N ′ such that

• the matrix A has entries in πNWOE (R
+)〈( [$]

π )±1〉
• the matrix A−1 has entries in π−N ′

WOE (R
+)〈 π[$] ,

[$]1/q

π 〉.

By twisting, we can replace N and N ′ by N + n and N ′ + n; we can thus arrange that qN > N ′, N > 0.
Fix some rational r such that 1 < r ≤ q. We will now show that there are m elements

v1, . . . , vm ∈ (Bm
R,[1,q])

ϕ=A = H0(XS , E)

that form a basis of Bm
R,[r,q]. Repeating the above analysis for different strips (and different choices of

pseudouniformizers $ ∈ R to get overlapping strips), we can then get global generation of E .
In fact, we will choose vi to be of the form [$]Mei−v′i, for some positive integerM chosen later, where

ei ∈ Bm
R,[1,q] is the i-th basis vector and v′i is such that

||v′i||BR,[r,q] ≤ ||[$]M+1||BR,[r,q] = q−M−1.

Here, we endow all BR,I with the spectral norm, normalizing the norms on all completed residue fields via
||[$]|| = 1

q . These v1, . . . , vm restrict to a basis of Bm
R,[r,q] since the base change matrix from the canonical

basis is given by an element of

[$M ](Id + [$]Mm(B
◦
R,[r,q])) ⊂ GLm(BR,[r,q]).

In order to find the v′i, it suffices to prove that the map
ϕ−A : Bm

R,[1,q] → Bm
R,[1,1]

is surjective (yielding H1(XS , E) = 0), in the following quantitative way: If, for some positive integer M
chosen later,

w ∈ πMWOE (R
+)〈( [$]

π )±1〉m ⊂ Bm
R,[1,1],

then there is some
v ∈ Bm

R,[1,q]

such that
(II.2.1) (ϕ−A)v = w and ||v||BR,[r,q] ≤ q

−M−1.

Indeed, we can then apply this to wi = (ϕ − A)([$]Mei) (since N > 0 and thus A has entries in
WOE (R

+)〈( [$]
π )±1〉), getting some v′i with wi = (ϕ−A)(v′i) and

||v′i||BR,[r,q] ≤ q
−M−1,

as desired.
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Thus, take any
w ∈ πMWOE (R

+)〈( [$]
π )±1〉m.

We can write

w = w1 + w2 where w1 ∈ [$]N−1πM−N+1WOE (R
+)〈 π[$]〉

m, w2 ∈ [$]NπM−NWOE (R
+)〈 [$]

π 〉
m.

Let

v = ϕ−1(w1)−A−1w2 ∈ Bm
R,[1,q] so that w′ := w − ϕ(v) +Av = ϕ(A−1w2) +Aϕ−1(w1).

Note that (as N > 0)

Aϕ−1(w1) ∈ πNWOE (R
+)〈( [$]

π )±1〉·[$](N−1)/qπM−N+1WOE (R
+)〈 π

[$]1/q
〉m ⊂ πM+1WOE (R

+)〈( [$]
π )±1〉m

and also (as qN > N ′)

ϕ(A−1w2) ∈ π−N
′
[$]NqπMWOE (R

+)〈 [$]q

π 〉
m ⊂ πM+1WOE (R

+)〈( [$]
π )±1〉m

so that

w′ ∈ πM+1WOE (R
+)〈( [$]

π
)±1〉m.

If one can thus prove the required bounds on v, this process will converge and prove the desired statement.
It remains to estimate v. On the one hand, its norm is clearly bounded in terms of the norm of w (as both
w1 and w2 are, and ϕ−1 and A−1 are bounded operators), and thus, since when one iterates w goes to zero,
v goes to zero, and the process converges by summing to obtain some v such that (ϕ − A)v = w. But
we need an improved estimate over BR,[r,q] to obtain (II.2.1). Note that the norm of ϕ−1(w1) is bounded
above by the norm of [$](N−1)/qπM−N+1, which in BR,[r,q] is given by q−(N−1)/q−rM+rN−r. This is at
most q−M−1 once M is large enough. On the other hand, w2 ∈ πMWOE (R

+)〈 [$]
π 〉

m and so the norm of
A−1w2 is bounded by the norm of π−N ′

πM , which in BR,[r,q] is given by qrN ′−rM . Again, this is at most
q−M−1 once M is large enough. Thus, taking M large enough (depending only on N , N ′ and r > 1), the
process above converges, giving the desired result. �

We have the following general GAGA theorem. Its proof is an axiomatization of [KL15, Theorem
6.3.9].

Proposition II.2.7 (GAGA). Let (X,OX) be a locally ringed spectral space equipped with a line bundle
OX(1) such that for any vector bundle E on X , there is some n0 such that for all n ≥ n0, the bundle E(n)
is globally generated. Moreover, assume that for i > 0, the cohomology group H i(X, E(n)) = 0 vanishes
for all sufficiently large n.

Let P =
⊕

n≥0H
0(X,OX(n)) be the graded ring and Xalg = Proj(P ). There is a natural map

(X,OX) → Xalg of locally ringed topological spaces, and pullback along this map induces an equiva-
lence of categories between vector bundles on Xalg and vector bundles on (X,OX). Moreover, for any
vector bundle Ealg on Xalg with pullback E to X , the map

H i(Xalg, Ealg)→ H i(X, E)

is an isomorphism for all i ≥ 0.



66 II. THE FARGUES–FONTAINE CURVE AND VECTOR BUNDLES

Recall that for any graded ring P =
⊕

n≥0 Pn, one can define a separated scheme Proj(P ) by gluing
SpecP [f−1]0 for all f ∈ Pn, n > 0, where P [f−1]0 = lim−→i

f−iPin is the degree 0 part of P [f−1]. In
our situation, if n is large enough so that OX(n) is globally generated, then it is enough to consider only
f ∈ Pn for this given n, and in fact only a finite set of them (as X is quasicompact); in particular, Proj(P )
is quasicompact. Moreover, one sees that there is a tautological line bundle OProj(P )(n) for all sufficiently
large n, compatible with tensor products; thus, there is also a tautological line bundleOProj(P )(1), which is
an ample line bundle on Proj(P ). The pullback ofOProj(P )(1) is then given byOX(1).

Proof. The construction of the map f : (X,OX) → Xalg is formal (and does not rely on any as-
sumptions): if g ∈ Pn, then on the non-vanishing locus U = D(g) ⊂ X , there is an isomorphism
g|U : OU

∼−→ OU (n). Now, for x = a
gk
∈ P [g−1]0, g−k|U ◦ a ∈ O(U), and this defines a morphism of

rings P [g−1]0 → O(U). One deduces a morphism of locally ringed spaces U → D+(g), and those glue
when g varies to a morphism of locally ringed spaces (X,OX)→ Xalg.

We consider the functor taking any vector bundle E on X to the quasicoherent OXalg-module E as-
sociated to the graded P -module

⊕
n≥0H

0(X, E(n)). This functor is exact as H1(X, E(n)) = 0 for all
sufficiently large n, and it commutes with twisting by O(1). We claim that it takes values in vector bun-
dles on Xalg. To see this, take a surjection OmX → E(n) with kernel F , again a vector bundle. The map
OmX → E(n) splits after twisting, i.e. for any f ∈ Pn′ with n′ large enough, there is a map E(n−n′)→ OmX
such that E(n− n′)→ OmX → E(n) is multiplication by f . Indeed, the obstruction to such a splitting is a
class inH1(X,Hom(E ,F)(n′)) which vanishes for n′ large enough. This implies that E is a vector bundle
on SpecP [f−1]0 for any such f , and these cover Xalg.

There is a natural map f∗E → E , and the preceding arguments show that this is an isomorphism (on
the preimage of any SpecP [f−1]0, and thus globally). It now remains to show that if Ealg is any vector
bundle on Xalg, the map

H i(Xalg, Ealg)→ H i(X, E)

is an isomorphism for all i ≥ 0. (Indeed, for i = 0 this implies, by passing to internal Hom’s, that Ealg 7→ E
is fully faithful, and we have just seen that this functor is essentially surjective.) By ampleness ofOXalg(1),
there is some surjectionOXalg(−n)m → (Ealg)∨, with kernel a vector bundleF . Dualizing, we get an injec-
tion Ealg → OXalg(n)m with cokernel a vector bundle. This already gives injectivity onH0 by reduction to
OXalg(n) where it is clear. Applying this injectivity also for F , we then get bijectivity onH0. This already
implies that we get an equivalence of categories (exact in both directions). Finally, picking f1, . . . , fm ∈ Pn
so that the SpecP [f−1

i ]0 coverXalg, we can look at the corresponding Čech complex. Each term is a filtered
colimit of global sections of vector bundles E(n) along multiplication by products of powers of fi’s. This
reduces the assertion to the case of H0 and the vanishing of H i(X, E(n)) for n large enough. �

Remark II.2.8. One can check that Xalg is up to canonical isomorphism independent of the choice of
a line bundleOX(1) satisfying the preceding properties.

In particular, for any affinoid perfectoid space S over Fq , we can define the algebraic curve

X
alg
S = Proj

⊕
n≥0

H0(XS ,OXS (n)).
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There is a well-defined map XS → X
alg
S of locally ringed spectral spaces, pullback along which defines an

equivalence of categories of vector bundles, and is compatible with cohomology.
Notably, this connects the present discussion to the original definition of the Fargues–Fontaine curve

as given in [FF18], where the case S = Spa(F,OF ) is considered, for a perfectoid field F of characteristic
p. We will restrict ourselves, as above, to the case that F = C is algebraically closed.

Proposition II.2.9. Let C be a complete algebraically closed nonarchimedean field over Fq. Then
X

alg
C is a connected regular noetherian scheme of Krull dimension 1, and the map |XC | → |X

alg
C | induces

a bijection between |XC |cl and the closed points of |Xalg
C |. Moreover, for any classical point x ∈ |XC |, the

complement Xalg
C \ {x} is the spectrum of a principal ideal domain.

Proof. Let x ∈ |XC |cl be any classical point, corresponding to some untilt C] over E of C. Using
Lubin–Tate formal groups, we see that there is an exact sequence

0→ OXC → OXC (1)→ OC] → 0

on XC . The corresponding section f ∈ H0(XC ,OXC (1)) defines its vanishing locus in Xalg
C , which is

then also given by SpecC]. Indeed, this vanishing locus is affine as it is Zariski closed in the affine scheme
D+(g) for any g ∈ H0(XC ,OXC (1)) that does not vanish at x; and one can compute the global sections via
Proposition II.2.2. In particular, x defines a closed point of |Xalg

C |. Now we want to show that P [f−1]0 is a
principal ideal domain. Thus, take any nonzero g ∈ H0(XC ,OXC (n)). This has finitely many zeroes on
XC , all at classical points x1, . . . , xm. For each xi, we have a section fxi ∈ H0(XC ,OXC (1)) as before, and
then g = fn1

1 · · · fnmm h for some ni ≥ 1, and some h ∈ H0(XC ,OXC (n′)) that is everywhere nonzero. In
particular, h defines an isomorphism OXC → OXC (n′), whence n′ = 0, and h ∈ E×. This decomposition
implies easily that P [f−1]0 is indeed a principal ideal domain, and it shows that all maximal ideals arise
from classical points of |XC |, finishing the proof. �

II.2.4. Classification of vector bundles. At this point, we can recall the classification of vector bundles
over XC ; so here we take S = SpaC for a complete algebraically closed nonarchimedean field C over Fq.
First, one classifies line bundles.

Proposition II.2.10. The map Z→ Pic(XC), n 7→ OXC (n), is an isomorphism.

Proof. By Proposition II.2.9, any line bundle becomes trivial after removing one closed point x ∈
X

alg
C . As the local rings of Xalg

C are discrete valuation rings, this implies that any line bundle is of the form
OXC (n[x]) for some n ∈ Z. ButOXC ([x]) ∼= OXC (1) by Proposition II.2.2, so the result follows. �

In particular, one can define the degree of any vector bundle E on XC via

deg(E) = deg(det(E)) ∈ Z

where det(E) is the determinant line bundle, and deg : Pic(XC) ∼= Z is the isomorphism from the propo-
sition. Of course, one can also define the rank rk(E) of any vector bundle, and thus for any nonzero vector
bundle its slope

µ(E) = deg(E)
rk(E)

∈ Q.
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It is easy to see that this satisfies the Harder–Narasimhan axiomatics [FF18, 5.5.1] (for example, rank
and degree are additive in short exact sequences). In particular, one can define semistable vector bundles as
those vector bundles E such that for all proper nonzero F ⊂ E , one has µ(F) ≤ µ(E). One says that E is
stable if in fact µ(F) < µ(E) for all such F .

Example II.2.11. For any λ ∈ Q, the bundleOXC (λ) is stable of slope λ. Indeed, assume that 0 6= F (
OXC (λ) is a proper nonzero subbundle, and let r = rk(F), s = deg(F). Passing to r-th wedge powers, we
get an injection

det(F) ∼= OXC (s) ↪→ OXC (rλ)
m,

using that
∧rOXC (λ) is a direct sum of copies of OXC (rλ). This implies that s ≤ rλ. Moreover, if we

have equality, then r is at least the denominator of λ, which is the rank ofOXC (λ), i.e.F has the same rank
asOXC (λ). Thus,OXC (λ) is stable.

Proposition II.2.12. Any vector bundle E on XC admits a unique exhaustive separating Q-indexed
filtration by saturated subbundles E≥λ ⊂ E , called the Harder–Narasimhan filtration, such that

Eλ := E≥λ/E>λ, where E>λ =
⋃
λ′>λ

E≥λ′ ,

is semistable of slope λ. The formation of the Harder–Narasimhan filtration is functorial in E . �

As a preparation for the next theorem, we note that the Harder–Narasimhan filtration is also compatible
with change of C.

Proposition II.2.13. Let E be a vector bundle on XC , and let C ′|C be an extension of complete al-
gebraically closed nonarchimedean fields, with pullback E ′ of E to XC′ . Then (E ′)≥λ is the pullback of
E≥λ.

Similarly, if E′|E is a finite separable extension of degree r, and E ′ is the pullback of E along XC,E′ =

XC,E ⊗E E′ → XC,E = XC , then (E ′)≥λ is the pullback of E≥λ/r.

Proof. Consider the case of C ′|C. By uniqueness of the Harder–Narasimhan filtration, it suffices to
see that pullbacks of semistable vector bundles remain semistable. Thus, assume that E is semistable, and
assume by way of contradiction that E ′ is not semistable. By induction on the rank, we can assume that
the formation of the Harder–Narasimhan filtration of E ′ is compatible with any base change. Consider the
first nontrivial piece of the Harder–Narasimhan filtration 0 6= F ( E ′. This is a vector bundle on XC′

with µ(F) > µ(E ′). We claim that F descends to XC . By Proposition II.2.1, it suffices to see that the two
pullbacks of F to XC′⊗̂CC′ agree. This is true as there are no nonzero maps from F to E ′/F after base
change to XR for any perfectoid C ′-algebra R: If there were such a nonzero map, there would also be a
nonzero map for some choice of R = C ′′ a complete algebraically closed nonarchimedean field. But then
F is still semistable and all pieces of the Harder–Narasimhan filtration of E ′/F are of smaller slope, so such
maps do not exist.

For an extensionE′|E , the similar arguments work, using Galois descent instead (noting that one may
assume that E′|E is Galois by passing to Galois hulls). Note that the pullback of OXC,E (1) is OXC,E′ (r),
causing the mismatch in slopes. �

The main theorem on the classification of vector bundles is the following. Our proof follows the argu-
ments of Hartl-Pink, [HP04], to reduce to Lemma II.2.15 below. However, we give a new and direct proof
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of this key lemma, which avoids any hard computations by using the geometry of diamonds and v-descent.
We thus get a new proof of the classification theorem.4

Theorem II.2.14. Any vector bundle E on XC is isomorphic to a direct sum of vector bundles of the
formOXC (λ) with λ ∈ Q. If E is semistable of slope λ, then E ∼= OXC (λ)m for some m ≥ 0.

Proof. We argue by induction on the rank n of E , so assume the theorem in rank≤ n− 1 (and for all
choices ofE); the case n = 1 has been handled already. By the vanishing ofH1(XC ,OXC (λ)) = 0 for λ >
0, the theorem follows for E if E is not semistable. Thus assume E is semistable of slope λ = s

r with s ∈ Z
and r > 0 coprime. It suffices to find a nonzero mapOXC (λ)→ E : Indeed, by stability ofOXC (λ), the map
is necessarily injective (the category of semi-stable vector bundles of slope λ is abelian with simple objects
the stable vector bundles of slope λ), and the quotient will then again be semistable of slope λ, and thus by
induction isomorphic to OXC (λ)m−1. One finishes by observing that Ext1XC (OXC (λ),OXC (λ)) = 0 by
Proposition II.2.5 (ii).

Thus, it suffices to find a nonzero mapOXC (λ)→ E . LetE′|E be the unramified extension of degree r,
and consider the covering f : XC,E′ = XC,E ⊗E E′ → XC,E = XC . Then OXC (λ) = f∗OXC,E′ (s), and
so it suffices to find a nonzero map OXC,E′ (s) → f∗E . In other words, up to changing E , we can assume
that λ ∈ Z. Then by twisting, we can assume λ = 0.

Next, we observe that we are free to replace C by an extension. Indeed, consider the v-sheaf send-
ing S ∈ PerfC to the isomorphisms E ∼= OnXC . This is a v-quasitorsor under GLn(E) (using Proposi-
tion II.2.5 (ii)). If there is some extension of C where we can find a nonzero section of E (and thus also
trivialize E), then it is a v-torsor under GLn(E). By v-descent of GLn(E)-torsors, cf. [Sch17a, Lemma
10.13], it is then representable by a space pro-étale over SpaC , and thus admits a section.

Let d ≥ 0 be minimal such that there is an injection OXC (−d) ↪→ E , possibly after base enlarging C ;
by Theorem II.2.6 some such d exists. We want to see that d = 0, so assume d > 0 by way of contradiction.
By minimality of d, the quotient F = E/OXC (−d) is a vector bundle, and by induction the classification
theorem holds true for F .

If d ≥ 2, then we can by induction find an injection OXC (−d + 2) ↪→ F ; taking the pullback defines
an extension

OXC (−d)→ G → OXC (−d+ 2).

so by twisting
OXC (−1)→ G(d− 1)→ OXC (1).

By the key lemma, Lemma II.2.15 below, we would, possibly after enlarging C , get an injection OXC ↪→
G(d− 1), and hence an injectionOXC (−d+ 1) ↪→ G ↪→ E , contradicting our choice of d.

Thus, we may assume that d = 1. If F is not semistable, then it admits a subbundle F ′ ⊂ F of degree
≥ 1 and rank ≤ n− 2. Applying the classification theorem to the pullback

0→ OXC (−1)→ E
′ → F ′ → 0

4First, it has been proven for E of equal characteristic in [HP04] and for p-adic E by Kedlaya in [Ked04]; both of these
proofs used heavy computations to prove Lemma II.2.15. A more elegant proof was given by Fargues–Fontaine [FF18] (for all E)
by reducing to the description of the Lubin–Tate and Drinfeld moduli spaces of π-divisible OE-modules, and their Grothendieck–
Messing period morphisms (which arguably also involve some nontrivial computations). Finally, for p-adic E a proof is implicit
in Colmez’ work [Col02] on Banach–Colmez spaces.
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of F ′, which is of slope ≥ 0, we then get that E ′ ⊂ E has a global section.

It remains the case that d = 1 and thatF is semistable, thus necessarily isomorphic toOXC ( 1
n−1). This

is the content of the next lemma. �

Lemma II.2.15. Let
0→ OXC (−1)→ E → OXC ( 1n)→ 0

be an extension of vector bundles on XC , for some n ≥ 1. Then there is some extension C ′|C of complete
algebraically closed nonarchimedean fields such that H0(XC′ , E|XC′ ) 6= 0.

Proof. Assume the contrary. Passing to Banach–Colmez spaces, we find an injection of v-sheaves

f : BC(OXC ( 1n)) ↪→ BC(OXC (−1)[1]).

The image cannot be contained in the classical points, i.e. theC-points (as these form a totally disconnected
subset while the source is connected and not reduced to a point), so the image contains some non-classical
point. After base change to some C ′|C , we thus find that the image contains some nonempty open subset
of BC(OXC (−1)[1]), as follows from the presentation

BC(OXC (−1)[1]) = (A1
C])

♦/E

and the similar behaviour of non-classical points of A1
C]

, cf. proof of Proposition II.1.11. Translating this
nonempty open subset to the origin, we find that the image of f contains an open neighborhood of 0, and
then by rescaling by the contracting action of E×, we find that the map f must be surjective, and thus an
isomorphism.

In particular, this would mean that BC(OXC (−1)[1]) is a perfectoid space. This is patently absurd if
E is p-adic, as then the given presentation shows that (A1

C]
)♦ is pro-étale over a perfectoid space and thus

itself a perfectoid space, but A1
C]

is clearly not a perfectoid space.5

In general, we can argue as follows. There is a nonzero map

BC(OXC ( 1n))→ (A1
C])

♦

as H0(OXC ( 1n)) maps nontrivially to its fibre at the chosen untilt SpaC] ↪→ XC . If f is an isomorphism,
we would then get a nonzero map

(A1
C])

♦/E ∼= BC(OXC (−1)[1])
f−1

−−→ BC(OXC ( 1n))→ (A1
C])

♦.

On the other hand, one can classify all E-linear maps (A1
C]
)♦ → (A1

C]
)♦. The latter are the same as

maps A1
C]
→ A1

C]
if E is p-adic (by [SW20, Proposition 10.2.3]), respectively maps A1

C,perf → A1
C,perf if

E is of equal characteristic. Thus, they are given by some convergent power series g(X) that is additive,
i.e. g(X + Y ) = g(X) + g(Y ), and satisfies g(aX) = ag(X) for all a ∈ E. (If E is of characteristic p,
then g may a priori involve fractional powers X1/pi .) The equation g(πX) = πg(X) alone in fact shows
that only the linear coefficient of g may be nonzero, so g(X) = cX for some c ∈ C], and thus g is either
an isomorphism or zero. But our given map is nonzero with nontrivial kernel, giving a contradiction. �

5We believe that also when E is of equal characteristic, BC(OXC (−1)[1]) is not a perfectoid space, but we were not able to
settle this easily.
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II.2.5. Families of vector bundles. Using the ampleness ofO(1), we can now prove the following result
on relative Banach–Colmez spaces.

Proposition II.2.16. Let S be a perfectoid space over Fq. Let E be a vector bundle on XS . Then the
Banach–Colmez space

BC(E) : T 7→ H0(XT , E|XT )
is a locally spatial diamond, partially proper over S. Moreover, the projectivized Banach–Colmez space

(BC(E) \ {0})/E×

is a locally spatial diamond, proper over S.

Proof. Using Theorem II.2.6, choose a presentationOXS (−n′)m
′ → OXS (−n)m → E∨ with n, n′ >

0. Dualizing, we get an exact sequence

0→ E → OXS (n)
m → OXS (n

′)m
′
.

This implies that BC(E) ⊂ BC(OX/S(n))
m is a closed subspace, so the first part follows from Proposi-

tion II.2.5 (iii). For the second part, we may assume that S is qcqs. It is also enough to prove the similar
result for (BC(E) \ {0})/πZ as theO×

E -action is free (so one can apply the last part of [Sch17a, Proposition
11.24]). This follows from the following general lemma about contracting group actions on locally spectral
spaces, noting that checking the conditions formally reduces to the case of BC(OXS (n)m) and from there
to A1

S]
by evaluating sections at some collection of untilts. �

Lemma II.2.17. Let X be a taut locally spectral space such that for any x ∈ X , the set Xx ⊂ X of
generalizations of x is a totally ordered chain under specialization. Let γ : X

∼−→ X be an automorphism
of X such that the subset X0 ⊂ X of fixed points is a spectral space. Moreover, assume that

(i) for all x ∈ X , the sequence γn(x) for n → ∞ converges towards X0, i.e. for all open neighborhoods U
of X0, one has γn(x) ∈ U for all sufficiently positive n;
(ii) for all x ∈ X \X0, the sequence γn(x) for n → −∞ diverges, i.e. for all quasicompact open subspaces
U ⊂ X , one has γn(x) 6∈ U for all sufficiently negative n.

Then X0 ⊂ X is a closed subspace, the action of γ on X \X0 is free and totally discontinuous (i.e. the
action map (X \X0)× Z→ (X \X0)× (X \X0) is a closed immersion), and the quotient (X \X0)/γ

Z

is a spectral space.

Remark II.2.18. For applications of this lemma, we recall the following facts:

(i) If X is any locally spatial diamond, then |X| is a locally spectral space such that all for all x ∈ |X|, the
set of generalizations of x in |X| is a totally ordered chain under specialization. Indeed, this follows from
[Sch17a, Proposition 11.19] and the similar property for analytic adic spaces.
(ii) If X is in addition partially proper over a spatial diamond, then |X| is taut by [Sch17a, Proposition
18.10].

This means that the first sentence of the lemma is practically always satisfied.

Proof. Let U ⊂ X be some quasicompact open neighborhood of X0. First, we claim that one can
arrange that γ(U) ⊂ U . Indeed, one has

U ⊂ γ−1(U) ∪ γ−2(U) ∪ . . . ∪ γ−n(U) ∪ . . . ,
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as for any x ∈ U ⊂ X , also γn(x) ∈ U for all sufficiently large n by assumption, and so x ∈ γ−n(U) for
some n > 0. By quasicompacity of U , this implies that U ⊂ γ−1(U) ∪ . . . ∪ γ−n(U) for some n, and then
U ′ = U ∪ γ−1(U) ∪ . . . ∪ γ−n+1(U) is a quasicompact open neighborhood of X0 with γ(U ′) ⊂ U ′.

Now fix a quasicompact open neighborhood U of X0 with γ(U) ⊂ U . We claim that

X0 =
⋂
n≥0

γn(U).

Indeed, if x ∈ X \X0, then by assumption there is some positive n such that γ−n(x) 6∈ U , giving the result.
In particular, for any other quasicompact open neighborhood V of X0, there is some n such that

γn(U) ⊂ V . Indeed, the sequence of spaces γn(U) \ V is a decreasing sequence of spectral spaces with
empty inverse limit, and so one of the terms is empty.

Consider the closure U ⊂ X of U in X . As X is taut, this is still quasicompact. Repeating the above
argument, we see that for some n > 0, one has

U ⊂ γ−1(U) ∪ . . . ∪ γ−n(U) = γ−n(U).

This implies that the sequences {γn(U)}n≥0 and {γn(U)}n≥0 are cofinal. In particular,

X0 =
⋂
n≥0

γn(U) =
⋂
n≥0

γn(U)

is a closed subset of X .
Next, we check that any point x ∈ X \ X0 has an open neighborhood V such that {γn(V )}n∈Z are

pairwise disjoint; for this it suffices to arrange that V ∩ γi(V ) = ∅ for all i > 0. For this, note that if n is
chosen such that γn(U) ⊂ U , then up to rescaling by a power of γ, we can assume that x ∈ U \ γn+1(U).
Let V ⊂ U \γn+1(U) be a quasicompact open neighborhood of x. Then γi(V )∩V = ∅ as soon as i ≥ n+1.
For the finitely many i = 1, . . . , n, we can use a quasicompacity argument, and reduce to proving that ifXx

is the localization ofX at x (i.e., the set of all generalizations of x), thenXx∩γi(Xx) = ∅ for i = 1, . . . , n.
By our assumption on X , the space Xx has a unique generic point η ∈ Xx (Xx is pro-constructible in a
spectral space thus spectral and by our hypothesis Xx is irreducible), which must then also be the unique
generic point of γi(Xx) if Xx ∩ γi(Xx) 6= ∅. Thus, if Xx ∩ γi(Xx) 6= ∅, then γi(η) = η, so η ∈ X0. But
X0 is closed, so that x ∈ X0, which is a contradiction.

In particular, the action of γ on X \X0 is free and totally discontinuous, and the quotient X = (X \
X0)/γ

Z is a locally spectral space which is locally isomorphic to X \X0. A basis of open neighborhoods
of X is given by the image of quasicompact open subsets V ⊂ X \X0 for which {γn(V )}n∈Z are pairwise
disjoint; it follows that these are quasicompact open subsets ofX . Also, the intersection of two such subsets
is of the same form, so the quotient X is quasiseparated. Finally, note that U \ γ(U) → X is a bijective
continuous map, and the source is a spectral space (as γ(U) ⊂ U is a quasicompact open subspace of the
spectral space U ), and in particular quasicompact, and so X is quasicompact. �

The result on properness of the projectivized Banach–Colmez space enables us to give quick proofs of
the main results of [KL15] (including an extension to the case of general E , in particular of equal charac-
teristic).

Theorem II.2.19 ([KL15, Theorem 7.4.5, Theorem 7.4.9, Theorem 7.3.7, Proposition 7.3.6]). Let S be
a perfectoid space over Fq and let E be a vector bundle over XS of constant rank n.
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(i) The function taking a geometric point SpaC → S of S to the Harder–Narasimhan polygon of E|XC is
upper semicontinuous.
(ii) Assume that the Harder–Narasimhan polygon of E is constant. Then there exists a global (separated
exhaustive decreasing) Harder–Narasimhan filtration

E≥λ ⊂ E
specializing to the Harder–Narasimhan filtration at each point. Moreover, after replacing S by a pro-étale
cover, the Harder–Narasimhan filtration can be split, and there are isomorphisms

Eλ ∼= OXS (λ)
nλ

for some integers nλ ≥ 0.

Proof. Note that the Harder–Narasimhan polygon can be described as the convex hull of the points
(i, di) for i = 0, . . . , n, where di is the maximal integer such that H0(XC , (∧iE)(−di)|XC ) 6= 0. To prove
part (i), it therefore suffices to show that for any vector bundle F on XS , the locus of all geometric points
SpaC → S for which H0(XC ,F|XC ) 6= 0 is closed in S. But note that this is precisely the image of

(BC(F) \ {0})/E× → S.

As this map is proper by Proposition II.2.16, its image is closed. To see that the endpoint of the Harder–
Narasimhan polygon is locally constant, apply the preceding also to the dual of the determinant of E .

For part (ii), it is enough to prove that v-locally on S , there exists an isomorphism E ∼=
⊕

λOXS (λ)nλ .
Indeed, the desired global Harder–Narasimhan filtration will then exist v-locally, and it necessarily de-
scends. The trivialization of each Eλ amounts to a torsor under some locally profinite group, and can thus
be done after a pro-étale cover by [Sch17a, Lemma 10.13]. Then the ability to split the filtration follows
from Proposition II.2.5 (iii).

We argue by induction on the rank of E . Let λ be the maximal slope of E . We claim that v-locally on
S , there is a map OXS (λ) → E that is nonzero in each fibre. Indeed, finding such a map is equivalent to
finding a fibrewise nonzero mapOXS → F =Hom(OXS (λ), E). But then

BC(F) \ {0} → (BC(F) \ {0})/E× → S

is a v-cover over which such a map exists: The first map is anE×-torsor and thus a v-cover, while the second
map is proper and surjective on geometric points, thus surjective by [Sch17a, Lemma 12.11]. The dual map
E∨ → OXS (−λ) is surjective as can be checked over geometric points (using thatOXC (−λ) is stable), thus
the cokernel of OXS (λ) → E is a vector bundle E ′, that again has constant Harder–Narasimhan polygon.
By induction, one can find an isomorphism

E ′ ∼=
⊕
λ′≤λ
OXS (λ

′)n
′
λ′ .

By Proposition II.2.5 (i)–(ii), the extension

0→ OXC (λ)→ E →
⊕
λ′≤λ
OXS (λ

′)n
′
λ′ → 0

can be split after a further pro-étale cover, finishing the proof. �

Let us explicitly note the following corollary.
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Corollary II.2.20 ([KL15, Theorem 8.5.12]). Let S be a perfectoid space. The category of pro-étaleE-
local systems L is equivalent to the category of vector bundles on XS whose Harder–Narasimhan polygon
is constant 0, via L 7→ L⊗E OXS .

Proof. First, the functor is fully faithful, as we can see by pro-étale descent (to assume L is trivial) and
Proposition II.2.5. Now essential surjectivity follows from Theorem II.2.19. �

II.3. Further results on Banach–Colmez spaces

We include some further results on Banach–Colmez spaces.

II.3.1. Cohomology of families of vector bundles. First, we generalize the vanishing results of Propo-
sition II.2.5 to families of vector bundles. A key tool is given by the following result, which is a small
strengthening of [KL15, Lemma 8.8.13].

Proposition II.3.1. Let S be a perfectoid space over Fq , and let E be a vector bundle on XS such that
all Harder–Narasimhan slopes of E at all geometric points are nonnegative. Then locally (in the analytic
topology) on S , there is an exact sequence

0→ OXS (−1)
d → F → E → 0

where F is semistable of degree 0 at all geometric points.

Proof. We may assume that the degree of E is constant, given by some d ≥ 0. We can assume
S = Spa(R,R+) is affinoid perfectoid and pick d untilts S]i = Spa(R]i , R

]+
i ) over E , i = 1, . . . , d, such

that S]1, . . . , S
]
d ⊂ XS are pairwise disjoint; more precisely, choose dmaps S → BC(O(1)) \ {0}. (The dis-

jointness can be ensured by defining these maps through suitable fractional powers of a pseudouniformizer
so that each S]i has a fixed image under the radius map YS → (0,∞).) Let Wi be the fibre of E over R]i ,
which is a finite projective R]i-module. For any rank 1 quotients Wi → R]i , we can pull back the sequence

0→ OXS (−1)
d → OdXS →

d⊕
i=1

O
S]i
→ 0,

obtained from Proposition II.2.3, along

E →
d⊕
i=1

E ⊗OXS OS]i =
d⊕
i=1

Wi ⊗R]i OS]i →
d⊕
i=1

O
S]i

to get an extension
0→ OXS (−1)

d → E ′ → E → 0.

We claim that one can choose, locally on S , the rank 1 quotients so that E ′ is semistable of degree 0. For
this, we argue by induction on i = 1, . . . , d that one can choose (locally on S) the quotients ofW1, . . . ,Wi

so that the modification
0→ OXS (−1)

i → Ei → E → 0,
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invoking only the quotients of W1, . . . ,Wi, has the property that the Harder–Narasimhan slopes of Ei at
all geometric points are nonnegative. We treat the case i = 1; the general case uses the same argument, by
looking at the exact sequence

0→ OXS (−1)→ Ei+1 → Ei → 0

presenting Ei+1 as a modification of Ei (which, by induction, still has nonnegative Harder–Narasimhan
slopes everywhere) at S]i+1, using the quotient Wi+1 → R]i+1. (Note that by disjointness of the untilts, the
fibres of E and Ei agree at S]i+1.)

First, we handle the case that S = Spa(K,K+) for a perfectoid field K (not necessarily algebraically
closed). Then E has a Harder–Narasimhan filtration, and look at the subbundle E≥λ ⊂ E of maximal slope,
where necessarily λ > 0. Also recall that any nonsplit extension

0→ OXS (−1)→ G → E
≥λ → 0

necessarily has nonnegative Harder–Narasimhan slopes (either by contemplating the Harder–Narasimhan
polygon, which will lie strictly above the −1-line, or by the following direct argument: if G → G is a
quotient of negative degree (so degree≤ −1), then the quotient of G byOXS (−1) has degree≤ 0, but E≥λ
has no such quotients). Thus, it is enough to ensure that the pullback of the extension to E≥λ is nonsplit.
But if it splits, then the given map E≥λ → O

S]1
lifts to a map E≥λ → OXS ; by consideration of slopes,

this map is necessarily trivial. Thus, if we let W ′
1 ⊂ W1 be the fibre of E≥λ ⊂ E at S]1, it suffices to pick a

quotient W1 → K]
1 whose restriction to W ′

1 is nonzero.
Going back to general affinoid S , pick any point s ∈ S. By the preceding argument, we can locally on

S find a quotient W1 → R]1 such that the corresponding extension E1 has the property that the Harder–
Narasimhan slopes at s are still nonnegative. By Theorem II.2.19, the same is true in an open neighborhood,
finishing the proof. �

In applications, it is often more useful to have the following variant, switching which of the two bundles
is trivialized, at the expense of assuming strictly positive slopes (and allowing étale localizations in place of
analytic localizations — this is probably unnecessary).

Proposition II.3.2. Let S be a perfectoid space over Fq and let E be a vector bundle on XS such that
at all geometric points of S , all Harder–Narasimhan slopes of E are positive. Then étale locally on S , there
is a short exact sequence

0→ G → OmXS → E → 0

where G is semistable of slope −1 at all geometric points.

Proof. We can assume that E has constant degree d and rank r; we set m = d + r. Inside BC(E)m,
we can look at the locus U ⊂ BC(E)m of those maps OmXS → E that are surjective and whose kernel is
semistable of slope−1. This is an open subdiamond ofBC(E)m: This is clear for the condition of surjectivity
(say, as the cokernel of the universal mapOnXT → E|XT is supported on a closed subset ofXT , whose image
is then closed inT ), and then the locus where the kernel is semistable of slope−1 is open by Theorem II.2.19.
By Proposition II.3.1, we see moreover that all geometric fibres of U → S are nonempty. It thus suffices
to prove that for any geometric point T = Spa(C,C+) → S , given as a cofiltered inverse limit of étale
maps Si = Spa(Ri, R+

i ) → S , and any section s ∈ BC(E)(T ), one can find a sequence of i’s and sections
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si ∈ BC(E)(Si) such that si|T → s as i →∞. Indeed, applying this to Em in place of E and some section
of U over T , one of the si will then lie in U(Si), giving the desired short exact sequence.

To prove that one can approximate s, we argue in a way similar to the proof of Theorem II.2.6. To
facilitate the estimates, it is useful to assume that all Harder–Narasimhan slopes of E at T are integral;
this can always be achieved through pulling back E to a cover f : XS,E′ = XS ⊗E E′ → XS for some
unramified extension E′|E (as this pullback multiplies slopes by [E′ : E]), noting that E is a direct factor
of f∗f∗E = E ⊗E E′. We analyze E in terms of its pullback to YS,[1,q] and the isomorphism over YS,[q,q] ∼=
YS,[1,1]. Note that as BC,[1,q] is a principal ideal domain, the pullback of E to YC,[1,q] is necessarily free, and
by approximation we can already find a basis over some YSi,[1,q]; replacing S by Si we can then assume
that the pullback of E to YS,[1,q] is free. The descent datum is then given by A−1ϕ for some matrix A ∈
GLn(BR,[1,1]). After pullback toT , by Theorem II.2.14 and the assumption of integral slopes, one can in fact
choose a basis so thatA is a diagonal matrixDwith positive powers of π along the diagonal. Approximating
this basis, we can assume that A−D ∈ πNB+

(R,R+),[1,1]
for any chosen N > 0.

Now the map
ϕ−D : Br

R,[1,q] → Br
R,[1,1]

is surjective by Proposition II.2.5, and in fact there is some M (depending only on D, not on R) such that
for any x ∈ (B+

(R,R+),[1,1]
)r , there is some y ∈ π−M (B+

(R,R+),[1,q]
)r with x = (ϕ − D)(y). There are

two ways to see the existence of M : Either by an explicit reading of the proof of Proposition II.2.5, or as
follows. Assume no such M exists; then we can find perfectoid algebras R0, R1, . . . with integral elements
R+
i ⊂ Ri and pseudouniformizers $i ∈ Ri, and sections xi ∈ (B+

(Ri,R
+
i ),[1,1]

)r such that there is no

yi ∈ π−2i(B+

(Ri,R
+
i ),[1,q]

)r with xi = (ϕ−D)(yi). LetR+ be the product of allR+
i , andR = R+[ 1$ ] where

$ = ($i)i ∈ R+ =
∏
iR

+
i . Then all xi define elements of (B+

(R,R+),[1,1]
)r , and x = x0+πx1+π

2x2+ . . .

another element. By surjectivity of ϕ −D, there is some y ∈ (B(R,R+),[1,q])
r with x = (ϕ −D)(y). But

then y ∈ π−i(B+
(R,R+),[1,q]

)r for some i, and then projecting along (R,R+) → (Ri, R
+
i ) contradicts the

choice of xi.
Taking N > M above, one sees that also

ϕ−A = ϕ−D + (D −A) : Br
R,[1,q] → Br

R,[1,1]

is surjective, with the same bound (in particular independent ofR). But now the section s of E overXT can
be approximated by a section s′i of BRi,[1,q], so that its image under ϕ− A will be small. By the preceding
surjectivity, we can then replace s′i by si = s′i + εi for some still small εi such that

si ∈ Bϕ=A
Ri,[1,q]

= H0(XSi , E|XSi ).

This gives the desired conclusion. �

One can prove the following variants.

Corollary II.3.3. Let S be a perfectoid space over Fq and let E be a vector bundle on XS .

(i) Assume that all Harder–Narasimhan slopes of E are ≥ 1
r . Then locally on S , for some m ≥ 0 there is a

short exact sequence
0 −→ OmXS −→ F −→ E −→ 0,
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where F is fibrewise semistable of slope 1
r .

(ii) Assume that all Harder–Narasimhan slopes of E are ≥ 1
r . Then locally on S , for some m ≥ 0 there is a

short exact sequence
0 −→ OXS ( 1

2r )
m −→ F −→ E −→ 0,

where F is fibrewise semistable of slope 1
r .

(iii) Assume that all Harder–Narasimhan slopes of E are> 1
r . Then étale locally on S , for somem ≥ 0 there

is a short exact sequence
0 −→ G −→ OXS (1r )

m −→ E −→ 0,

where G is fibrewise semistable of slope 0.
(iv) Assume that all Harder–Narasimhan slopes of E are> 1

r . Then étale locally on S , for somem ≥ 0 there
is a short exact sequence

0 −→ G −→ OXS (1r )
m −→ E −→ 0,

where G is fibrewise semistable of slope 1
2r .

Proof. We can suppose S is affinoid. We start with (i). Let πr : XS,r = YS/ϕ
rZ → XS be the finite

étale cover XS,Er = XS,E ⊗E Er → XS,E = XS , where Er is the unramified extension of degree r of E.
We apply Proposition II.3.1 to (π∗rE)(−1). We get, locally on S , a short exact sequence

0→ Om′
XS,Er

→ F ′ → π∗rE → 0

where F ′ is fiberwise semistable of slope 1. Thus, applying πr∗, we get a short exact sequence

0→ Om′r
XS
→ πr∗F ′ → πr∗π

∗
rE → 0.

Here πr∗F ′ is fiberwise semistable of slope 1
r . As E is a direct summand of πr∗π∗rE = E ⊗E Er , we get via

pullback a similar exact sequence.
Arguing similarly with (π∗2rE)(−2), we get part (ii) of the corollary. Invoking Proposition II.3.2 in-

stead, we get parts (iii) and (iv). �

Proposition II.3.4. Let S ∈ PerfFq , and let E be a vector bundle on XS .

(i) If at all geometric points of S , all slopes of E are negative, then H0(XS , E) = 0.
(ii) If at all geometric points of S , all slopes of E are nonnegative, then there is a pro-étale cover S̃ → S
such that

H1(XS̃ , E|XS̃ ) = 0.

(iii) If at all geometric points of S , all slopes of E are positive, then there is an étale cover S′ → S such that
for any affinoid perfectoid T over S′, one has H1(XT , E|XT ) = 0.

Proof. Part (i) can be checked on geometric points, where it follows from Theorem II.2.14 and Propo-
sition II.2.5 (i). For part (ii), we use Proposition II.3.1 to produce locally on S an exact sequence

0→ OXS (−1)
d → E ′ → E → 0

where E ′ is everywhere semistable of degree 0. By Theorem II.2.19 we can find a pro-étale cover of S over
which E ′ ∼= OrXS . By the vanishing of H2, this induces a surjection from H1(XS ,OXS )r onto H1(X, E).
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Since H1(XS ,OXS ) = H1
proet(S,E) by Proposition II.2.5 (ii), this vanishes pro-étale locally on S (e.g.,

when S is strictly totally disconnected, by Lemma III.2.6 below).
For part (iii), we use Corollary II.3.3 (iii) to produce an étale cover of S over which there is an exact

sequence
0→ G → OXS (1r )

m → E → 0.

For any affinoid T |S , this induces a surjection from H1(XT ,OXT (1r )
m) onto H1(XT , E|XT ), so we con-

clude by Proposition II.2.5 (iii). �

II.3.2. Families of Banach–Colmez spaces. We can now prove the following strengthening of Propo-
sition II.2.16.

Proposition II.3.5. Let S be a perfectoid space over Fq. Let [E1 → E0] be a map of vector bundles on
XS such that at all geometric points of S , the bundle E1 has only negative Harder–Narasimhan slopes.

(i) The Banach–Colmez space

BC([E1 → E0]) : T 7→ H0(XT , [E1 → E0]|XT )
is a locally spatial diamond, partially proper over S.
(ii) The projectivized Banach–Colmez space

(BC([E1 → E0]) \ {0})/E×

is a locally spatial diamond, proper over S.
(iii) Assume that all Harder–Narasimhan slopes of E0 at all geometric points are positive. Then

BC([E1 → E0])→ S

is cohomologically smooth.

Proof. All assertions are étale local (in fact v-local) on S. For parts (i) and (ii), let us first simplify the
form of the complex [E1 → E0]. By Theorem II.2.6, we can find (for S affinoid) some d > 0 and a surjection

OXS (−d)
m → E0.

Let E ′1 be the kernel of E1 ⊕OXS (−d)m → E0. Then we find a quasi-isomorphism

[E ′1 → OXS (−d)
m]→ [E1 → E0].

Note also that E ′1 still satisfies the assumption on negative slopes. We get an exact sequence

0→ BC([E ′1 → OXS (−d)
m])→ BC(E ′1[1])→ BC(OXS (−d)

m[1]).

As BC(OXS (−d)m[1]) is separated by Proposition II.2.5 (i), we see that parts (i) and (ii) reduce to the case
of BC(E ′1[1]). Now applying Corollary II.3.3 (iv) to the dual of E ′1, we get (étale locally on S) an exact
sequence

0→ BC(E ′1[1])→ BC(OXS (−1
r )
m[1])→ BC(G[1])

where G is semistable of slope 1
2r everywhere. In particular, BC(G[1]) is separated over S by pro-étale

descent and Proposition II.2.5 (i). Thus, BC(E ′1[1]) ⊂ BC(OXS (−1
r )
m[1]) is a closed subfunctor, finish-

ing the proof of part (i) by applying Proposition II.2.5 (i) again. Part (ii) is then reduced to the similar
assertion for BC(OXS (−1

r )
m[1]). Replacing E by its unramified extension of degree r, this reduces to
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BC(OXS (−1)m[1]). Now, as in the proof of Proposition II.2.16, this follows from Lemma II.2.17, where
one checks the required contracting property of multiplication by π by using the presentation

BC(OXS (−1)[1]) = (A1
S])

♦/E

for an untilt S] of S over E.
It remains to prove part (iii). Note that one has a short exact sequence

0→ BC(E0)→ BC([E1 → E0])→ BC(E1[1])→ 0;

by [Sch17a, Proposition 23.13], we can thus handle BC(E1[1]) and BC(E0) individually. For the case of
BC(E0), we use Corollary II.3.3 (iv) to get, pro-étale locally on S , an exact sequence

0→ OXS ( 1
2r )

m′ → OXS (1r )
m → E0 → 0,

inducing a similar sequence of Banach–Colmez spaces. Then the result follows from [Sch17a, Proposition
23.13]. For the case of BC(E1[1]), choose a surjection OXS (−d)m → E∨1 for some d > 0; we get an exact
sequence

0→ E1 → OXS (d)
m → F → 0

where necessarily all Harder–Narasimhan slopes ofF are positive everywhere. This gives an exact sequence

0→ BC(OXS (d)
m)→ BC(F)→ BC(E1[1])→ 0,

so the result follows from [Sch17a, Proposition 23.13] and the case of positive slopes already established. �

II.3.3. Punctured absolute Banach–Colmez spaces. Finally, we analyze punctured absolute Banach–
Colmez spaces. Recall that, in the situation of Proposition II.2.5 (iv), one has

BC(O(d)) ∼= Spd(k[[x1/p
∞

1 , . . . , x
1/p∞

d ]]),

so the v-sheaf BC(O(d)) fails to be a perfectoid space, or even a diamond, as it contains the non-analytic
point Spd k. However, passing to the punctured Banach–Colmez space

BC(O(d)) \ {0} ∼= Spa(k[[x1/p
∞

1 , . . . , x
1/p∞

d ]])an

identifies with the analytic points, which form a perfectoid space; in fact, a qcqs perfectoid space. These
objects first showed up in [Far18] in the case of positive slopes. It was remarked in [Far18] that the punctured
version BC(O(d)) \ {0} is a diamond for all d ≥ 1, that is moreover simply connected when d > 2. This
plays a key role in [Far18] since after base changing from Spd k to SpaC this is not simply connected
anymore. In the above example,

BC(O(d)) \ {0} = Spa(k[[x1/p
∞

1 , . . . , x
1/p∞

d ]]) \ V (x1, · · · , xd)
is a qcqs perfectoid space that is simply connected when d > 1. After base changing to Spa(C) this is a punc-
tured n-dimensional open ball over Spa(C) that is not quasicompact anymore, and not simply connected.
Thus, some new interesting phenomena appear when we consider absolute Banach–Colmez spaces.

Let us first continue the discussion with the case of O(d) for d ≥ 1. In that case, there is a relation to
Cartier divisors. Recall that any closed Cartier divisorD ⊂ XS is given by a line bundle I onXS together
with an injection I ↪→ OXS with closed image. We will only consider the case of relative Cartier divisors,
so that this map stays injective after base change to any geometric point. Now Theorem II.2.19 implies that
after replacing S by an open and closed cover, I is of degree−d for some integer d ≥ 0, and that there is an
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E×-torsor of isomorphisms I ∼= OXS (−d). This shows that the v-sheaf Div sending any S to the closed
relative Cartier divisors is given by

Div =
⊔
d≥0

Divd, Divd ∼= (BC(O(d)) \ {0})/E×.

Note that we are implicitly using a different definition of Div1 here, but Corollary II.2.4 shows that they
agree.

In particular, the moduli space Divd of degree d Cartier divisors is given by the projectivized Banach–
Colmez space forO(d). On the other hand, in terms of divisors we can see the following proposition. Recall
that one can take sums of Cartier divisors (by tensoring their ideal sheaves).

Proposition II.3.6. For any d ≥ 1, the sum map

(Div1)d → Divd : (D1, . . . , Dd) 7→ D1 + . . .+Dd

is a quasi-pro-étale cover, identifying
Divd = (Div1)d/Σd,

where Σd is the symmetric group. In particular, Divd is a diamond.

Proof. By Proposition II.2.16 (ii), all occuring spaces are proper over ∗. In particular, the sum map is
proper. To check surjectivity as v-sheaves, we can then check on geometric points, where it follows from
Proposition II.2.9 (in whose proof we checked that any element of Pd is a product of elements of P1). In
fact, we even get bijectivity up to the Σd-action, and thus the isomorphism

Divd = (Div1)d/Σd
as v-sheaves. But the projection (Div1)d → (Div1)d/Σd is quasi-pro-étale by [Sch17a, Lemma 7.19, Defini-
tion 10.1 (i)]. As Div1 = SpdE/ϕZ is a diamond, it follows that Divd is a diamond by [Sch17a, Proposition
11.4, Proposition 11.6]. �

Now we can analyze the case of general absolute Banach–Colmez spaces. Here, we abbreviate BC(D) =
BC(E(D)).

Proposition II.3.7. Let D be an isocrystal with only negative slopes (resp. with only positive slopes),
and work on Perfk.

(i) The punctured Banach–Colmez space BC(D) \ {0} (resp. BC(D[1]) \ {0}) is a spatial diamond.
(ii) The quotient (

BC(D) \ {0}
)
/E× −→ ∗

(
resp.

(
BC(D[1]) \ {0}

)
/E× −→ ∗

)
is proper, representable in spatial diamonds, and cohomologically smooth.

Proof. Part (ii) follows from Proposition II.3.5 and (for the cohomological smoothness after taking
the quotient by E×) [Sch17a, Proposition 24.2].

For part (i), we are going to apply Lemma II.3.8, so we first want to see that BC(D) \ {0} is a spatial
v-sheaf. By the Dieudonné–Manin classification, we can find a basis for D so that ϕ is E-rational and
U := ϕN is a diagonal matrix with entries powers of π for some N > 0; this essentially means that
V is decent in the sense of [RZ96, Definition 1.8]. Then BC(D) (resp. BC(D[1])) is already defined on



II.3. FURTHER RESULTS ON BANACH–COLMEZ SPACES 81

PerfFq . In particular, the absolute q-power Frobenius Frob acts on them (as it acts on PerfFq ), but also U
is an endomorphism of D commuting with ϕ and hence acts. Moreover, as U = ϕN , the action of U
agrees with the action of FrobN . Moreover, the action of U−1 (resp. U ) on | BC(D) ×Fq SpaFq((t1/p

∞
))|

(resp. | BC(D[1])×Fq SpaFq((t1/p
∞
))|) still satisfies the hypotheses of Lemma II.2.17. This implies that

(BC(D) \ {0})/ϕN ×Fq SpaFq((t1/p
∞
))

is a spatial diamond, which can be translated into

(BC(D) \ {0})×Fq SpaFq((t1/p
∞
))/ϕN

being a spatial diamond, as the absolute Frobenius acts trivially on the topological space. But SpaFq((t1/p
∞
))/ϕN →

∗ is qcqs, even proper, and cohomologically smooth. We can thus apply point (i) of Lemma II.3.8 to conclude
that BC(D) \ {0} (resp. BC(D[1]) \ {0}, for which the same argument applies) is spatial.

It remains to see that it is a diamond. One easily reduces to the case that D is simple, and allowing
ourselves to replaceE by a finite unramified extension, toD of rank 1. The case of positive Banach–Colmez
spaces now follows from Proposition II.3.6, as it is an E×-torsor over a diamond (so [Sch17a, Proposition
11.7] applies). It remains to prove that this is a diamond in the case of a negative absolute Banach–Colmez
spaces, i.e. for D = (E, πnϕ) with n > 0. Then D := BC(D[1]) \ {0} classifies extensions

0 −→ OXS (−n) −→ E −→ OXS −→ 0

that are geometrically fiberwise non split on S (remark that those extensions are rigid). We now apply
point (ii) of Lemma II.3.8 using the Harder–Narasimhan stratification of D defined by E . We can pass to
the subsheaf of D where E is, at each geometric point, isomorphic to a given rank 2 bundle, necessarily of
the formOXS (−n+ i)⊕OXS (−i) for some 0 < i ≤ n

2 or toOXS (−n
2 ).

On such a stratum Dα ⊂ D there is a global Harder–Narasimhan filtration by Theorem II.2.19, and
trivializing the graded piece of lowest slope defines a pro-étale morphism D̃α → Dα. For S → D̃α there is
a morphism from OXS (−n) to this quotient of E by composing with the inclusion OXS (−n) ↪→ E . Since
the extension is non-split geometrically fiberwise on S , this morphism is non-zero geometrically fiberwise.
This defines a morphism D̃α → X from D̃α to a punctured positive absolute Banach–Colmez space X ,
which is a diamond by what we have already proved. Thus

D̃α ⊂ D̃α ×X
where the latter is a diamond as D̃α → ∗ is representable in diamonds, so [Sch17a, Proposition 11.10] shows
that D̃α is a diamond. �

Lemma II.3.8. Let F be a small v-sheaf.

(i) Suppose there exists a surjective qcqs cohomologically smooth morphism D → F where D is a spatial
diamond. Then F is a spatial v-sheaf.
(ii) Suppose moreover there is a family of locally closed generalizing subsets (Xα)α, Xα ⊂ |F|, such that
for each α the associated subsheaf of F is a diamond. Then F is a spatial diamond.

Proof. For point (i), since D is qcqs and D → F qcqs surjective, F is qcqs. Since cohomologically
smooth implies universally open we can apply [Sch17a, Lemma 2.10] to conclude it is spatial. For point (ii)
we apply [Sch17a, Theorem 12.18]. Let Gα ⊂ F be associated to Xα. From [Sch17a, Lemma 7.6] we deduce
that Gα ↪→ F is quasi-pro-étale. This implies the result. �
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Remark II.3.9. The proof of Proposition II.3.7 for negative absolute Banach–Colmez space goes the
same way as the proof of the fact that Gr≤µ is a spatial diamond, [SW20, Theorem 19.2.4]. One first proves
this is a spatial v-sheaf and then one stratifies it by locally closed generalizing subsets that are diamonds.

Remark II.3.10. One has to be careful that although the absolute BC(O(d)) \ {0} is a spatial dia-
mond, (BC(O(d)) \ {0})/πZ is not spatial anymore since not quasiseparated, [Far18, Remarque 2.15]. In
this context the good object is the morphism (BC(O(d)) \ {0})/πZ → ∗ that is representable in spatial
diamonds.

Remark II.3.11. In the equal characteristic case, E = Fq((π)), the structure of punctured positive
absolute Banach–Colmez spaces is much simpler since they are perfectoid spaces. Nevertheless the structure
of the punctured negative one is not, they are only spatial diamonds. We will see below that BC(O(−1)[1])
is stratified into the open part, which can be written as the quotient of Spd k((t)) by the action of a profinite
group, and a point Spd k. However, the degeneration to the point happens at the boundary of the open unit
disc as |t| → 1, not as |t| → 0 as in Spa k[[t]]. Thus BC(O(−1)[1]) is a rather strange geometric object.6

Example II.3.12. The absolute BC(O(−1)[1]) \ {0} classifies extensions
0 −→ OXS (−1) −→ E −→ OXS → 0

that are non-split fiberwise on S. Any such extension is, at each geometric point, isomorphic toOXS (−1
2).

Parametrizing isomorphisms E ∼= OXS (−1
2) defines a D×-torsor, where D is the quaternion algebra over

E; here we use Theorem II.2.19. Remark that if 0 → OXS (−1) → OXS (−1
2) → L → 0 is an extension,

then taking the determinant automatically fixes an isomorphism L ∼= OXS , and thus the E×-torsor of
isomorphisms betweenOXS and L is trivial. From this we deduce that

BC(O(−1)[1]) \ {0} ' (BC(O(12)) \ {0})/SL1(D)

with
BC(O(12)) \ {0} ' Spa(k((x1/p

∞
)))

the punctured universal cover of a 1-dimensional formal π-divisibleOE-module of height 2.
Let us compare this with our previous description of BC(O(−1)[1]) after pullback to Spa(C), fixing an

untilt C] over E and t ∈ H0(XC ,OXC (1)) \ {0}: the exact sequence
0→ OXC (−1)→ OXC → OC] → 0

induces an isomorphism
BC(O(−1)[1])×k Spa(C) ∼= (A1

C])
♦/E.

We thus have
BC(O(−1)[1]) \ {0} ×k Spa(C) ∼= (ΩC])

♦/E

where Ω = A1
E \ E is Drinfeld’s upper half plane over E.

We deduce an isomorphism(
(BC(O(12)) \ {0})×k Spa(C)

)
/SL1(D) ∼= (ΩC])

♦/E.

6This example was critical in convincing us to not try to develop a version of the theory of diamonds that would allow non-
analytic test objects like Spa k[[t1/p

∞
]] and would thus make BC(O(1)) itself representable: After all, in the context of absolute

Banach–Colmez spaces, BC(O(1)) = Spd k[[t1/p
∞
]] and BC(O(−1)[1]) play very similar roles, so the formalism should also treat

them similarly.
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This isomorphism is in fact deduced from the isomorphism between Lubin–Tate and Drinfeld towers. In
fact, [SW13], the Lubin–Tate tower in infinite level, LT∞ over Spd(C]), is the moduli of modifications
O2
XS

↪→ OXS (12) at the point of the curve defined by the untiltC]. From this one deduces aD×-equivariant
isomorphism

LT[
∞

/(
1 E
0 E×

)
∼= (BC(O(12)) \ {0})×k Spa(C).

Dividing this isomorphism by SL1(D) one obtains the preceding isomorphism.

Example II.3.13. The absolute BC(O(−2)[1]) \ {0} classifies extensions
0 −→ OXS (−1) −→ E −→ OXS (1) −→ 0

that are non-split fiberwise on S. There is only one Harder–Narasimhan stratum and geometrically fiber-
wise on S , E is a trivial vector bundle. The moduli of surjectionsO2

XS
� OXS (1) is the open subset

U ⊂ (BC(O(1)) \ {0})×k (BC(O(1)) \ {0})
equal to

U = (BC(O(1)) \ {0})2 \ (E× × 1).∆

where ∆ is the diagonal of (BC(O(1)) \ {0})2, that is to say couples (x, y) of sections of H0(XS ,OXS (1))
that are fiberwise/S non-zero and linearly independent over E. Here (E× × 1).∆ is a locally profinite
union of copies of ∆.

Again, by consideration of determinants, ker(O2
XS
� OXS (1)) is canonically identified withOXS (−1).

This implies that
BC(O(−2)[1]) \ {0} = U/SL2(E).





CHAPTER III

BunG

Throughout this chapter, we fix a reductive group G over the nonarchimedean local field E. As it will
be important to study BunG over a geometric base point, we fix from now on an algebraical closure k of Fq
and work with perfectoid spaces S over Spd k; write Perfk for the category.

Definition III.0.1. Let BunG be the prestack taking a perfectoid space S ∈ Perfk to the groupoid of
G-bundles on XS .

The main results of this chapter are summarized in the following theorem.

Theorem III.0.2 (Proposition III.1.3; Theorem III.2.2; Theorem III.2.3 and Theorem III.2.7; Theo-
rem III.4.5; Proposition III.5.3). The prestack BunG satisfies the following properties.

(i) The prestack BunG is a small v-stack.
(ii) The points |BunG | are naturally in bijection with Kottwitz’ set B(G) of isomorphism classes of G-
isocrystals.
(iii) The map

ν : |BunG | → B(G)→ (X∗(T )
+
Q)

Γ

is semicontinuous, and
κ : |BunG | → B(G)→ π1(GE)Γ

is locally constant. Equivalently, the map |BunG | → B(G) is continuous whenB(G) is equipped with the
order topology.
(iv) The semistable locus Bunss

G ⊂ BunG is open, and given by

Bunss
G
∼=

⊔
b∈B(G)basic

[∗/Gb(E)].

(v) For any b ∈ B(G), the corresponding subfunctor

ib : BunbG = BunG×|BunG |{b} ⊂ BunG

is locally closed, and isomorphic to [∗/G̃b], where G̃b is a v-sheaf of groups such that G̃b → ∗ is representable
in locally spatial diamonds with π0G̃b = Gb(E). The connected component G̃◦

b ⊂ G̃b of the identity is
cohomologically smooth of dimension 〈2ρ, νb〉.

The hardest part of this theorem is that κ is locally constant. We give two proofs of this fact. If the
derived group of G is simply connected, one can reduce to tori, which are not hard to handle. In general,
one approach is to use z-extensions G̃ → G to reduce to the case of simply connected derived group. For
this, one needs that BunG̃ → BunG is a surjective map of v-stacks; we prove this using Beauville–Laszlo

85
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uniformization. Alternatively, at least for p-adic E , one can use the abelianized Kottwitz set of Borovoi
[Bor98], which we prove to behave well relatively over a perfectoid space S.

III.1. Generalities

There is a good notion of G-torsors in p-adic geometry:

Definition/Proposition III.1.1 ([SW20, Proposition 19.5.1]1). Let X be a sousperfectoid space over
E. The following categories are naturally equivalent.

(i) The category of adic spaces T → X with aG-action such that étale locally onX , there is aG-equivariant
isomorphism T ∼= G×X .
(ii) The category of étale sheavesQ on X equipped with an action of G such that étale locally,Q ∼= G.
(iii) The category of exact ⊗-functors

RepEG→ Bun(X)

to the category of vector bundles on X .

A G-bundle on X is an exact ⊗-functor

RepEG→ Bun(X);

by the preceding, it can equivalently be considered in a geometric or cohomological manner.

In particular, G-torsors up to isomorphism are classified by H1
et(X,G). By Proposition II.2.1, the fol-

lowing defines a v-stack.

Definition III.1.2. Let BunG be the v-stack taking a perfectoid space S ∈ Perfk to the groupoid of
G-bundles on XS .

By the GAGA results from the previous chapter, we are free to replace XS by Xalg
S here, when S is

affinoid.
Our goal in this chapter is to analyze this v-stack. Before going on, let us quickly observe that it is small,

i.e there are perfectoid spaces S , R with a v-surjection S → BunG and a v-surjection R→ S ×BunG S.

Proposition III.1.3. The v-stack BunG is small.

Proof. It is enough to prove that if Si = Spa(Ri, R+
i ), i ∈ I , is an ω1-cofiltered inverse system of

affinoid perfectoid spaces with inverse limit S = Spa(R,R+), then

BunG(S) = lim−→BunG(Si).

Indeed, then any section of BunG over an affinoid perfectoid space S = Spa(R,R+) factors over S′ =
Spa(R′, R′+) for some topologically countably generated perfectoid algebra R′. But there is only a set
worth of such R′ up to isomorphism, and then taking the disjoint union T =

⊔
S′,α∈BunG(S′) S

′ gives a
perfectoid space that surjects onto BunG. Moreover, the equivalence relation T ×BunG T satisfies the same
limit property, and hence also admits a similar surjection.

1The reference applies in the case of Zp, but it extends verbatim to OE .
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To see the claim, note first that R = lim−→Ri as any Cauchy sequence already lies in some Ri. The same
applies to BR,I for any interval I , and hence one sees that

Bun(XS) = lim−→Bun(XSi).

Now the definition of G-torsors gives the claim. �

This proof uses virtually no knowledge about BunG and shows that any reasonable v-stack is small.

III.2. The topological space |BunG|

III.2.1. Points. As a first step, we recall the classification of G-bundles on the Fargues–Fontaine curve
over geometric points. This is based on the following definition of Kottwitz, [Kot85].

Definition III.2.1. A G-isocrystal is an exact ⊗-functor

RepE G→ IsocE .

The set of isomorphism classes of G-isocrystals is denoted B(G).

By Steinberg’s theorem, the underlying fibre functor to Ĕ-vector spaces is isomorphic to the standard
fibre functor; this shows one can identify B(G) with the quotient of G(Ĕ) under σ-conjugation.

Composing with the exact ⊗-functor

IsocE → Bun(XS) : D 7→ E(D)

any G-isocrystal defines a G-bundle on XS , for any S ∈ Perfk. In particular, for any b ∈ B(G), we denote
by Eb the corresponding G-bundle on XS .

Theorem III.2.2 ([Far20], [Ans19]). For any complete algebraically closed nonarchimedean field C
over k, the construction above defines a bijection

B(G)→ BunG(C)/∼= : b 7→ Eb.

Proof. For the convenience of the reader, and as some of the constructions will resurface later, we
give a sketch of the proof in [Ans19]. Any G-bundle on XC has its Harder–Narasimhan filtration, and the
formation of the Harder–Narasimhan filtration is compatible with tensor products. This implies that any
exact ⊗-functor RepE G → Bun(XC) lifts canonically to an exact ⊗-functor RepE G → FilBun(XC) to
Q-filtered vector bundles. To check exactness, note that if E is p-adic, the category RepE G is semisimple
and thus exactness reduces to additivity, which is clear. If E is of equal characteristic, one needs to argue
more carefully, and we refer to the proof of [Ans19, Theorem 3.11].

We can now project RepE G→ FilBun(XC) to the category GrBun(XC) of Q-graded vector bundles,
and note that the essential image of this functor is landing in the category of bundles

⊕
λ Eλ such that each

Eλ is semistable of slope λ. This category is in fact equivalent to IsocE by Theorem II.2.14 and Proposi-
tion II.2.5 (ii). Thus, it suffices to see that the filtration on the exact ⊗-functor RepE G → FilBun(XC)

can be split. By GAGA, we are free to work with Xalg
C in place of XC .

Looking at splittings (fpqc, but also Zariski) locally on X
alg
C , they exist, and form a torsor under a

unipotent group schemeU overXalg
C , whereU is parametrizing automorphisms of the filtered fibre functor
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that are trivial on the graded pieces. One can then filter U by vector bundles of positive slopes, and using
the vanishing of their H1, we get the desired splitting. �

In particular, using [Sch17a, Proposition 12.7] it follows that the map
B(G) −→ |BunG|

is a bijection.

III.2.2. Harder–Narasimhan stratification. Now we need to recall Kottwitz’s description ofB(G), fol-
lowing [Kot97]. This relies on two invariants there, the Newton point and the Kottwitz point. Let E be
a separable closure of E and fix a maximal torus inside a Borel subgroup T ⊂ B ⊂ GE ; the set of dom-
inant cocharacters X∗(T )

+ is naturally independent of the choice of T and B, and acquires an action of
Γ = Gal(E|E) via its identification with

Hom(GmE , GE)/G(E)−conjugacy.
The Newton point is a map

ν : B(G) −→ (X∗(T )
+
Q)

Γ

b 7−→ νb.

WhenG = GLn, thenX∗(T ) ∼= Zn and the target is the set of nonincreasing sequences of rational numbers,
which are the slopes of the Newton polygon of the corresponding isocrystal. The Kottwitz point is a map

κ : B(G) −→ π1(G)Γ

b 7−→ κ(b),

where π1(G) := π1(GE) = X∗(T )/(coroot lattice) is the Borovoi fundamental group. ForG = GLn, this
is naturally isomorphic to Z, and in this case κ(b) is the endpoint of the Newton polygon. In general, this
compatibility is expressed by saying that the images of κ(b) and νb in

π1(G)
Γ
Q

agree (using an averaging operation for κ(b)). However, this means that in general κ(b) is not determined
by νb, as π1(G)Γ may contain torsion.

The definition of κ is done in steps. First, one defines it for tori, where it is actually a bijection. Then
one defines it for G whose derived group is simply connected; in that case, it is simply done via passage to
the torus G/Gder which does not change π1. In general, one uses a z-extension G̃ → G such that G̃ has
simply connected derived group, observing that B(G̃)→ B(G) is surjective.

Borovoi, [Bor98], gave a more canonical construction of κ as an abelianization map that does not use the
choice of a z-extension, at least in the case of p-adic E. We will recall the construction in Section III.2.4.2.

Finally, recall that (ν, κ) : B(G)→ (X∗(T )+Q)
Γ × π1(G)Γ is injective.

It is possible to define the Harder–Narasimhan polygon and first Chern class of a G-bundle on XC (at
least forG = GLn). This matches the invariants (ν, κ) up to sign (which results fromD 7→ E(D) reversing
slopes): Let v 7→ v∗ = w0(−v) be the involution of the positive Weyl chamber X∗(T )

+
Q where w0 is the

longest element of the Weyl group. Then the Harder–Narasimhan polygon of Eb is ν∗b , and its first Chern
class is−κ(b). For general G, we may take this as the definition of the Harder–Narasimhan polygon of Eb,
and its first Chern class.
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We need to understand how ν and κ vary onB(G). The following result follows from Theorem II.2.19
and [RR96, Lemma 2.2].

Theorem III.2.3 ([SW20, Corollary 22.5.1]). The map

ν∗ : |BunG| ∼= B(G)→ (X∗(T )
+
Q)

Γ

is upper semicontinuous.

We will later prove in Theorem III.2.7 that κ is locally constant on BunG.

III.2.3. Geometrically fiberwise trivial G-bundles. Let
[∗/G(E)]

be the classifying stack of pro-étale G(E)-torsors, and

Bun1
G ⊂ BunG

be the substack of geometrically fiberwise trivial G-bundles. One has H0(XS ,OXS ) = E(S) and thus
G(E) acts on the trivial G-bundle. From this we deduce a morphism

[∗/G(E)] −→ Bun1
G .

We are going to prove that this is an isomorphism. Let us note that, although this is an isomorphism at the
level of geometric points, we can not apply [SW20, Lemma 12.5] since it is not clear that it is qcqs.

Theorems III.2.3 and III.2.7 (to follow) taken together imply that the locus

Bun1
G ⊂ BunG

is an open substack. One of our proofs of Theorem III.2.7 will however require this statement as an input.
Of course, when π1(G)Γ is torsion free, that is to sayH1(E,G) = {1}, Theorem III.2.3 is enough to obtain
the openness.

Theorem III.2.4. The substack Bun1
G ⊂ BunG is open, and the map

[∗/G(E)]
∼−→ Bun1

G

defined above is an isomorphism.

Proof. Let S ∈ Perfk be qcqs with a map to BunG. We need to see that the subset of |S| over which
this map is trivial at any geometric point is open; and that if this is all of S , then the data is equivalent to a
pro-étale G(E)-torsor.

Let us check the openness assertion. IfT → S is surjective withT qcqs then |T | → |S| is a quotient map.
We can thus assume that S is strictly totally disconnected. The locus where the Newton point is identically
zero is an open subset ofS by Theorem III.2.3, so passing to this open subset, we can assume that the Newton
point is zero. In that case, for any algebraic representation ρ : G→ GLn, the corresponding rank n vector
bundle on XS is trivial (by functoriality of the Newton map). Now, geometrically fiberwise on S trivial
vector bundles on XS are equivalent to E-local systems on S by Corollary II.2.20. On the other hand, as
S is strictly totally disconnected, all E-local systems on S are trivial (Lemma III.2.6 for H = GLn(E)),
and their category is equivalent to the category of finite free modules over C0(|S|, E). Thus, the preceding
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discussion defines a fibre functor on RepE(G) with values in C0(|S|, E) = C0(π0(S), E), i.e. a G-torsor
over Spec(C0(π0(S), E)). Note that for all s ∈ π0(S), the local ring lim−→U3s C

0(|U |, E) is henselian as the
local ring of the analytic adic space π0(S)×Spa(E) at s. This implies that if thisG-torsor is trivial at some
point of S , then it is trivial in a neighborhood. This concludes the openness assertion.

Moreover, the preceding argument shows that the map ∗ → Bun1
G is a pro-étale cover. As ∗×Bun1

G
∗ =

G(E), as automorphisms of the trivial G-torsor are given by G(E), we thus get the desired isomorphism.
�

Remark III.2.5 ([Sch17a, Lemma 10.13]). If S is a perfectoid space, and T → S is a pro-étale G(E)-
torsor then T is representable by a perfectoid space. In fact, T = lim←−K K\T where K goes through the set
of compact open subgroups of G(E). By descent of étale separated morphisms ([Sch17a, Proposition 9.7]),
for each suchK ,K\T is represented by a separated étale perfectoid space overS. The transition morphisms
in the preceding limit are finite étale.

Lemma III.2.6. Let S be a strictly totally disconnected perfectoid space, and let H be a first-countable
locally profinite group. Then any pro-étale H-torsor on S is trivial.

Proof. Let T → S be such a torsor. Fix a compact open subgroup K ⊂ H ; by first-countability, this
is a countable limit of finite groups. Since K\T → S is an étale cover of perfectoid spaces it has a section
and we can assume T → S is in fact a K-torsor. Now, T = lim←−nKn\T where Kn ⊂ K is a cofinal system
of open subgroups (with K0 = K). Each map Kn+1\T → Kn\T is a finite étale cover and hence split.
Inductively choosing splittings, we get the result. �

III.2.4. Local constancy of the Kottwitz invariant. A central result is the following.

Theorem III.2.7. The map
κ : |BunG| ∼= B(G)→ π1(G)Γ

is locally constant.

Let us note the following corollary. We give a new proof (and slight strengthening) of a result of
Rapoport–Richartz (when p | |π1(G)| the original proof used p-adic nearby cycles and relied on a finite
type hypothesis).

Corollary III.2.8 ([RR96, Corollary 3.11]). Let S be an Fq-scheme and E an G-isocrystal on S. The
map |S| → π1(G)Γ that sends a geometric point s̄→ S to κ(Es̄) is locally constant.

Proof. We can suppose S = Spec(R) is affine and defined over k. We get a small v-sheaf Spd(R,R),
and E defines a morphism Spd(R,R)→ BunG. The induced map κ : | Spd(R,R)| → |BunG | → π1(G)Γ is
locally constant by Theorem III.2.7. As open and closed subsets of Spd(R,R) are in bijection with open and
closed subschemes of Spec(R) (by [SW20, Proposition 18.3.1] applied to morphisms to ∗ t ∗), we can thus
assume that κ : | Spd(R,R)| → |BunG | → π1(G)Γ is constant. But now for any geometric point s̄ → S ,
the element κ(Es̄) ∈ π1(G)Γ agrees with the image of ∗ = | Spd(s̄, s̄)| → | Spd(R,R)| → |BunG | →
π1(G)Γ, giving the desired result. �

Remark III.2.9. There is a natural map | Spd(R,R)| → | Spa(R,R)|, the latter of which admits two
natural maps to | Spec(R)| (given by the support of the valuation, or the prime ideal of all elements of norm
< 1). However, with either choice of map | Spa(R,R)| → | Spec(R)|, the resulting map | Spd(R,R)| →
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| Spec(R)| does not commute with the κ maps. Still, there is also the map | Spec(R)| → | Spd(R,R)|, used
in the proof, and this commutes with the κ maps.

We give two different proofs of Theorem III.2.7.

III.2.4.1. First proof. For the first proof of Theorem III.2.7, we also need the following lemma that we
will prove in the next section.

Lemma III.2.10. Let G̃→ G be a central extension with kernel a torus. Then

BunG̃ → BunG
is a surjective map of v-stacks.

In fact, up to correctly interpreting all the relevant structure, if Z ⊂ G̃ is the kernel, then BunZ is
a Picard stack (as for commutative Z one can tensor Z-bundles) which acts on BunG̃, and BunG is the
quotient stack. It is in fact clear that it is a quasitorsor, and the lemma ensures surjectivity.

First Proof of Theorem III.2.7. Picking a z-extension, we can by Lemma III.2.10 reduce to the case
that G has simply connected derived group. Then we may replace G by G/Gder, and so reduce to the case
thatG is a torus. By a further application of Lemma III.2.10, we can reduce to the case thatG is an induced
torus. In that case π1(G)Γ is torsion-free, and so the Kottwitz map is determined by the Newton map, so the
result follows from Theorem III.2.3, noting that in the case of tori there are no nontrivial order relations
so semicontinuity means local constancy. �

It remains to prove Lemma III.2.10. This will be done in the next section, using Beauville–Laszlo uni-
formization.

III.2.4.2. Second proof. For this proof, we assume that E is p-adic (otherwise certain non-étale finite
flat group schemes may appear). We define

Bab(G) = H1(WE , [Gsc(Ĕ)→ G(Ĕ)]),

the abelianized Kottwitz set (cohomology with coefficient in a crossed module, see [Bor98] and [Lab99,
Appendix B]). There is an abelianization map

B(G) −→ Bab(G)

deduced from the morphism [1 → G] → [Gsc → G]. If T is a maximal torus in G with reciprocal image
Tsc in Gsc then

[Tsc → T ] −→ [Gsc → G]

is a homotopy equivalence. If Z , resp. Zsc, is the center of G, resp. Gsc, there is a homotopy equivalence

[Zsc → Z] −→ [Gsc → G].

Lemma III.2.11. There is an identification

Bab(G) = π1(G)Γ

through which Kottwitz map κ is identified with the abelianization map B(G)→ Bab(G).
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Proof. Choose a maximal torus T in G. One has

Bab(G) = H1(WE , [Tsc(Ĕ)→ T (Ĕ)])

= coker
(
B(Tsc)→ B(T)

)
since H2(WE , Tsc(Ĕ)) = 0 (use [Ser94, Chapter II.3.3 example (c)] and [Ser94, Chapter III.2.3 Theorem
1’]). The result is deduced using Kottwitz description of B(Tsc) and B(T ) = X∗(T )Γ. �

For S ∈ Perfk there is a morphism of sites

τ : (XS)et −→ Set

deduced from the identifications
(XS)et = (X♦

S )et = (Div1S)et

and the projection Div1S = Div1 × S → S. Equivalently, τ∗ takes any étale T → S to XT → XS , which
is again étale.

We now interpret some étale cohomology groups of the curve as Galois cohomology groups, as in
[Far20] where this type of computation was done for the schematical curve attached to an algebraically
closed perfectoid field. Below, we abbreviate XC,C+ := XSpa(C,C+).

Proposition III.2.12. Let S ∈ Perfk.

(i) Let F be a locally constant sheaf of finite abelian groups on Spa(E)et. One has

Rτ∗F|XS = RΓet(Spa(E),F)

as a constant complex on Set.
(ii) If D is a diagonalizable algebraic group over E , the pro-étale sheaf associated to

T/S 7−→ H1
et(XT , D)

is the constant sheaf with value H1(WE , D(Ĕ)).

Proof. Let us note G = F|XS . There is a natural morphism RΓet(Spa(E),F) → Rτ∗G. The mor-
phism Div1S → S is proper and applying [Sch17a, Corollary 16.10 (ii)], we are reduced to prove that

H•
et(Spa(E),F) ∼−→ H•

et(XC,C+ ,G)
when C is an algebraically closed field. Since XC,C+ is quasicompact quasiseparated

H•
et(XC,C+⊗̂EÊ,G) = lim−→

E′|E finite
H•(XC,C+ ⊗E E′,G),

and, using Galois descent, it thus suffices to prove that the left member vanishes in positive degrees, and
equals F|E in degree 0.

LetK = Fq((T )) andX(C,C+),K the equal characteristic Fargues–Fontaine curve over Spa(K). Identi-

fying Ê
[

with K̂sep, one has
(X(C,C+),E⊗̂EÊ)[ = X(C,C+),K⊗̂K̂sep.
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Using this we are reduced to prove that for any prime number n, for i > 0

H i
et(X(C,C+),K⊗̂KK̂sep,Z/nZ) = 0.

This is reduced, as above, to prove that any class in H i
et(X(C,C+),K ,Z/nZ), i > 0, is killed by pullback to a

finite separable extension of K.
When n 6= p one has

RΓet(X(C,C+),K ,Z/nZ) = RΓ(ϕZ, RΓet(D∗
C,C+ ,Z/nZ))

where T is the coordinate on the open punctured disk

D∗
C,C+ = Spa(C,C+)×Spa(Fq) Spa(K).

One has Hk(D∗
C,C+ ,Z/nZ) = 0 for k > 1, and this is equal, via Kummer theory, to Z/nZ(−1) for

k = 1. The Kummer covering of D∗
C,C+ induced by T 7→ Tn kills any class in H1(D∗

C,C+ ,Z/nZ). Also
H0(D∗

C,C+ ,Z/nZ) = Z/nZ and the class in H1(ϕZ,Z/nZ) = Z/nZ is killed by passing up along an
unramified extension of K of degree n.

Whenn = pwe use Artin-Schreier theory. SinceC is an algebraically closed field we haveH i(X(C,C+),K ,O) =
0 when i > 0. Since the adic space X(C,C+),K is noetherian we deduce that H i

et(X(C,C+),K ,O) = 0 for

i > 0. Thus, H i
et(X(C,C+),K ,Z/nZ) is 0 for i > 1 and coker(K F−Id−−−→ K) when i = 1, which is killed by

pullback to an Artin-Schreier extension of K. This finishes the proof of point (1).
For point (2). There is a natural morphism

H1(WE , D(Ĕ))→ H1(XS , D)

(see just after the proof of this proposition). Suppose first that D is a torus. Then point (2) is the computa-
tion of the coarse moduli space of BunD as a pro-étale stack. This itself is a consequence of Theorem III.2.4
using a translation argument from 1 to any [b] ∈ B(D) (use the Picard stack structure on BunD).

For any D we use the exact sequence

1 −→ D0 −→ D −→ π0(D) −→ 1,

where D0 is a torus as E is of characteristic 0. For T/S there is a diagram

H0(E, π0(D)) B(D0) H1(WE , D(Ĕ)) H1(E, π0(D)) 0

H0(XT , π0(D)) H1
et(XT , D

0) H1
et(XT , D) H1

et(XT , π0(D))

since H2(WE , D
0(Ĕ)) = 0 and H•(WE , π0(D)(Ĕ)) = H•(WE , π0(D)(E)). The result is then deduced

from part (1) and the torus case. �

For S ∈ Perfk there is a natural morphism of groups

Bab(G) −→ H1
et(XS , [Gsc → G]).

This is deduced from the natural continuous morphism of sites
(XS)et −→ {discrete WE-sets}.
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Proposition III.2.13. For S ∈ Perfk , the pro-étale sheaf on S associated with

T/S 7−→ H1
et(XT , [Gsc → G])

is the constant sheaf with value Bab(G).

Proof. We use the homotopy equivalence [Zsc → Z]→ [Gsc → G]. There is a diagram

H1(WE , Zsc(Ĕ)) //

'
��

H1(WE , Z(Ĕ)) //

'
��

H1(WE , [Gsc(Ĕ)→ G(Ĕ)]) //

��

H2(WE , Zsc(Ĕ))

'
��

H1
et(XT , Zsc) // H1

et(XT , Z) // H1
et(XT , [Zsc → Z]) // H2

et(XT , Zsc)

// H2(WE , Z(Ĕ))
(

' //
� _

��

H2(E, π0(Z))
)

'
��

// H2
et(XT , Z)

(
// H2

et(XT , π0(Z))
)
.

Using Proposition III.2.12 and some diagram chasing we conclude. �

Second Proof of Theorem III.2.7. The theorem is now deduced from the preceding Proposition III.2.13
and the abelianization map H1

et(XS , G)→ H1
et(XS , [Gsc → G]). �

Remark III.2.14. LetXalg
C be the schematical curve associated toC|Fq algebraically closed. The results

of [Far20] for the étale cohomology of torsion local systems, [Far20, Theorem 3.7] and the vanishing of the
H2(XC , T ) for a torusT , [Far20, Theorem 2.7], can be stated in a more uniform way; ifD is a diagonalizable
group over E then H i(WE , D(Ĕ))

∼−→ H i
et(XC , D) for 0 ≤ i ≤ 2. Weil cohomology of E is the natural

cohomology theory that corresponds to étale cohomology of the curve. For example Theorem III.2.2 can
be restated as H1(WE , G(Ĕ))

∼−→ H1
et(XC , G) for a reductive group G.

III.2.5. The explicit description of |BunG |. Theorem III.2.3 and Theorem III.2.7 imply that the map

|BunG | → B(G)

is continuous when the target is endowed with the topology induced by the order on (X∗(T )
+
Q)

Γ and the
discrete topology on π1(G)Γ.

Conjecture III.2.15. The map |BunG | → B(G) is a homeomorphism.

In other words, whenever b, b′ ∈ B(G) such that b > b′, there should be a specialization from b to b′ in
|BunG |.

The conjecture is known forG = GLn by work of Hansen, [Han17], based on [BFH+22]. The argument
has been extended to some other classical groups in unpublished work of Hamann. While finishing our
manuscript, a proof for general G has been given by Viehmann [Vie21].
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We will later prove some weak form of the conjecture in Corollary IV.1.23, determining the connected
components of BunG using simple geometric considerations.

III.3. Beauville–Laszlo uniformization

Recall from [SW20, Lecture XIX] the B+
dR-affine Grassmannian

GrG
ofG over SpdE , sending an affinoid perfectoidS = Spa(R,R+) over SpdE to theG-torsors over Spec(B+

dR(R
]))

with a trivialization over BdR(R
]); here R]/E is the untilt of R given by S → Spd(E). In [SW20] this

was considered over Spa(C[) for some C|E algebraically closed but we want now to consider it in a more
“absolute” way over Spd(E).

Since any G-torsor over Spec(B+
dR(R

])) is trivial locally on Spa(R,R+)et, this coincides with the étale
sheaf associated to the presheaf (R,R+) 7→ G(BdR(R

]))/G(B+
dR(R

])).
This has an interpretation as a Beilinson–Drinfeld type affine Grassmannian. If E , E ′ ∈ BunG(S) and

D ∈ Div1(S), a modification between E and E ′ at D is an isomorphism

E|XS\D
∼−−→ E ′|XS\D

that is meromorphic along D. The latter means that for any representation in RepE(G), the associated
isomorphism between vector bundles, F|XS\D

∼−−→ F ′|XS\D extends to a morphism F → F ′(kD) for
k � 0 via F ′ ↪→ F ′(kD). Beauville–Laszlo gluing then identifies

GrG /ϕZ −→ Div1

with the moduli of D ∈ Div1(S), E ∈ BunG(XS), and a modification between the trivial G-bundle and E
at D, cf. [SW20, Proposition 19.1.2]. This defines a morphism of v-stacks

GrG −→ BunG .

Proposition III.3.1. The Beauville–Laszlo morphism

GrG −→ BunG
is a surjective map of v-stacks; in fact, of pro-étale stacks.

Proof. Pick any S = Spa(R,R+) ∈ Perfk affinoid perfectoid with a map to BunG, given by some G-
bundle E onXS . Fix an untilt S] of S over Spa(E). To prove surjectivity as pro-étale stacks, we can assume
that S is strictly totally disconnected. By [Far20, Théorème 7.1] (in caseG quasisplit) and [Ans19, Theorem
6.5] (for general G), for any connected component Spa(C,C+) ⊂ S of S , the map GrG(C) → BunG(C)
is surjective, so in particular, we can pick a modification E ′C of E|XC,C+ at Spa(C], C],+) ↪→ XC,C+ such
that E ′C is trivial.

Now, since S is strictly totally disconnected, we can trivialize E at the completion at S]; as GrG(S)→
GrG(C) is surjective (Lemma III.3.2), we can lift E ′C to a modification E ′ of E . Now Theorem III.2.4 im-
plies that E ′ is trivial in a neighborhood of the given point, and as S is strictly totally disconnected, the
correspondingG(E)-torsor is trivial (Lemma III.2.6), so we can trivialize E ′ in a neighborhood of the given
point. This shows that locally on S , the bundle E is in the image of GrG → BunG, as desired. �
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Lemma III.3.2. For S = Spa(R,R+) a strictly totally disconnected perfectoid space over Spa(E), and
s ∈ S , the map GrG(R)→ GrG(K(s)) is surjective.

Proof. Set C = K(s). First note that R → C is surjective, as any connected component of S is an
intersection of open and closed subsets, and thus Zariski closed.

Since C is algebraically closed, GrG(C) = G(BdR(C))/G(B
+
dR(C)). For any finite degree extension

E′|E in C , since S ⊗E E′ → S is étale and S strictly totally disconnected, E′ can be embedded in R. Fix
such an E′ ⊂ R that splits G and a pair T ⊂ B inside GE′ . Let ξ ∈ WOE (R

[,+) be a generator of the
kernel of θ. The Cartan decomposition

G(BdR(C)) =
∐

µ∈X∗(T )+

G(B+
dR(C))µ(ξ)G(B

+
dR(C))

shows then that we only need to prove that G(B+
dR(R))→ G(B+

dR(C)) is surjective.
Let us first remark that G(R) → G(C) is surjective. In fact, since S is totally disconnected it suffices

to check that G(OS,s)→ G(C) is surjective. But this is a consequence of the smoothness of G and the fact
thatOS,s is Henselian (with residue field C).

MoreoverG(B+
dR(R)) = lim←−n≥1

G(B+
dR(R)/Filn). Using the surjectivity of Lie(G)⊗R→ Lie(G)⊗C

the result is then deduced by an approximation argument. �

Remark III.3.3. In the “classical case” of the moduli of G-bundles over a proper smooth algebraic
curve over a field k, G/k, Proposition III.3.1 is true only when G is semi-simple ([DS95]). Typically this
is false for GLn in general. The main reason why it is true in our situation is that Pic0(XC,C+) is trivial,
equivalently that Xalg

C \ {x} is the spectrum of a principal ideal domain in Proposition II.2.9.

Lemma III.3.4. If G is split then

GrG = lim−→
µ∈X∗(T )+

GrG,≤µ

as a v-sheaf, where the index set is a partially ordered set according to the dominance order (µ ≤ µ′ if µ′−µ
is a nonnegative integral sum of positive coroots).

Proof. Consider a morphism S → GrG with S quasicompact quasiseparated. Fix an embeddingG ↪→
GLn such that the image of T lies in the standard maximal torus of GLn. This induces an embedding
X∗(T )

+ ↪→ Zn. One checks easily that the image of |S| → |GrGLn | lies in a finite union of affine Schubert
cells. Since the fibers of X∗(T )

+ → Zn/Sn are finite we deduce that there is a finite collection (µi)i,
µi ∈ X∗(T )

+, such that the image of |S| → |GrG| lies in ∪i|GrG,≤µi |. By [SW20, Proposition 19.2.3],
Si := S ×GrG GrG,≤µi is closed in S and thus quasicompact. Since the morphism

∐
i Si → S is surjective

at the level of points with quasicompact source it is quasicompact and thus a v-cover. This allows us to
conclude. �

Lemma III.3.5. Suppose G̃→ G is a central extension with kernel a torus. Then

GrG̃ → GrG

is a surjective map of v-sheaves.
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Proof. Up to replacing E by a finite degree extension we can suppose G and G̃ are split. Fix T̃ → T

inside G̃→ G. According to Lemma III.3.4 it is enough to prove that for any µ̃ ∈ X∗(T̃ )
+, if µ ∈ X∗(T )

+

is its image in G, then GrG̃,≤µ̃ → GrG,≤µ is surjective. This is clearly surjective at the level of points since,
if D is the kernel of G̃ → G, then H1

et(Spec(BdR(C)), D) = 0, and thus G̃(BdR(C)) → G(BdR(C)) is
surjective. Since GrG̃,≤µ̃ is quasicompact over Spd(E) and GrG,≤µ quasiseparated over Spd(E) (both are
proper according to [SW20, Proposition 19.2.3]), GrG̃,≤µ̃ → GrG,≤µ is quasicompact and thus a v-cover by
[Sch17a, Lemma 12.11]. �

Using Proposition III.3.1, we thus have now a proof of Lemma III.2.10.

Let us record a few facts we can deduce from the preceding results. Here, µ] ∈ π1(G) denotes the image
of µ ∈ X∗(T )

+ under the quotient map X∗(T )→ π1(G).

Proposition III.3.6. Suppose G is split.

(i) There is a locally constant map |GrG| → π1(G) inducing a decomposition in open/closed subsheaves

GrG =
∐

α∈π1(G)

GrαG

characterized by GrG,µ ⊂ Grµ
]

G .
(ii) The composite

|GrG|
Beauville–Laszlo−−−−−−−−−→ |BunG |

κ−→ π1(G)

is the opposite of the preceding map.
(iii) For each α ∈ π1(G),

GrαG = lim−→
µ∈X∗(T )+,µ]=α

GrαG,≤µ

as a filtered colimit of v-sheaves.

Proof. Point (1) is reduced to the case when Gder is simply connected using Lemma III.3.5 and a z-
extension. Now, if Gder is simply connected, for µ1, µ2 ∈ X∗(T )

+, µ1 ≤ µ2 implies µ]1 = µ]2. The result is
then deduced from the fact that GrG,≤µ ⊂ GrG is closed for any µ.

Point (2) is can be similarly reduced first to the case that Gder is simply connected by passage to a z-
extension; then to the case of a torus by taking the quotient by Gder; then to the case of an induced torus
by another z-extension; and then to Gm by changing E. In that case, it follows from Proposition II.2.3.

Point (3) is deduced from Lemma III.3.4 and the fact that for α ∈ π1(G), {µ ∈ X∗(T )
+ | µ] = α}

is a filtered ordered set. (Indeed, to see that this is filtered, note that if µ1 and µ2 satisfy µ]1 = α = µ]2,
then µ1 − µ2 lies in the coroot lattice, so is a sum of coroots with integer coefficients. Rearranging terms,
it follows that one can add sums of positive coroots to µ1 and to µ2 so that they become equal, giving a
common majorization.) �

When G is not split, choosing E′|E Galois of finite degree splitting G, using the formula GrG ×Spd(E)

Spd(E′) = GrGE′ , one deduces:
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(i) There is a decomposition GrG =
∐
ᾱ∈Γ\π1(G) GrᾱG and a formula GrG = lim−→µ̄∈Γ\X∗(T )+

GrG,≤µ̄ such

that GrG,≤µ̄ ⊂ Grµ̄
]

G .

(ii) The composite |GrG|
BL−→ |BunG |

κ−→ π1(G)Γ is induced by the opposite of Γ\π1(G) → π1(G)Γ and
the preceding decomposition.

This description of the Kottwitz map, together with Proposition III.3.1, in fact gives another proof of
Theorem III.2.7.

III.4. The semistable locus

III.4.1. Pure inner twisting. Recall the following. In the particular case of non abelian group coho-
mology this is called “torsion au moyen d’un cocycle” in [Ser94, I.5.3].

Proposition III.4.1. Let X be a topos, H a group in X and T an H-torsor. Let HT = Aut(T ) as a
group in X . Then:

(i) HT is the “pure inner twisting” of H by T , HT = H
H
∧ T where H acts by conjugation on H . In

particular [HT ] ∈ H1(X,Had) is the image of [T ] via H1(X,H)→ H1(X,Had).
(ii) The morphism of stacks on X , [∗/H]→ [∗/HT ], that sends an H-torsor S to Isom(S, T ), is an equiva-
lence.

In the following we use the cohomological description of G-bundles on the curve as G-torsors on the
étale site of the sous-perfectoid space XS (here G is seen as an E-adic group, for (R,R+) a sous-perfectoid
E-algebra its Spa(R,R+)-points being G(R)).

For the next proposition, recall (cf. [Kot97, 3.3], whereGb is denoted by J) that for any b ∈ B(G), the
automorphism group of the corresponding G-isocrystal defines a reductive group Gb over E , via

Gb(R) = {g ∈ G(R⊗E Ĕ) | gb = bσ(g)}.

If G is quasisplit, then Gb is an inner form of a Levi subgroup of G. More generally Gb is an inner form of
a Levi subgroup of the quasisplit inner form of G. It is an inner form of G precisely when b is basic, i.e. the
Newton point is central. Recall from [Far20] that a G-bundle over XC,C+ is semistable if and only if it
corresponds to some basic element of B(G); the reader may also take this as the definition of semistability
for G-bundles.

Proposition III.4.2. Let S ∈ Perfk , b ∈ B(G) basic and Eb → XS the associated étale G-torsor. Then
the étale sheaf of groups Gb ×Spa(E) XS over XS is the pure inner twisting of G×Spa(E) XS by Eb.

Proof. One has
Eb = (GĔ ×Spa(Ĕ) YS)/((bσ)× ϕ)

Z −→ XS

where bσ acts onGĔ by translation on the right. TheG×Spa(E)XS = (GĔ ×Spa(Ĕ) YS)/(Id×ϕ)
Z-torsor

structure is given by multiplication on the left on GĔ . The group Gb×Spa(E)XS = (Gb× YS)/(Id×ϕ)Z
acts on this torsor on the right via the morphism Gb → GĔ , which gives a morphism

Gb ×Spa(E) XS → Aut(Eb).
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After pullback via the étale cover YS → XS and evaluation on T = Spa(R,R+) → YS affinoid sous-
perfectoid, this is identified with the map

Gb(R) = {g ∈ G(Ĕ ⊗E R) | g · (bσ ⊗ 1) = (bσ ⊗ 1) · g} −→ G(R)

deduced from the Ĕ-algebra structure of R. But as b is basic, the natural map

Gb ×E Ĕ → G×E Ĕ

is an isomorphism, cf. [RZ96, Corollary 1.14]. �

Thus, extended pure inner forms, as defined by Kottwitz, become pure inner forms, as defined by Vogan,
when pulled back to the curve.

Corollary III.4.3. For b basic there is an isomorphism of v-stacks

BunG ' BunGb
that induces an isomorphism BunbG ' Bun1

Gb
.

Example III.4.4. Take G = GLn and (D,ϕ) an isoclinic isocrystal of height n. Let B = End(D,ϕ)
be the associated simple algebra over E. Since (D,ϕ) is isoclinic the action of B on E(D,ϕ) induces an
isomorphism B ⊗E OXS

∼−→ End(E(D,ϕ)) for any S ∈ Perfk. The stack BunB× is identified with the
stack S 7→ {rank 1 locally free B ⊗E OXS -modules}. There is then an isomorphism (Morita equivalence)

BunGLn
∼−−→ BunB×

E 7−→ HomOXS
(E , E(D,ϕ)).

III.4.2. Description of the semi-stable locus. As recalled in the previous section, aG-bundle onXC,C+

is semistable if the corresponding Newton point is central. A family of G-bundles is semistable if all of its
geometric fibres are.

Theorem III.4.5. The semistable locus

Bunss
G ⊂ BunG

is open, and there is a canonical decomposition as open/closed substacks

Bunss
G =

∐
b∈B(G)basic

BunbG.

For b basic there is an isomorphism
[∗/Gb(E)]

∼−→ BunbG.

Proof. Theorem III.2.3 implies that Bunss
G is open, using that the condition that µ is central is a min-

imality condition in the dominance order. Recall that the basic elements of B(G) map isomorphically to
π1(G)Γ via the Kottwitz map [Kot97, 4.9, (4.4.1)]. Thus Theorem III.2.7 gives a disjoint decomposition

Bunss
G =

∐
b∈B(G)basic

BunbG.

The result is then a consequence of Proposition III.4.2 and Theorem III.2.4. �
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Example III.4.6. For a torus T , BunT = BunssT and there is an exact sequence of Picard stacks

0 −→ [∗/T (E)] −→ BunT −→ X∗(T )Γ −→ 0,

where we recall that X∗(T )Γ = B(T ). The fiber of BunT → B(T ) over β is a gerbe banded by T (E) over
∗ via the action Bun1

T . This gerbe is neutralized after choosing some b such that [b] = β. In case there is
a section of T (Ĕ) � B(T ), for example if B(T ) is torsion free, then BunT ' [∗/T (E)] × X∗(T )Γ as a
Picard stack.

III.4.3. Splittings of the Harder–Narasimhan filtration. We can also consider the following moduli
problem, parametrizing G-bundles with a splitting of their Harder–Narasimhan filtration.

Proposition III.4.7. Consider the functor BunHN-split
G taking each S ∈ Perfk to the groupoid of exact

⊗-functors from RepE G to the category of Q-graded vector bundles E =
⊕

λ Eλ on XS such that Eλ is
everywhere semistable of slope λ for all λ ∈ Q. For any b ∈ B(G), the bundle Eb naturally refines to a
Q-graded bundle Egr

b , using the Q-grading on isocrystals, and for S affinoid the natural map

Gb ×E X
alg
S → Aut(Egr

b )

of group schemes over Xalg
S is an isomorphism. In particular, we get a natural map⊔

b∈B(G)

[∗/Gb(E)]→ BunHN-split
G ,

and this is an isomorphism.

Proof. Recall that the natural map Gb ×E Ĕ → G×E Ĕ , recording the map of underlying Ĕ-vector
spaces, is a closed immersion identifying Gb ×E Ĕ with the centralizer of the slope homomorphism νb :

D→ G×E Ĕ , cf. [RZ96, Corollary 1.14]. This implies that the natural map

Gb ×E X
alg
S → Aut(Egr

b )

is an isomorphism.
We get the evident functor from

⊔
b∈B(G)[∗/Gb(E)] to this moduli problem, and it is clearly fully

faithful. To see that it is surjective, take any strictly totally disconnected S and an exact ⊗-functor Egr

from RepE G to such Q-graded vector bundles. For any point s ∈ S , note that Q-graded vector bundles
of the given form on XK(s) are equivalent to IsocE , so at s ∈ S there is an isomorphism with some Egr

b .
The type of the Q-filtration is locally constant, so after replacing S by an open neighborhood of s, we can
assume that

Isom(Egr
b , E

gr)

defines an Aut(Egr
b )-torsor overXalg

S , i.e. aGb-torsor overXS . This defines a map S → BunGb , taking s into
Bun1

Gb
, and by Theorem III.2.4 and Lemma III.2.6 it follows that after replacingS by an open neighborhood,

we can assume that the torsor is trivial. This concludes the proof of surjectivity. �
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III.5. Non-semistable points

III.5.1. Structure of Aut(Eb). Next, we aim to describe the non-semi-stable strata BunbG. Before dis-
cussing the general case, consider the case G = GL2, with b corresponding to the vector bundleO⊕O(1).
The functor

(S ∈ Perfk) 7→ AutXS (OXS ⊕OXS (1))
is given by the group v-sheaf (

E× BC(O(1))
0 E×

)
.

This is an extension of the locally profinite group Gb(E) = E× × E× by a “unipotent group”, namely a
Banach–Colmez space BC(O(1)).

In general, fix any b ∈ B(G) and consider the associated G-bundle Eb on XS . For any algebraic rep-
resentation ρ : G → GLn, the corresponding vector bundle ρ∗Eb has its Harder–Narasimhan filtration
(ρ∗Eb)≥λ ⊂ ρ∗Eb, λ ∈ Q. If G is quasisplit and we fix a Borel B ⊂ G, then this defines a reduction of Eb to
a parabolic P ⊂ G containing B.

Now inside the automorphism v-sheaf

G̃b = Aut(Eb) : (S ∈ Perfk) 7→ AutXS (Eb|XS )
(which necessarily preserves the Harder–Narasimhan filtration of ρ∗Eb for any ρ ∈ RepE(G)) one can
consider for any λ > 0 the subgroup

G̃≥λ
b ⊂ G̃b

of all automorphisms γ : Eb
∼−→ Eb such that

(γ − 1)(ρ∗Eb)≥λ
′ ⊂ (ρ∗Eb)≥λ

′+λ

for allλ′ and all representations ρ ofG. We also set G̃>λb =
⋃
λ′>λ G̃

≥λ′
b , noting that this union is eventually

constant.
AsGb(E) is the automorphism group of the isocrystal corresponding to b, andH0(XS ,OXS ) = E(S),

we have a natural injection
Gb(E) ↪→ G̃b.

Now, for any automorphism γ of Eb and any representation ρ, γ induces an automorphism of the Q-graded
vector bundle ⊕

λ∈Q
Grλ(ρ∗Eb).

Using Proposition III.4.7, we deduce that the preceding injection has a section and

G̃b = G̃>0
b oGb(E).

For a G-bundle E on XS we note ad E for its adjoint bundle deduced by pushforward by the adjoint repre-
sentation G→ GL(Lie(G)). This is in fact a Lie algebra bundle.

Proposition III.5.1. One has
G̃b = G̃>0

b oGb(E),

and for any λ > 0, there is a natural isomorphism

G̃≥λ
b /G̃>λb

∼−−→ BC((ad Eb)≥λ/(ad Eb)>λ),
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the Banach–Colmez space associated to the slope −λ isoclinic part of (Lie(G)⊗E Ĕ,Ad(b)σ).

In particular, G̃b is an extension ofGb(E) by a successive extension of positive Banach–Colmez spaces,
and thus G̃b → ∗ is representable in locally spatial diamonds, of dimension 〈2ρ, νb〉 (where as usual ρ is the
half-sum of the positive roots).

We refer to [SR72, Section IV] and [Zie15] for some general discussion of filtered and graded fibre
functors.

Proof. We already saw the first part. For the second part, suppose S = Spa(R,R+) is affinoid. Let
X

alg
R be the schematical curve. We use the GAGA correspondence, Proposition II.2.7. Now, we apply

Proposition III.5.2 to Xalg
R and the G-bundle Eb associated to b on Xalg

R . Let H be the inner twisting of
G×EX

alg
R by Eb as a reductive group scheme overXalg

R . It is equipped with a filtration (H≥λ)λ≥0 satisfying

• H≥0/H>0 ∼= Gb ×E X
alg
R ,

• for λ > 0, H≥λ/H>λ = (ad Eb)≥λ/(ad Eb)>λ,
• G̃≥λ

b (S) = H≥λ(X
alg
R ),

functorially in (R,R+); the first part uses Proposition III.4.7. SinceH1(X
alg
R ,O(µ)) = 0 as soon as µ > 0,

we deduce by induction on µ > 0, starting with µ � 0 and using the computation of H≥µ/H>µ, that
H1

et(X
alg
R ,H≥µ) = 0 for µ > 0. From this we deduce that

H≥λ(X
alg
R )/H>λ(X

alg
R ) = (H≥λ/H>λ)(X

alg
R ).

Finally, it remains to compute the dimension. This is given by∑
λ>0

λ · dim
(
(ad Eb)≥λ/(ad Eb)>λ

)
,

which is given by 〈2ρ, νb〉. �

Proposition III.5.2. Let G be a reductive group over a field K , and let X be a scheme over K. Let
E be a G-bundle on X with automorphism group scheme H/X (an inner form of G ×K X , cf. Proposi-
tion III.4.1). Consider a Q-filtration on the fibre functor RepK(G) → {Vector bundles on X} associated
with E . Defining groupsH≥λ ⊂ H for λ ≥ 0 as before, they are smooth group schemes,H≥0 is a parabolic
subgroup with unipotent radical H>0, the Lie algebra of H≥λ is given by (ad E)≥λ ⊂ Lie ad E = LieH ,
and for λ > 0 the quotient H≥λ/H>λ is a vector group, thus

H≥λ/H>λ ∼= (ad E)≥λ/(ad E)>λ

Proof. The Lie algebra of H is ad E . All statements can be checked étale locally on X . According
to [Zie15, Theorem 1.3] the Q-filtration on the fiber functor is split locally on X . Moreover E is split
étale locally on X . We can thus suppose that E is the trivial G-bundle and the filtration given by some
ν : D/X → G ×K X , where D is the pro-torus with character group Q. Then the statement is easily
checked, see [SR72]. �
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III.5.1.1. The quasi-split case. Suppose now that G is moreover quasi-split. Fix A ⊂ T ⊂ B with A a
maximal split torus and T a maximal torus of G inside a Borel subgroup B. Up to σ-conjugating b one can
suppose that νb : D → A and νb ∈ X∗(A)

+
Q , where D is the pro-torus over E with character group Q. Let

Mb be the centralizer of νb and P+
b the parabolic subgroup associated to νb, the weights of νb in Lie(P+

b )

are ≥ 0. One has B ⊂ P+
b , P+

b is a standard parabolic subgroup with standard Levi subgroup Mb. Let P−
b

be the opposite parabolic subgroup, the weights of νb in Lie(P−
b ) are ≤ 0. One has b ∈ Mb(Ĕ) and we

denote it bM as an element of Mb(Ĕ).
Then, if

Q = EbM
Mb

× P−
b ,

RuQ = EbM
Mb

× RuP
−
b

as Xalg
R -group-schemes, one has

G̃b(R,R
+) = Q(X

alg
R )

G̃>0
b (R,R+) = RuQ(X

alg
R ).

For GL2 and the bundleO⊕O(1), the group Q is the upper triangular subgroup of the group scheme
GL(O ⊕O(1)) over Xalg

R , and accordingly

G̃b =

(
E× BC(O(1))
0 E×

)
.

III.5.2. Description of Harder–Narasimhan strata. Now we can describe the structure of the stratum
BunbG.

Proposition III.5.3. Let b ∈ B(G) be any element given by some G-isocrystal. The induced map
xb : ∗ → BunbG is a surjective map of v-stacks, and ∗ ×BunbG

∗ ∼= G̃b, so that

BunbG ∼= [∗/G̃b]

is the classifying stack of G̃b-torsors. In particular, the map G̃b → π0G̃b ∼= Gb(E) induces a map

BunbG → [∗/Gb(E)]

that admits a splitting.

Proof. Let S = Spa(R,R+) ∈ Perfk be strictly totally disconnected and let E be a G-bundle on
X

alg
R , the schematical curve, all of whose geometric fibers are isomorphic to Eb. In particular, the Harder–

Narasimhan polygon of ρ∗E is constant for all representations ρ : G→ GLn, and thus by Theorem II.2.19,
the vector bundle ρ∗E admits a relative Harder–Narasimhan filtration. This defines a Q-filtration on the
fiber functor RepE(G) → {vector bundles on Xalg

R } defined by E , and exactness can be checked on geo-
metric points where it holds by the classification of G-bundles. Since for any ρ, the Harder–Narasimhan
polygon of ρ∗Eb and the one of ρ∗E are equal, the two filtered fiber functors on RepE(G) defined by E and
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Eb are of the same type. Thus, étale locally on Xalg
R those two filtered fiber functors are isomorphic. Let

H = Aut(Eb) and H≥0 = Autfiltered(Eb) as group schemes over Xalg
R , cf. Proposition III.5.1. Now, look at

T = Isomfiltered(Eb, E).

This is an H≥0-torsor over Xalg
R that is a reduction to H≥0 of the H-torsor Isom(Eb, E). Let us look at

the image of [T ] ∈ H1
et(X

alg
R ,H≥0) in H1

et(X
alg
R ,H≥0/H>0), that is to say the H≥0/H>0-torsor T/H>0.

This parametrizes isomorphisms of graded fiber functors between the two obtained by semi-simplifying the
filtered fiber functors attached to Eb and E . By Proposition III.4.7, this torsor is locally trivial. Now the
triviality of T follows from the vanishing ofH1(X

alg
R ,H>0). In fact, for λ > 0,H1(X

alg
R ,H≥λ/H>λ) = 0

since H1(X
alg
R ,O(λ)) = 0.

It is clear that ∗ ×BunbG
∗ is given by G̃b, so the rest follows formally. �

Remark III.5.4 (Followup to Remark III.2.5). From the vanishing of H1
v (S, G̃

>0
b ) for S affinoid per-

fectoid one deduces that for such S , any G̃b-torsor is of the form T × G̃>0
b where T → S is aGb(E)-torsor.

Here the action of g1ng2 ∈ Gb(E)nG̃>0
b on T×G̃>0

b is given by (x, y) 7→ (g1 ·x, g1g2yg−1
1 ). In particular

any G̃b-torsor is representable in locally spatial diamonds.



CHAPTER IV

Geometry of diamonds

In this chapter, we extend various results on schemes to the setting of diamonds, showing that many
advanced results in étale cohomology of schemes have analogues for diamonds.

In Section IV.1, we introduce a notion of Artin v-stacks, and discuss some basic properties; in particular,
we show that BunG is a cohomologically smooth Artin v-stack. Moreover, we can define a notion of dimen-
sion for Artin v-stacks, which we use to determine the connected components of BunG. In Section IV.2, we
develop the theory of universally locally acyclic sheaves. In Section IV.3, we introduce a notion of formal
smoothness for maps of v-stacks. In Section IV.4, we use the previous sections to prove the Jacobian crite-
rion for cohomological smoothness, by establishing first formal smoothness, and universal local acyclicity.
In Section IV.5, we prove a result on the vanishing of certain partially compactly supported cohomology
groups, ensuring that for example Spd k[[x1, . . . , xd]] behaves like a strictly local scheme for Det. In Sec-
tion IV.6, we establish Braden’s theorem on hyperbolic localization in the world of diamonds. Finally, in
Section IV.7, we establish several version of Drinfeld’s lemma in the present setup. The theme here is the
idea π1((Div1)I) =W I

E . Unfortunately, we know no definition of π1 making this true, but for example it
becomes true when considering Λ-local systems for any Λ.

IV.1. Artin stacks

IV.1.1. Generalities.
IV.1.1.1. Definition and basic properties. In this paper, we consider many small v-stacks like BunG as

above. However, they are stacky in some controlled way, in that they are Artin v-stacks in the sense of the
following definition.

Definition IV.1.1. An Artin v-stack is a small v-stack X such that the diagonal ∆X : X → X ×X
is representable in locally spatial diamonds, and there is some surjective map f : U → X from a locally
spatial diamond U such that f is separated and cohomologically smooth.

Remark IV.1.2. We are making the assumption that f is separated, because only in this case we have
defined cohomological smoothness. This means that we are imposing some (probably unwanted) very mild
separatedness conditions on Artin v-stacks. In particular, it implies that ∆X is quasiseparated: Let f :
U → X be as in the definition, and assume without loss of generality that U is a disjoint union of spatial
diamonds (replacing it by an open cover if necessary), so in particularU is quasiseparated. As f is separated,
the map U ×X U → U is separated, and in particular U ×X U is again quasiseparated. This is the pullback
of ∆X : X → X ×X along the surjection U × U → X ×X , so ∆X is quasiseparated.

Remark IV.1.3. The stack BunG is not quasiseparated. In fact, [∗/G(E)] is already not quasiseparated
since the sheaf of automorphisms of the trivialG-bundle,G(E), is not quasicompact. This is different from

105
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the “classical situation” of the stack of G-bundles on a proper smooth curve, this one being quasiseparated
(although not separated). In the “classical schematical case” of Artin stacks it is a very mild assumption to
suppose that Artin stacks are quasiseparated. In our situation this would be a much too strong assumption,
but it is still a very mild assumption to suppose that the diagonal is quasiseparated.

Remark IV.1.4. By Remark IV.1.2, for any Artin v-stack X , the diagonal ∆X is quasiseparated. Con-
versely, let X be any small v-stack, and assume that there is some surjective separated map U → X from a
small v-sheaf. Then:

(i) If U is quasiseparated, then ∆X is quasiseparated, by the argument of Remark IV.1.2.
(ii) If U is a locally spatial diamond and U → X is representable in locally spatial diamonds, then ∆X is
quasiseparated (as we may without loss of generality assume that U is quasiseparated, so that (i) applies),
and to check that ∆X is representable in locally spatial diamonds, it suffices to see that ∆X is representable
in diamonds. Indeed, [Sch17a, Proposition 13.4 (v)] shows that if ∆X is quasiseparated and representable
in diamonds, then representability in locally spatial diamonds can be checked v-locally on the target. But
the pullback of ∆X along U × U → X ×X is U ×X U , which is a locally spatial diamond as we assumed
that U → X is representable in locally spatial diamonds.
(iii) Finally, in the situation of (ii), checking whether ∆X is representable in diamonds can be done after
pullback along a map V → X ×X that is surjective as a map of pro-étale stacks, by [Sch17a, Proposition
13.2 (iii)].

In particular, if there is a map f : U → X from a locally spatial diamond U such that f is separated,
cohomologically smooth, representable in locally spatial diamonds, and surjective as a map of pro-étale
stacks, then X is an Artin v-stack. If one only has a map f : U → X from a locally spatial diamond such
that f is separated, cohomologically smooth, representable in locally spatial diamonds, and surjective as a
map of v-stacks, then it remains to prove that ∆X is representable in diamonds, which can be done after
pullback along a map V → X ×X that is surjective as a map of pro-étale stacks.

Remark IV.1.5. Since cohomologically smooth morphisms are open, to prove that a separated, repre-
sentable in locally spatial diamonds, cohomologically smooth morphism U → X is surjective, it suffices to
verify it on geometric points.

Remark IV.1.6. If X is a small v-stack with a map g : X → S to some “base” small v-stack S , one
might introduce a notion of an “Artin v-stack over S”, asking instead that ∆X/S : X → X ×S X is
representable in locally spatial diamonds; note that the condition on the chart f : U → X will evidently
remain the same as in the absolute case. We note that as long as the diagonal of S is representable in locally
spatial diamonds (for example, S is an Artin v-stack itself), this agrees with the absolute notion. Indeed, if
∆X/S and ∆S are representable in locally spatial diamonds, then also ∆X is representable in locally spatial
diamonds, as X ×S X → X × X is a pullback of ∆S and thus representable in locally spatial diamonds,
so ∆X is the composite of the two maps X → X ×S X → X × X both of which are representable in
locally spatial diamonds. Conversely, assume that X and S are such that their diagonals are representable
in locally spatial diamonds. Then both X and X ×S X are representable in locally spatial diamonds over
X ×X , thus any map between them is.

Example IV.1.7. Any locally spatial diamond is an Artin v-stack.

Before giving other examples let us state a few properties.
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Proposition IV.1.8.

(i) Any fibre product of Artin v-stacks is an Artin v-stack.
(ii) Let S → ∗ be a pro-étale surjective, representable in locally spatial diamonds, separated and cohomo-
logically smooth morphism of v-sheaves. The v-stackX is an Artin v-stack if and only ifX×S is an Artin
v-stack.
(iii) IfX is an Artin v-stack and f : Y → X is representable in locally spatial diamonds, then Y is an Artin
v-stack.

Proof. For point (i), if X = X2 ×X1 X3 is such a fibre product and fi : Ui → Xi are separated,
representable in locally spatial diamonds, and cohomologically smooth surjective maps from locally spatial
diamonds Ui, then U = (U1 ×X2 U2)×U2 (U2 ×X2 U3) is itself a locally spatial diamond (using that ∆X2

is representable in locally spatial diamonds), and the projection f : U → X is a separated, representable in
locally spatial diamonds, and cohomologically smooth surjection. For the diagonal, since ∆X2 and ∆X3 are
representable in locally spatial diamonds, ∆X2×∆X3 : X2×X3 → (X2×X3)×(X2×X3) is representable
in locally spatial diamonds. Since ∆X1 is representable in locally spatial diamonds, its pullback by X2 ×
X3 → X1 × X1, that is to say u : X2 ×X1 X3 → X2 × X3, is representable in locally spatial diamonds.
Thus, ∆X2×X1

X3 is a map between stacks that are representable in locally spatial diamonds over (X2 ×
X3)× (X2 ×X3), and thus is representable in locally spatial diamonds.

For point (ii), suppose X × S is an Artin v-stack. If U is a locally spatial diamond and U → X × S
is separated, representable in locally spatial diamonds, cohomologically smooth, and surjective, then the
composite U → X × S → X is too. It remains to see that ∆X is representable in locally spatial diamonds.
By Remark IV.1.4 it suffices to prove that the pullback of ∆X byX ×X ×S → X ×X is representable in
locally spatial diamonds. But this pullback is the composite of ∆X×S withX×X×S×S → X×X×S ,
and we conclude since the projection S × S → S is representable in locally spatial diamonds for evident
reasons.

For point (iii), if U is a locally spatial diamond and U → X is surjective, separated, representable in
locally spatial diamonds, and cohomologically smooth, then V = U ×X Y is a locally spatial diamond, and
V → Y is surjective, separated, representable in locally spatial diamonds, and cohomologically smooth. It
remains to see that ∆Y is representable in locally spatial diamonds. By Remark IV.1.4, it suffices to see that
∆Y is representable in diamonds. But we can write ∆Y as the composite Y → Y ×X Y → Y ×k Y . The
first map is 0-truncated and injective and thus representable in diamonds by [Sch17a, Proposition 11.10],
while the second map is a pullback of ∆X . �

We can now give more examples.

Example IV.1.9.

(i) According to point (ii) of Proposition IV.1.8, the v-stackX is an Artin v-stack if and only ifX× SpdE ,
resp. X × Spa(Fq((t1/p

∞
))), is an Artin v-stack. To check that X is an Artin v-stack we can thus replace

the base point ∗ by SpdE , resp. SpaFq((t1/p
∞
)).

(ii) For example, any small v-sheaf X such that X → ∗ is representable in locally spatial diamonds is an
Artin v-stack; e.g. X = ∗.
(iii) Using point (iii) of Proposition IV.1.8 and [Sch17a, Proposition 11.20] we deduce that any locally closed
substack of an Artin v-stack is an Artin v-stack.
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(iv) Let G be a locally profinite group that admits a closed embedding into GLn(E) for some n. Then the
classifying stack [∗/G] is an Artin v-stack. For this it suffices to see that [SpdE/G] = SpdE × [∗/G] is
an Artin v-stack. Now let H = GL♦

n,E ; then there is a closed immersion G × SpdE ↪→ H . The map
H → SpdE is representable in locally spatial diamonds, separated, and cohomologically smooth; hence so
is H/G → [SpdE/G] (by [Sch17a, Proposition 13.4 (iv), Proposition 23.15]), and H/G is a locally spatial
diamond (itself cohomologically smooth over SpdE by [Sch17a, Proposition 24.2] since this becomes coho-
mologically smooth over the separated étale cover H/K → H/G for some compact open pro-p subgroup
K of G). It is clear that the diagonal of [∗/G] is representable in locally spatial diamonds.

Remark IV.1.10. If G is a smooth algebraic group over the field k then Spec(k) → [Spec(k)/G] is
a smooth presentation of the Artin stack [Spec(k)/G]. However, in the situation of point (4) of Exam-
ple IV.1.9 the map f : ∗ → [∗/G] is not cohomologically smooth (unless G is finite) since for its pullback
f̃ : G→ ∗, the sheaf f̃ !Λ is the sheaf of distributions on G with values in Λ.

IV.1.1.2. Smooth morphisms of Artin v-stacks. Notions that can be checked locally with respect to
cohomologically smooth maps can be extended to Artin v-stacks (except possibly for subtleties regarding
separatedness). In particular:

Definition IV.1.11. Let f : Y → X be a map of Artin v-stacks. Assume that there is some separated,
representable in locally spatial diamonds, and cohomologically smooth surjection g : V → Y from a locally
spatial diamond V such that f ◦ g : V → X is separated. Then f is cohomologically smooth if for any
(equivalently, one) such g, the map f ◦ g : V → X (which is separated by assumption, and automatically
representable in locally spatial diamonds) is cohomologically smooth.

In the preceding definition the “equivalently, one” assertion is deduced from [Sch17a, Proposition 23.13]
that says that cohomological smoothness is “cohomologically smooth local on the source”. More precisely,
if checked for one then for all g : V → X separated cohomologically smooth (not necessarily surjective)
from a locally spatial diamond V , f ◦ g is separated cohomologically smooth.

Convention IV.1.12. In the following, whenever we say that a map f : Y → X of Artin v-stacks is
cohomologically smooth, we demand that there is some separated, representable in locally spatial diamonds,
and cohomologically smooth surjection g : V → Y from a locally spatial diamond V such that f ◦g : V →
X is separated. Note that this condition can be tested after taking coversU → X by separated, representable
in locally spatial diamonds, and cohomologically smooth surjections; i.e. after replacing Y by Y ×X U and
X by U . If X and Y have the property that one can find a cover U → X , V → Y , as above with U and V
perfectoid spaces, and ∆X is representable in perfectoid spaces, then the condition is automatic, as all maps
of perfectoid spaces are locally separated. That being said there is no reason that this is true in general since
there are morphisms of spatial diamonds that are not locally separated.

We will not try to give a completely general 6-functor formalism that includes functors Rf! and Rf !
for stacky maps f (this would require some∞-categorical setting). However, we can extend the functor
Rf ! to cohomologically smooth maps of Artin v-stacks. Let Λ be a ring killed by some integer n prime to
p, or an adic ring as in [Sch17a, Section 26].

Definition IV.1.13. Let f : Y → X be a cohomologically smooth map of Artin v-stacks. The dualiz-
ing complex Rf !Λ ∈ Det(Y,Λ) is the invertible object equipped with isomorphisms

Rg!(Rf !Λ) ∼= R(f ◦ g)!Λ
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for all separated, representable in locally spatial diamonds, and cohomologically smooth maps g : V → Y
from a locally spatial diamond V , such that for all cohomologically smooth maps h : V ′ → V between
such g′ : V ′ → Y and g : V → Y , the composite isomorphism

R(g′)!(Rf !Λ) ∼= R(f ◦ g′)!Λ ∼= R(f ◦ g ◦ h)!Λ ∼= Rh!(R(f ◦ g)!Λ) ∼= Rh!(Rg!(Rf !Λ)) ∼= R(g′)!(Rf !Λ)

is the identity.

AsRf !Λ is locally concentrated in one degree, it is easy to see thatRf !Λ is unique up to unique isomor-
phism. Let us be more precise. Let C be the category whose objects are separated cohomologically smooth
morphisms V → Y with V a locally spatial diamond, and morphisms (V ′ g′−→ Y )→ (V

g−→ Y ) are couples
(h, α) where h : V ′ → V is separated cohomologically smooth and α : g ◦ h⇒ g′ is a 2-morphism. Then
the rule

(V
g−→ Y ) 7−→ RHomΛ(Rg

!Λ, R(f ◦ g)!Λ)
defines an element of

2- lim←−
(V→Y )∈C

{invertible objects in Det(V,Λ)} ∼= {invertible objects in Det(Y,Λ)}.

Remark IV.1.14. If g : V → Y is a compactifiable representable in locally spatial diamonds morphism
of small v-stacks with dim. trg g < ∞ such that f ◦ g satisfies the same hypothesis, it is not clear that
Rg!(Rf !Λ) ∼= R(f ◦ g)!Λ. This is a priori true only when V is a locally spatial diamond and g is separated
cohomologically smooth, the only case we will need.

Definition IV.1.15. Let f : Y → X be a cohomologically smooth map of Artin v-stacks. The functor

Rf ! : Det(X,Λ)→ Det(Y,Λ)

is given by Rf ! = Rf !Λ⊗L
Λ f

∗.

Remark IV.1.16. Checking after a cohomologically smooth cover, one sees thatRf ! preserves all limits
(and colimits) and hence admits a left adjoint Rf!.

Definition IV.1.17. Let f : Y → X be a cohomologically smooth map of Artin v-stacks and let ` 6= p
be a prime. Then f is pure of `-dimension d ∈ 1

2Z if Rf !F` sits in homological degree 2d.

As Rf !F` is invertible, it is v-locally (and thus, a posteriori, étale locally) isomorphic to Fl[n] for some
n ∈ Z (this can be deduced from Proposition IV.2.6 (ii)), so any cohomologically smooth map f : Y → X
of Artin v-stacks decomposes uniquely into a disjoint union of fd : Yd → X that are pure of `-dimension d.
A priori this decomposition may depend on ` and include half-integers d, but this will not happen in any
examples that we study.

IV.1.2. The case of BunG.
IV.1.2.1. Smooth charts on BunG. One important example is the following. We use Beauville–Laszlo

uniformization to construct cohomologically smooth charts on BunG. More refined charts will be con-
structed in Theorem V.3.7. For µ̄ ∈ X∗(T )

+/Γwe note GrG,µ̄ for the subsheaf of GrG such that GrG,µ̄×Spd(E) Spd(E′) =∐
µ′≡µ GrG,µ′ whereE′|E is a finite degree Galois extension splittingG. We will use the following simple

proposition.
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Proposition IV.1.18. For any µ ∈ X∗(T )
+, the open Schubert cell GrG,µ / SpdE′ is cohomologically

smooth of `-dimension 〈2ρ, µ〉.

We defer the proof to Proposition VI.2.4 as we do not want to make a digression on GrG here.

Theorem IV.1.19. The stack BunG is a cohomologically smooth Artin v-stack of `-dimension 0. The
Beauville–Laszlo map defines a separated cohomologically smooth cover∐

µ̄∈X∗(T )+/Γ

[G(E)\GrG,µ̄] −→ BunG .

Proof. We check first that ∆BunG is representable in locally spatial diamonds. For this, it suffices to
see that for a perfectoid space S with two G-bundles E1, E2 on XS , the functor of isomorphisms between
E1 and E2 is representable by a locally spatial diamond over S. By the Tannakian formalism, one can
reduce to vector bundles. For example, according to Chevalley, one can find a faithful linear representation
ρ : G → GLn, a representation ρ′ : GLn → GL(W ), and a line D ⊂ W such that G is the stabilizer of
D inside GLn. Then G-bundles on XS embed fully faithfully into rank n vector bundles E together with
a sub-line bundle L inside ρ′∗E . In terms of those data, isomorphisms between (E1,L1) and (E2,L2) are
given by a couple (α, β) where α : E1

∼−→ E2, and β : L1
∼−→ L2 satisfy (ρ′∗α)|L1

= β. Since the category
of locally spatial diamonds is stable under finite projective limits we are reduced to the case of the linear
group. Now the result is given by Lemma IV.1.20.

It remains to construct cohomologically smooth charts for BunG. We first prove that the morphism

π :
∐

µ̄∈X∗(T )+/Γ

[G(E)\GrG,µ̄] −→ BunG×k Spd Ĕ

is separated cohomologically smooth. Since this is surjective at the level of geometric points we deduce that
it is a v-cover, cf. Remark IV.1.5.

To verify this, note that for a perfectoid space S mapping to BunG×k Spd Ĕ corresponding to a G-
bundle E on XS as well as a map S → SpdE inducing an untilt S]/E and a closed immersion i : S] →
XS , the fibre of π over S parametrizes modifications of E of locally constant type that are trivial at each
geometric point. This is open in the space of all modifications of E of locally constant type, which is v-
locally isomorphic to

⊔
µ̄ GrG,µ̄,E ×SpdES → S. Thus, Proposition IV.1.18 gives the desired cohomological

smoothness.
Moreover, the preceding argument shows that when restricted to [G(E)\GrG,µ̄], the map π has `-

dimension equal to 〈2ρ, µ〉. Thus, it now suffices to see that [G(E)\GrG,µ̄] is an `-cohomologically smooth
Artin v-stack of `-dimension equal to 〈2ρ, µ〉. But the map

[G(E)\GrG,µ̄]→ [SpdE/G(E)]

is representable in locally spatial diamonds and `-cohomologically smooth of `-dimension equal to 〈2ρ, µ〉,
as GrG,µ̄ → ∗ is by Proposition IV.1.18. We conclude by using that [∗/G(E)] → ∗ is an Artin v-stack,
cohomologically smooth of `-dimension 0, by Example IV.1.9 (4). �

Lemma IV.1.20. For E1, E2 vector bundles on XS , the sheaf T/S 7→ {surjections E1|XT � E2|XT },
resp. T/S 7→ Isom(E1|XT , E2|XT ), is representable by an open subdiamond of BC(E∨1 ⊗ E2). In particular,
those are locally spatial diamonds.
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Proof. The case of isomorphisms is reduced to the case of surjections since a morphism u of vector
bundles is an isomorphism if and only ifu andu∨ are surjective. For any morphism g : E1 → E2, the support
of its cokernel is a closed subset of |XS |, whose image in |S| is thus closed; this implies the result. �

Remark IV.1.21. It would be tempting to study Det(BunG,Λ) using the preceding charts. But, con-
trary to the sheaves coming from the geometric Satake correspondence, the sheaves on GrG obtained via
pullback from BunG are not locally constant on open Schubert strata. We will prefer other smooth charts
to study Det(BunG,Λ), see Theorem V.3.7.

Moreover, each Harder–Narasimhan stratum BunbG gives another example.

Proposition IV.1.22. For every b ∈ B(G), the stratum BunbG is a cohomologically smooth Artin v-
stack of `-dimension −〈2ρ, νb〉.

Proof. Under the identification BunbG ∼= [∗/G̃b], note that we have a map [∗/G̃b]→ [∗/Gb(E)] where
the target is a cohomologically smooth Artin v-stack of dimension 0, while the fibre admits a cohomo-
logically smooth surjection from ∗ (as positive Banach–Colmez spaces are cohomologically smooth) of `-
dimension 〈2ρ, νb〉. This gives the result. �

IV.1.2.2. Connected components of BunG. A consequence is that we can classify the connected com-
ponents of BunG.

Corollary IV.1.23. The Kottwitz map induces a bijection
κ : π0(BunG)→ π1(G)Γ.

Proof. The Kottwitz map is well-defined and surjective. It remains to see that it is injective. To see this,
recall that the basic elements ofB(G) biject via κ to π1(G)Γ. Thus, it suffices to see that any nonempty open
subsheaf U of BunG contains a basic point. Note that the topological space (X∗(T )

+
Q)

Γ×π1(G)Γ equipped
with the product topology given by the order on (X∗(T )

+
Q)

Γ and the discrete topology on π1(G)Γ, is (T0),
and an increasing union of finite open subspaces; and |BunG | maps continuously to it. Pick some finite
open V ⊂ (X∗(T )

+
Q)

Γ × π1(G)Γ such that its preimage in U is a nonempty open U ′ ⊂ U . Then U ′ is a
nonempty finite (T0) space, and thus has an open point by Lemma IV.1.24.

Thus, there is some b ∈ B(G) such that BunbG ⊂ U ⊂ BunG is open. Combining Theorem IV.1.19 and
Proposition IV.1.22, this forces −〈2ρ, νb〉 = 0, i.e. νb is central, which means that b is basic. �

Lemma IV.1.24. If X is a nonempty finite spectral space, that is to say a finite (T0) topological space,
there exists an open point x ∈ X .

Proof. Take xmaximal for the specialization relation, i.e. x is a maximal point. Then, sinceX is (T0),
X \ {x} = ∪y 6=x{y}, a finite union of closed spaces thus closed. �

IV.2. Universally locally acyclic sheaves

IV.2.1. Definition and basic properties. In many of our results, and in particular in the (formulation
and) proof of the geometric Satake equivalence, a critical role is played by the notion of universally locally
acyclic (ULA) sheaves. Roughly speaking, for a morphism f : X → S of schemes, these are constructible
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complexes of étale sheaves A on X whose relative cohomology is constant in all fibres of S , even locally.
Technically, one requires that for all geometric points x of X mapping to a geometric point s of S and a
generization t of s in S , the natural map

RΓ(Xx, A)→ RΓ(Xx ×Ss t, A)
is an isomorphism, where Xx is the strict henselization of X at x (and Ss is defined similarly). Moreover,
the same property should hold universally after any base change along S′ → S.1 By [Ill06, Corollary 3.5],
universal local acyclicity is equivalent to asking that, again after any base change, the map

RΓ(Xx, A)→ RΓ(Xx ×Ss St, A)
is an isomorphism; we prefer the latter formulation as strict henselizations admit analogues for adic spaces,
while the actual fibre over a point is only a pseudo-adic space in Huber’s sense [Hub96].

In the world of adic spaces, there are not enough specializations to make this an interesting definition;
for example, there are no specializations from GrG,µ into GrG,≤µ \GrG,µ. Thus, we need to adapt the
definition by adding a condition on preservation of constructibility that is automatic in the scheme case
under standard finiteness hypothesis, but becomes highly nontrivial in the case of adic spaces. Here, for a
diamond X with a geometric point x, we let Xx = Spa(C(x), C(x)+) be the strict localization of X at x
(which is the initial diamond pro-étale over X with a lift of x).

Definition IV.2.1. Let f : X → S be a compactifiable map of locally spatial diamonds with locally
dim. trg f <∞ and let A ∈ Det(X,Λ) for some Λ with nΛ = 0 with n prime to p.

(i) The sheaf of complexes A is f -locally acyclic if
(a) For all geometric points x of X with image s in S and a generization t of s, the map

RΓ(Xx, A)→ RΓ(Xx ×Ss St, A)
is an isomorphism.
(b) For all separated étale maps j : U → X such that f ◦ j is quasicompact, the complex R(f ◦ j)!(A|U ) ∈
Det(S,Λ) is perfect-constructible.
(ii) The sheaf of complexes A is f -universally locally acyclic if for any map S′ → S of locally spatial
diamonds with base change f ′ : X ′ = X ×S S′ → S′ and A′ ∈ Det(X

′,Λ) the pullback of A, the sheaf of
complexes A′ is f ′-locally acyclic.

Recall that if (K,K+) is an affinoid Huber field, S = Spa(K,K+), then |S| = | Spec(K+/K00)|
as a topological spectral space, that is identified with the totally ordered set of open prime ideals in K+.
For any s ∈ S , Ss ⊂ S is pro-constructible generalizing. For example, the maximal generalization is
Spa(K,OK) = ∩a∈OK{|a| ≤ 1}.

Remark IV.2.2. In the setup of condition (a), note that Xx is a strictly local space, i.e. of the form
Spa(C,C+) where C is algebraically closed and C+ ⊂ C is an open and bounded valuation subring; thus,
RΓ(Xx, A) = Ax is just the stalk ofA. Moreover, St ⊂ Ss is a quasicompact pro-constructible generalizing
subspace, and thus Xx ×Ss St ⊂ Xx is itself a quasicompact pro-constructible generalizing subset that is
strictly local. Its closed point y is the minimal generization of x mapping to t, and RΓ(Xx ×Ss St, A) =
Ay is the stalk at y. Thus, condition (a) means that A is “overconvergent” along the horizontal lifts of
generizations of S.

1Recently, Gabber proved that this is automatic when S is noetherian and f is of finite type, cf. [LZ19, Corollary 6.6].
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Remark IV.2.3.

(i) Another way to phrase the “relative overconvergence condition” (a), is to say that if s̄ is a geometric
point of S , t̄ a generization of s̄, j : X ×S St̄ ↪→ X ×S Ss̄, a pro-constructible generalizing immersion, and
B = A|X×SSs̄ , then B = Rj∗j

∗B (use quasicompact base change).
(ii) Still another way to phrase it is to say that for any Spa(C,C+) → S , if B = A|X×SSpa(C,C+), and
j : X ×S Spa(C,OC) ↪→ X ×S Spa(C,C+), then B = Rj∗j

∗B.
(iii) Still another way is to say that if x̄ 7→ s̄ and fx̄ : Xx̄ → Ss̄ then Rfx̄∗A|Xx̄ is overconvergent
i.e. constant.

In fact, asking for condition (a) universally, i.e. after any base change, amounts to asking that A is
overconvergent.

Proposition IV.2.4. Let f : X → S be a compactifiable map of locally spatial diamonds with locally
dim. trg f < ∞ and let A ∈ Det(X,Λ) for some Λ with nΛ = 0 with n prime to p. The condition (a)
of Definition IV.2.1 holds after any base change S′ → S if and only if A is overconvergent, i.e. for any
specialization y  x of geometric points of X , the map Ax → Ay is an isomorphism.

Proof. The condition is clearly sufficient. For necessity, take the base change along Xx → S. Then x
lifts to a section x′ : Xx → X ×S Xx, and applying the relative overconvergence condition to x′ 7→ x and
the generization y of x, we see that Ax → Ay is an isomorphism. �

Proposition IV.2.5. Local acyclicity descends along v-covers of the target. More precisely, in the setup
of Definition IV.2.1, if S′ → S is a v-cover and A′ is f ′-locally acyclic, then automatically A is f -locally
acyclic.

Proof. Condition (a) follows by lifting geometric points, and condition (b) descends by [Sch17a, Propo-
sition 20.13]. �

Proposition IV.2.6. Let Y be a spatial diamond.

(i) If F is a constructible étale sheaf of Λ-modules on Y , then F is locally constant if and only if F is
overconvergent.
(ii) If A ∈ Det,pc(Y,Λ), then A is overconvergent if and only if it is locally a constant perfect complex of
Λ-modules.

Proof. For a geometric point y of Y , writing Yy = Spa(C,C+) = lim←−y→U
U as a limit of the étale

neighborhoods, according to [Sch17a, Proposition 20.7],
2- lim−→
y→U

Cons(U,Λ) = Cons(Yy,Λ).

An étale sheaf on Yy = Spa(C,C+) is locally constant if and only if it is constant if and only if it is
overconvergent. This gives point (1). Point (2) goes the same way using [Sch17a, Proposition 20.15]. �

Remark IV.2.7. The preceding argument shows that if F is constructible on Y then F is locally con-
stant in a neighborhood of any maximal point of Y . For example, if Y = X♦ withX aK-rigid space, then
any constructible sheaf on Y is locally constant in a neighborhood of all classical Tate points of X . Thus,
the difference between constructible and locally constant sheaves shows up at rank > 1 valuations.
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Example IV.2.8. Let j : B1
K \ {0} ↪→ B1

K be the inclusion of the punctured disk inside the disk.
Then j!Λ is not constructible since not locally constant around {0}. Nevertheless, if R ∈ |K×| and x
is the coordinate on B1

K , jR : {R ≤ |x| ≤ 1} ↪→ B1
K , jR!Λ is constructible and j!Λ = lim−→R→0

jR!Λ.
The category of étale sheaves of Λ-modules on a spatial diamond is the Ind-category of constructible étale
sheaves, cf. [Sch17a, Proposition 20.6].

Proposition IV.2.9. Assume that f : S → S is the identity. Then A ∈ Det(S,Λ) is f -locally acyclic
if and only if it is locally constant with perfect fibres.

Proof. Applying part (b) of the definition, we see that A is perfect-constructible. On the other hand,
part (a) says that A is overconvergent. This implies that A is locally constant by Proposition IV.2.6. �

Let us finish with a basic example of universally locally acyclic sheaves relevant to the smooth base
change theorem. A more general result will be given in Proposition IV.2.13.

Proposition IV.2.10. Assume that f : X → S is a separated map of locally spatial diamonds that is
`-cohomological smooth for all divisors ` of n, where nΛ = 0. If A ∈ Det(X,Λ) is locally constant with
perfect fibres, then A is f -universally locally acyclic.

Proof. It is enough to show thatA is f -locally acyclic, as the hypotheses are stable under base change.
Condition (a) follows directly from A being locally constant. Condition (b) follows from the preserva-
tion of constructible sheaves of complexes under Rf! if f is quasicompact, separated and cohomologically
smooth, see [Sch17a, Proposition 23.12 (ii)]. �

IV.2.2. Proper push-forward, smooth pull-back. In the “classical algebraic case”, if Y g−→ X
f−→ S are

morphisms of finite type between noetherian schemes, using proper and smooth base change:

(i) if g is proper and A ∈ Db
c(Y,Λ) is f ◦ g -locally acyclic then Rg∗A is f -locally acyclic;

(ii) if g is smooth and A ∈ Db
c(X,Λ) is f -locally acyclic then g∗A is f ◦ g-locally acyclic. Moreover if g is

surjective then A ∈ Db
c(X,Λ) is f -locally acyclic if and only if g∗A is f ◦ g-locally acyclic.

We are going to see that the same phenomenon happens in our context. The fact that local acyclicity is
smooth local on the source is essential to define local acyclicity for morphisms of Artin v-stacks, cf. Defini-
tion IV.2.31.

Proposition IV.2.11. Let g : Y → X , f : X → S be maps of locally spatial diamonds where g
is proper and f is compactifiable and locally dim. trg g, dim. trg f < ∞. Assume that A ∈ Det(Y,Λ) is
f ◦ g-locally acyclic (resp. f ◦ g-universally locally acylic). Then Rg∗A ∈ Det(X,Λ) is f -locally acyclic
(resp. f -universally locally acyclic).

Proof. It is enough to consider the locally acyclic case, as the hypotheses are stable under base change.
For condition (a), we use Remark IV.2.3 (2). Let s̄ be a geometric point of S , with Ss̄ = Spa(C,C+). Let us
look at the cartesian diagram

Y ×Spa(C,C+) Spa(C,OC) Y

X ×Spa(C,C+) Spa(C,OC) X

k

g

j



IV.2. UNIVERSALLY LOCALLY ACYCLIC SHEAVES 115

one has by local acyclicity of f ◦ g, A = Rk∗k
∗A. Applying Rg∗, this gives the desired

Rg∗A = Rj∗j
∗(Rg∗A).

For condition (b), take any separated étale map j : U → X such that f ◦ j is quasicompact, and set
j′ : V = U ×X Y → Y , which is an étale map such that f ◦ g ◦ j′ is quasicompact. Let g′ : V → U denote
the pullback of g. Using proper base change and Rg∗ = Rg!, we see that

R(f ◦ j)!j∗Rg∗A = R(f ◦ j)!Rg′!j′∗A = R(f ◦ g ◦ j′)!j′∗A,
which is perfect-constructible by the assumption that A is f ◦ g-locally acyclic. �

In particular we have the following that generalizes the “proper and smooth case”.

Corollary IV.2.12. Let f : X → S be a proper map of locally spatial diamonds with dim. trg f <∞
andA ∈ Det(X,Λ) that is f -locally acyclic. ThenRf∗A is locally a constant perfect complex ofΛ-modules.

Next proposition says that local acyclicity is “cohomologically smooth local” on the source.

Proposition IV.2.13. Let f : X → S be a compactifiable map of locally spatial diamonds with locally
dim. trg f < ∞. For the statements in the locally acyclic case below, assume that S is spatial and that the
cohomological dimension of Uet for all quasicompact separated étale U → S is≤ N for some fixed integer
N .

Let A ∈ Det(X,Λ) where nΛ = 0 for some n prime to p and let g : Y → X be a separated map of
locally spatial diamonds that is `-cohomologically smooth for all ` dividing n.

(i) IfA is f -locally acyclic (resp. f -universally locally acyclic), then g∗A is f ◦ g-locally acyclic (resp. f ◦ g-
universally locally acyclic).
(ii) Conversely, if g∗A is f ◦g-locally acyclic (resp. f ◦g-universally locally acyclic) and g is surjective, then
A is f -locally acyclic (resp. f -universally locally acyclic).

Proof. It is enough to handle the locally acyclic case with the assumption on S; then the universally
locally acyclic case follows by testing after pullbacks to strictly totally disconnected spaces, using Propo-
sition IV.2.5. Let us treat point (i). We can assume that X and Y are qcqs, i.e. spatial. In fact, this is clear
for condition (a). For condition (b), if j : V → Y is separated étale such that f ◦ g ◦ j is quasicompact, up
to replacing S by an open cover we can suppose that S is spatial and thus V is spatial (since f , g, and j are
separated, f ◦ g ◦ j is separated quasicompact, and thus S spatial implies X spatial). Then one can replace
Y , resp. X , by the quasicompact open subsets j(V ), resp. (g ◦ j)(V ), that are separated over S and thus
spatial too.

Condition (a) follows as pullbacks preserve stalks. For condition (b), let j : V → Y be any quasicom-
pact separated étale map. Then by the projection formula for g ◦ j , one has

R(f ◦ g ◦ j)!j∗g∗A = Rf!(A⊗L
Λ R(g ◦ j)!Λ).

As g ◦ j : V → X is a quasicompact separated `-cohomologically smooth map, it follows thatR(g ◦ j)!Λ ∈
Det(X,Λ) is perfect-constructible by [Sch17a, Proposition 23.12 (ii)]. Thus, the desired result follows from
Lemma IV.2.14.

In the converse direction, i.e. for part (ii), condition (a) of A being f -locally acyclic follows by lifting
geometric points from X to Y and noting that stalks do not change. For condition (b), we may replace
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X by U to reduce to the assertion that Rf!A ∈ Det(S,Λ) is perfect-constructible. Consider the thick
triangulated subcategory C of Det(X,Λ) of all B ∈ Det(X,Λ) such that Rf!(A ⊗L

Λ B) ∈ Det(S,Λ) is
perfect-constructible. We have to see thatΛ ∈ C. We know that for all perfect-constructibleC ∈ Det(Y,Λ),
the perfect-constructible complexRg!C lies in C. Indeed, using [Sch17a, Proposition 20.17], this reduces to
the case C = j!Λ where j : U → Y is a quasicompact separated étale map, and then

Rf!(A⊗L
Λ R(g ◦ j)!Λ) = R(f ◦ g)!(g∗A⊗L

Λ Rj!Λ),

which is perfect-constructible as g∗A is f ◦ g-locally acyclic. Thus, it is enough to show that the set
of Rg!C ∈ Det(X,Λ) with C ∈ Det(Y,Λ) perfect constructible form a set of compact generators of
Det(X,Λ). Equivalently, for any complex B ∈ Det(X,Λ) with RHomDet(X,Λ)(Rg!C,B) = 0 for all
perfect-constructibleC ∈ Det(Y,Λ), thenB = 0. The hypothesis is equivalent toRHomDet(Y,Λ)(C,Rg

!B) =

0 for all such C. By [Sch17a, Proposition 20.17] and the standing assumptions on finite cohomological di-
mension (on S , f and g), this implies that Rg!B = 0. As g is `-cohomologically smooth, this is equivalent
to g∗B = 0, which implies B = 0 as g is surjective. �

Lemma IV.2.14. Let f : X → S be a compactifiable map of locally spatial diamonds with locally
dim. trg f <∞. Suppose there exists an integerN such that the cohomological dimension ofUet is bounded
byN for allU → X separated étale. LetA ∈ Det(X,Λ) be f -locally acyclic andB ∈ Det(X,Λ) be perfect-
constructible. ThenA⊗L

ΛB satisfies condition (b) of Definition IV.2.1: for any j : U → X separated étale
such that f ◦ j is quasicompact, R(f ◦ j)!j∗(A⊗L

Λ B) is perfect-constructible.

Proof. We can suppose X is spatial. According to [Sch17a, Proposition 20.17], B lies in the triangu-
lated subcategory generated by j′!Λ where j′ : U ′ → X is separated quasicompact étale. For such aB, using
the projection formula, A⊗L

ΛRj
′
!Λ = Rj′!j

′∗A. Thus, if V = U ×X U ′ with projection k : U ×X U ′ → U ,
j∗Rj′!j

′∗A = Rk!k
∗j∗A.

We thus have
R(f ◦ j)!j∗(A⊗L

Λ Rj
′
!B) = R(f ◦ j ◦ k)!(j ◦ k)∗(A)

and we can conclude. �

IV.2.3. Local acyclicity and duality. In this section, we prove that universal local acyclicity behaves
well with respect to Verdier duality.

IV.2.3.1. Compatibility with base change. We note that for f -ULA sheaves, the formation of the (rel-
ative) Verdier dual

DX/S(A) := RHomΛ(A,Rf
!Λ)

commutes with base change in S.

Proposition IV.2.15. Let f : X → S be a compactifiable map of locally spatial diamonds with locally
dim. trg f <∞ and let A ∈ Det(X,Λ) be f -universally locally acyclic. Let g : S′ → S be a map of locally
spatial diamonds with pullback f ′ : X ′ = X ×S S′ → S′, g̃ : X ′ → X . Then the composite

g̃∗DX/S(A)→ DX′/S′(g̃∗A)

of the natural maps

g̃∗RHomΛ(A,Rf
!Λ)→ RHomΛ(g̃

∗A, g̃∗Rf !Λ)→ RHomΛ(g̃
∗A,Rf ′!Λ)

is an isomorphism.
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More generally, for any B ∈ Det(S,Λ), the map

g̃∗RHomΛ(A,Rf
!B)→ RHomΛ(g̃

∗A,Rf ′!g∗B)

is an isomorphism.

Proof. The assertion is local, so we may assume that X , S and S′ are spatial. By choosing a strictly
totally disconnected cover S′′ of S′, one reduces the result for S′ → S to the cases of S′′ → S′ and S′′ → S ,
so we may assume that S′ is strictly totally disconnected. In that case, by [Sch17a, Proposition 20.17], whose
hypothesis apply as X ′ → S′ is of finite dim. trg and S′ is strictly totally disconnected, it suffices to check
on global sections over all quasicompact separated étale maps V ′ → X ′. According to Lemma IV.2.16 we
can writeS′ as a cofiltered limit of quasicompact open subsetsS′

i of finite-dimensional balls overS. Then V ′

comes via pullback from a quasicompact separated étale map Vi → X ×S S′
i for i large enough by [Sch17a,

Proposition 11.23]. We thus have a diagram with cartesian squares

V V ′

X ′ X ×S S′
i X

S′ S′
i S.

hi

The result we want to prove is immediate when S′ → S is cohomologically smooth. Up to replacing
X → S by V ′ → S′

i we are thus reduced to prove that RΓ(X ′, g̃∗DX/S(A))
∼−→ RΓ(X ′,DX′/S′(g̃∗A)).

Thus, it suffices to check the result after applying Rf ′∗. In that case,

Rf ′∗g̃
∗RHomΛ(A,Rf

!B) = g∗Rf∗RHomΛ(A,Rf
!B)

= g∗RHomΛ(Rf!A,B),

using [Sch17a, Proposition 17.6, Theorem 1.8 (iv)], using that f satisfies dim. trg f <∞ and henceRf∗ has
finite cohomological dimension. On the other hand,

Rf ′∗RHomΛ(g̃
∗A,Rf ′!B) = RHomΛ(Rf

′
! g̃

∗A,B)

= RHomΛ(g
∗Rf!A,B)

using [Sch17a, Theorem 1.8 (iv), Theorem 1.9 (ii)]. But by condition (b) of being f -locally acyclic, the com-
plex Rf!A ∈ Det(S,Λ) is perfect-constructible, and thus the formation of RHomΛ(Rf!A,B) commutes
with any base change by Lemma IV.2.17. �

Lemma IV.2.16. Let S be a spatial diamond and X → S be a morphism from an affinoid perfectoid
space to S. Then one can write X = lim←−i Ui where Ui is a quasicompact open subset inside a finite dimen-
sional ball over S , and the projective limit is cofiltered.

Proof. If I = O(X)+, one has a closed immersion over S defined by elements of I , X ↪→ BIS where
BIS is the spatial diamond over S that represents the functor T/S 7→ (O(T )+)I (an “infinite dimensional
perfectoid ball over S” when S is perfectoid). Now,

BIS = lim←−
J⊂I

BJS
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where J goes through the set of finite subsets of I and BIS → BJS is the corresponding projection. For
each such J the composite X ↪→ BIS � BJS is a spatial morphism of spatial diamonds. Its image is a pro-
constructible generalizing subset of BJS and can thus be written as

⋂
α∈AJ Uα where Uα is a quasicompact

open subset of BJS . Then one has

X = lim←−
J⊂I

lim←−
α∈AJ

Uα. �

Lemma IV.2.17. Let X be a spatial diamond and A ∈ Det(X,Λ) perfect-constructible, and let B ∈
Det(X,Λ) be arbitrary. Then the formation of RHomΛ(A,B) commutes with any base change.

Proof. Using [Sch17a, Proposition 20.16 (iii)] this is reduced to the case when A = j!(L|Z) where
j : U → X is separated quasicompact étale, Z ⊂ U closed constructible, and L ∈ Det(U,Λ) locally
constant with perfect fibres. If j′ : U \ Z → X , that is again quasicompact (since Z is constructible inside
U ) separated étale, using the exact sequence 0→ j′!L → j!L → j!(L|Z)→ 0, this is reduced to the case of
A of the form j!L. In this case RHomΛ(A,−) is given by Rj∗(L∨ ⊗L

Λ j
∗−), and this commutes with any

base change by quasicompact base change, [Sch17a, Proposition 17.6]. �

One has to be careful that, in general, the naive dual of a perfect constructible complex is not con-
structible. The following lemma says that in fact it is overconvergent, so never constructible unless locally
constant.

Lemma IV.2.18. ForX a spatial diamond andA ∈ Det(X,Λ) perfect constructible, RHomΛ(A,Λ) is
overconvergent.

Proof. Using Lemma IV.2.17 this is reduced to the case when X = Spa(C,C+). Moreover, one can
assume thatA = j!Λ for some quasicompact open immersion j : U → X . ThenRHomΛ(A,Λ) = Rj∗Λ =
Λ, which is overconvergent. �

IV.2.3.2. Twisted inverse images. Also, if A is f -ULA, then one can relate appropriately A-twisted
versions of f∗ and Rf !.

Proposition IV.2.19. Let f : X → S be a compactifiable map of locally spatial diamonds with locally
dim. trg f < ∞ and let A ∈ Det(X,Λ) be f -universally locally acyclic. Then for all B ∈ Det(S,Λ), the
natural map

DX/S(A)⊗L
Λ f

∗B → RHomΛ(A,Rf
!B)

given as the composite

RHomΛ(A,Rf
!Λ)⊗L

Λ f
∗B → RHomΛ(A,Rf

!Λ⊗L
Λ f

∗B)→ RHomΛ(A,Rf
!B)

is an isomorphism.

Proof. First, we note that both sides commute with any base change, by Proposition IV.2.15.
It suffices to check that we get an isomorphism on stalks at all geometric points Spa(C,C+) of X .

For this, we may base change along the associated map Spa(C,C+) → S to reduce to the case that S =
Spa(C,C+) is strictly local, and we need to check that we get an isomorphism at the stalk of a section
s : S → X . We may also assume thatX is spatial, in which caseX is of bounded cohomological dimension,
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so [Sch17a, Proposition 20.17] applies, and perfect-constructible complexes are the same thing as compact
objects in Det(X,Λ) = D(Xet,Λ).

Next, we note that the functor B 7→ RHomΛ(A,Rf
!B) is right adjoint to A′ 7→ Rf!(A⊗L

Λ A
′). The

latter functor preserves perfect-constructible complexes, i.e. compact objects, by condition (b), see Lemma
IV.2.14. Thus, B 7→ RHomΛ(A,Rf

!B) commutes with arbitrary direct sums, see Lemma IV.2.20. Obvi-
ously, the functorB 7→ DX/S(A)⊗L

Λf
∗B also commutes with arbitrary direct sums, so it follows that it suf-

fices to check the assertion forB = j!Λ for some quasicompact open immersion j : S′ = Spa(C,C ′+)→ S
(the shifts of those compact objects generateDet(S,Λ)). If S′ = S , thenB = Λ and the result is clear. Oth-
erwise, the stalk of j!Λ at the closed point is zero, and thus the stalk of the left-hand side DX/S(A)⊗L

Λ f
∗B

at our fixed section is zero. It remains to see that the stalk of

RHomΛ(A,Rf
!j!Λ)

at the (closed point of) the section s : S → X is zero. This stalk is given by the filtered colimit over all
quasicompact open neighborhoods U ⊂ X of s(S) of

RHomDet(U,Λ)(A|U , Rf
!j!Λ|U ) = RHomDet(S,Λ)(RfU !A|U , j!Λ),

where fU : U → S denotes the restriction of f (the possibility to use only open embeddings in place of
general étale maps results from the observation that the intersection of all these open subsets is the strictly
local space S already; the set of open neighborhoods of s(S) is cofinal among étale neighborhoods of s(S)).

Now we claim that the inverse systems of all suchU and of the compactificationsU/S are cofinal. Note
that the intersection of all U/S (taken insideX/S) is simply s(S): Indeed, given any point x ∈ X/S \s(S),
there are disjoint open neighborhoods x ∈ V and s(S) ⊂ U . In fact, the maximal Hausdorff quotient
|X/S |B is compact Hausdorff by [Sch17a, Proposition 13.11] and its points can be identified with rank 1

points of X/S , which are the same as rank 1 points of X . But as s(S) ⊂ X
/S is closed, no point outside

s(S) admits the same rank 1 generalization, so x and s(S) define distinct points of the Hausdorff spaces
|X/S |, so that the desired disjoint open neighborhoods x ∈ V and s(S) ⊂ U exist. Then x 6∈ U/S . Thus,

s(S) =
⋂

U⊃s(S)

U
/X
.

Now given any open neighborhood U of s(S), the complement |X/S | \ U is quasicompact, which then
implies that there is some U ′ such that U ′/S ⊂ U . It follows that the direct systems of

RfU !A|U

and

Rf
U

/S∗
Ri!

U
/SA

are equivalent, where i
U

/S : U
/S → X and f

U
/S : U

/S → S are the evident maps. Now observe that if
j′X : Xη = X ×S Spa(C,OC) ↪→ X denotes the proconstructible generalizing immersion, then condition
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(a) in being f -locally acyclic implies that A = Rj′X∗A|Xη (see Remark IV.2.3), and then

Rf
U

/S∗
Ri!

U
/SA = Rf

U
/S∗
Ri!

U
/SRj

′
X∗A|Xη

= Rf
U

/S∗
Rj′

U
/S∗
Ri!

U
/S
η

A|Xη

= Rj′S∗RfU/S
η ∗
Ri!

U
/S
η

A|Xη

with hopefully evident notation; in particular, j′S : Spa(C,OC)→ S = Spa(C,C+) denotes the pro-open
immersion of the generic point on the base.

In summary, we can rewrite the stalk of RHomΛ(A,Rf
!j!Λ) at s(S) as the filtered colimit of

RHomDet(S,Λ)(Rj
′
S∗RfU/S

η ∗
Ri!

U
/S
η

A, j!Λ),

and we need to prove that this vanishes. This follows from the observation that for allM ∈ Det(Spa(C,OC),Λ) =
D(Λ), one has

RHomDet(S,Λ)(Rj
′
S∗M, j!Λ) = 0.

For this, note that Rj′S∗M =M is just the constant sheaf given by the complex of Λ-modules M , and one
has a triangle

RHomDet(S,Λ)(M, j!Λ)→ RHomDet(S,Λ)(M,Λ)→ RHomDet(S,Λ)(M, i∗Λ),

where i denotes the complementary closed immersion. Both the second and last term are given byRHomΛ(M,Λ),
finishing the proof. �

We used the following classical lemma, cf. [Nee96, Theorem 5.1].

Lemma IV.2.20. Let C and D be triangulated categories such that C is compactly generated. Let F :
C → D and G : D → C be such that G is right adjoint to F . If F sends compact objects to compact objects
then G commutes with arbitrary direct sums.

Proof. Since C is compactly generated it suffices to prove that for any compact object A in C and
any collection (Bi)i of objects of D, Hom(A,⊕iG(Bi))

∼−→ Hom(A,G(⊕iBi)). By compactness of A,
Hom(A,⊕iG(Bi)) = ⊕i Hom(A,G(Bi)), by adjunction this is equal to⊕i Hom(F (A), Bi), since F (A) is
compact this is equal to Hom(F (A),⊕iBi), and by adjunction this is Hom(A,G(⊕iBi)). �

Remark IV.2.21.

(i) In fact, outside of the overconvergence condition (a) in Definition IV.2.1, the property of Proposi-
tion IV.2.19 characterizes locally acyclic complexes under the assumption that locally on X the exists
an integer N such that for any U → X quasicompact separated étale the cohomological dimension of
Uet is bounded by N . More precisely, if j : U → X is separated étale with f ◦ j quasicompact then
RHomΛ(R(f ◦ j)!A,B) = RΓ(U,RHomΛ(A,Rf

!B)). Thus, if for all B one has DX/S(A)⊗L
Λ f

∗B
∼−→

RHomΛ(A,Rf
!B) then R(f ◦ j)!A is compact since RΓ(U,−) commutes with arbitrary direct sums.

(ii) Outside of the overconvergence condition (a) in Definition IV.2.1, the property of Proposition IV.2.19
universally on S characterize universally locally acyclic objects. In fact, using [Sch17a, Proposition 20.13],
the constructibility property is reduced to the case when the base is strictly totally disconnected, in which
case we can apply point (i).
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Finally, let us note that all the previous results extend to the setting where the base S is a general small
v-stack, taking the following definition.

Definition IV.2.22. Let f : X → S be a map of small v-stacks that is compactifiable and representable
in locally spatial diamonds with locally dim. trg f < ∞. Let A ∈ Det(X,Λ). Then A is f -universally
locally acyclic if for any mapS′ → S from a locally spatial diamondS′ with pullback f ′ : X ′ = X×SS′ →
S′, the complex A|X′ ∈ Det(X

′,Λ) is f ′-locally acyclic.

IV.2.3.3. Dualizability. From the previous two propositions, we can deduce an analogue of a recent
result of Lu-Zheng, [LZ22], characterizing universal local acyclicity in terms of dualizability in a certain
monoidal category. We actually propose a different such characterization closer to how dualizability will
appear later in the discussion of geometric Satake. In terms of applications to abstract properties of universal
local acyclicity, such as its preservation by Verdier duality, it leads to the same results.

Fix a base small v-stack S , and a coefficient ring Λ (killed by some integer prime to p). We define a
2-category CS as follows. The objects of CS are maps f : X → S of small v-stacks that are compactifiable,
representable in locally spatial diamonds, with locally dim. trg f < ∞. For any X,Y ∈ CS , the category
of maps FunCS (X,Y ) is the category Det(X ×S Y,Λ). Note that any such A ∈ Det(X ×S Y,Λ) defines in
particular a functor

Det(X,Λ)→ Det(Y,Λ) : B 7→ Rπ2!(A⊗L
Λ π

∗
1B)

with kernel A, where π1 : X ×S Y → X , π2 : X ×S Y → Y are the two projections. The composition in
CS is now defined to be compatible with this association. More precisely, the composition

FunCS (X,Y )× FunCS (Y, Z)→ FunCS (X,Z)

is defined to be the functor
Det(X ×S Y,Λ)×Det(Y ×S Z,Λ)→ Det(X ×S Z,Λ) : (A,B) 7→ A ? B = Rπ13!(π

∗
12A⊗L

Λ π
∗
23B)

where πij denotes the various projections onX×S Y ×SZ. It follows from the projection formula that this
indeed defines a 2-category CS . The identity morphism is given by R∆!Λ = R∆∗Λ ∈ Det(X ×S X,Λ),
where ∆ : X ↪→ X×SX is the diagonal (which is a closed immersion, as the morphismX → S is assumed
to be compactifiable, in particular 0-truncated and separated). We note that CS is naturally equivalent to
Cop
S . Indeed,Det(X×S Y,Λ) is invariant under switchingX and Y , and the definition of composition (and

coherences) is compatible with this switch.
Recall that in any 2-category C , there is a notion of adjoints. Namely, a morphism f : X → Y is a left

adjoint of g : Y → X if there are maps α : idX → gf and β : fg → idY such that the composites

f
fα−−→ fgf

βf−→ f, g
αg−→ gfg

gβ−→ g

are the identity. If a right adjoint g of f exists, it is (together with the accompanying data) moreover
unique up to unique isomorphism. As is clear from the definition, any functor of 2-categories preserves
adjunctions. In particular, this applies to pullback functors CS → CS′ for maps S′ → S of small v-stacks,
or to the functor from CS to triangulated categories taking X to Det(X,Λ) and A ∈ FunCS (X,Y ) to the
functor Rπ2!(A⊗L

Λ π
∗
1−) with kernel A.

Theorem IV.2.23. LetS be a small v-stack andX ∈ CS , andA ∈ Det(X,Λ). The following conditions
are equivalent.

(i) The complex A is f -universally locally acyclic.
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(ii) The natural map
p∗1DX/S(A)⊗L

Λ p
∗
2A→ RHomΛ(p

∗
1A,Rp

!
2A)

is an isomorphism, where p1, p2 : X ×S X → X are the two projections.
(iii) The object A ∈ FunCS (X,S) is a left adjoint in CS . In that case, its right adjoint is given by

DX/S(A) ∈ Det(X,Λ) = FunCS (S,X).

Proof. That (i) implies (ii) follows from Proposition IV.2.15 and Proposition IV.2.19. For (ii) implies
(iii), we claim that A ∈ FunCS (X,S) is indeed a left adjoint of DX/S(A) ∈ FunCS (A). The composites are
given by

A ? DX/S(A) = Rf!(DX/S(A)⊗L
Λ A) ∈ Det(S,Λ) = FunCS (S, S)

and
DX/S(A) ? A = p∗1A⊗L

Λ p
∗
2DX/S(A) ∈ Det(X ×S X,Λ) = FunCS (X,X).

Then we take β : A ? DX/S(A) → idS to be given by the map Rf!(DX/S(A) ⊗L
Λ A) → Λ adjoint to the

map DX/S(A) ⊗L
Λ A → Rf !Λ which is just the tautological pairing. On the other hand, for α : idX →

DX/S(A) ? A, we have to produce a map

R∆!Λ→ p∗1A⊗L
Λ p

∗
2DX/S(A).

Using (ii), the right-hand side is naturally isomorphic to RHomΛ(p
∗
1A,Rp

!
2A). Now maps from R∆!Λ

are adjoint to sections of
R∆!RHomΛ(p

∗
1A,Rp

!
2A)
∼= RHomΛ(A,A)

(using [Sch17a, Theorem 1.8 (v)]), which has the natural identity section. It remains to prove that certain
composites are the identity. This follows from a straightforward diagram chase.

Finally, it remains to prove that (iii) implies (i). We can assume that S is strictly totally disconnected.
It follows that the functor Rf!(A ⊗L

Λ −) admits a right adjoint that commutes with all colimits. This
implies that condition (b) in Definition IV.2.1 is satisfied. In fact, more precisely we see that the right
adjoint RHomΛ(A,Rf

!−) is given by A′ ⊗L
Λ f

∗− for some A′ ∈ Det(X,Λ), and by using the self-duality
of Cop

S , we also see that RHomΛ(A
′, Rf !−) is given by A ⊗L

Λ f
∗−. Applied to the constant sheaf, this

shows in particular that A ∼= RHomΛ(A
′, Rf !Λ) is a Verdier dual. For condition (a), we can assume

that S = Spa(C,C+) and reduce to checking overconvergence along sections s : S → X . In fact, using
part (2) of Remark IV.2.3, let j : Spa(C,OC) → Spa(C,C+) be the pro-open immersion, with pullback
jX : X ×Spa(C,C+) Spa(C,OC)→ X , and fη : X ×Spa(C,C+) Spa(C,OC)→ Spa(C,OC) the restriction of
f . To see the overconvergence, it is enough to see that A ∼= RjX∗A0 for some A0. But

A ∼= RHomΛ(A
′, Rf !Λ) ∼= RHomΛ(A

′, Rf !Rj∗Λ)

∼= RHomΛ(A
′, RjX∗Rf

!
ηΛ)
∼= RjX∗RHomΛ(j

∗
XA

′, Rf !ηΛ),

giving the desired overconvergence. �

Before moving on, let us observe the following relative variant.

Proposition IV.2.24. LetS be a small v-stack andX,Y ∈ CS . IfY /S is proper andA ∈ FunCS (X,Y ) =
Det(X ×S Y,Λ) is p2-universally locally acyclic, then it is a left adjoint and the right adjoint is given by

DX×SY /Y (A) ∈ Det(X ×S Y,Λ) ∼= Det(Y ×S X,Λ) = FunCS (Y,X).
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The assumption that Y /S is proper is important here. Already if X = S and A = Λ ∈ Det(Y,Λ),
which is always idY -universally locally acyclic, being a left adjoint in CS implies that there is some B ∈
Det(Y,Λ) for which Rf∗ ∼= Rf!(B ⊗L

Λ −).

Proof. We need to produce the maps α and β again. Let us give the construction of α, which is the
harder part. First, using the various projections πij on X ×S Y ×S X , we have

DX×SY /Y (A) ? A ∼= Rπ13!(π
∗
12DX×SY /Y (A)⊗L

Λ π
∗
23A)

∼= Rπ13∗RHomΛ(π
∗
12A,Rπ

!
23A)

using that A is p2-universally locally acyclic, and properness of π13 (which is a base change of Y → S).
Now giving a map R∆!Λ→ DX×SY /Y (A) ? A, for ∆ = ∆X/S , amounts to finding a section of

R∆!Rπ13∗RHomΛ(π
∗
12A,Rπ

!
23A)

∼= Rp1∗R∆
!
X×SY /YRHomΛ(π

∗
12A,Rπ

!
23A)

∼= Rp1∗RHomΛ(A,A),

where we can take the identity. �

Theorem IV.2.23 has the following notable consequences.

Corollary IV.2.25. Let f : X → S be a compactifiable map of locally spatial diamonds with lo-
cally dim. trg f < ∞ and let A ∈ Det(X,Λ) be f -universally locally acyclic. Then DX/S(A) is again
f -universally locally acyclic, and the biduality map

A→ DX/S(DX/S(A))

is an isomorphism.
If fi : Xi → S for i = 1, 2 are compactifiable maps of small v-stacks that are representable in locally

spatial diamonds with locally dim. trg fi <∞ andAi ∈ Det(Xi,Λ) are fi-universally locally acyclic, then
also A1 �A2 ∈ Det(X1 ×S X2,Λ) is f1 ×S f2-universally locally acyclic, and the natural map

DX1/S(A1)� DX2/S(A2)→ DX1×SX2/S(A1 �A2)

is an isomorphism.

Proof. By Theorem IV.2.23, the objectDX/S(A) ∈ FunCS (S,X) is a right adjoint ofA ∈ FunCS (X,S).
But CS ∼= C

op
S ; under this equivalence, this means that DX/S(A) ∈ FunCS (S,X) is a left adjoint of

A ∈ FunCS (S,X). Thus, applying Theorem IV.2.23 again, the result follows.
For the second statement, note that Ai ∈ Det(Xi,Λ) define left adjoints, hence so does

A1 ? A2 = A1 �A2 ∈ Det(X1 ×S X2,Λ) = FunCS (X1 ×S X2, S).

Its right adjoint is the similar composition, giving the claim. �

The final statement admits the following generalization concerning “compositions” of universally lo-
cally acyclic sheaves.

Proposition IV.2.26. Let g : Y → X and f : X → S be compactifiable maps of small v-stacks
representable in locally spatial diamonds with locally dim. trg f, dim. trg g <∞, and letA ∈ Det(X,Λ) be
f -universally acyclic andB ∈ Det(Y,Λ) be g-universally locally acyclic. Then g∗A⊗L

ΛB is f◦g-universally
locally acyclic, and there is natural isomorphism

DY /S(g
∗A⊗L

Λ B) ∼= g∗DX/S(A)⊗L
Λ DY /X(B).
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Proof. It is easy to see that condition (a) of being locally acyclic holds universally, so it suffices to
identify the functor RHomΛ(g

∗A⊗L
Λ B,R(f ◦ g)!−). We compute:

RHomΛ(g
∗A⊗L

Λ B,R(f ◦ g)!−) = RHomΛ(B,RHomΛ(g
∗A,Rg!Rf !−))

= RHomΛ(B,Rg
!RHomΛ(A,Rf

!−))

= DY /X(B)⊗L
Λ g

∗RHom(A,Rf !−)
= DY /X(B)⊗L

Λ g
∗DX/S(A)⊗L

Λ g
∗f∗−,

implying that it commutes with colimits, hence its left adjoint preserves perfect-constructible complexes
(after reduction to strictly totally disconnected S andX and Y spatial). Moreover, evaluating this functor
at Λ gives the identification of the Verdier dual. �

Let us also note another corollary of Theorem IV.2.23 concerning retracts.

Corollary IV.2.27. Let f : X → S and g : Y → S be maps of small v-stacks that are compactifiable
and representable in locally spatial diamonds with locally dim. trg f, dim. trg g < ∞. Assume that f is
a retract of g over S , i.e. there are maps i : X → Y , r : Y → X over S such that ri = idX . If Λ is
g-universally locally acyclic, then Λ is f -universally locally acyclic.

Proof. One can check this directly from the definitions, or note that the map in CS given by Λ ∈
Det(X,Λ) = FunCS (X,S) is a retract of the map given by Λ ∈ Det(Y,Λ) = FunCS (Y, S), from which one
can easily obtain adjointness. �

Moreover, in some cases the converse to Proposition IV.2.11 holds.

Proposition IV.2.28. Let g : Y → X , f : X → S be maps of locally spatial diamonds where g is
proper and quasi-pro-étale and f is compactifiable and locally dim. trg f < ∞. Then A ∈ Det(Y,Λ) is
f ◦ g-universally locally acyclic if and only if Rg∗A ∈ Det(X,Λ) is f -universally locally acyclic.

Proof. One direction is given by Proposition IV.2.11. For the converse, assume that Rg∗A is f -
universally locally acylic. To see that A is h = f ◦ g-universally locally acyclic, it suffices by Theo-
rem IV.2.23 that the map

p∗1,YRHom(A,Rh!Λ)⊗L
Λ p

∗
2,YA→ RHom(p∗1,YA,Rp

!
2,YA)

in Det(Y ×S Y,Λ) is an isomorphism, where p1,Y , p2,Y : Y ×S Y → Y are the two projections. As
g ×S g : Y ×S Y → X ×S X is proper and quasi-pro-étale, pushforward along g ×S g is conservative:
By testing on stalks, this follows from the observation that for a profinite set T , the global sections functor
RΓ(T,−) is conservative on D(T,Λ) (as one can write any stalk as a filtered colimit of functors that are
direct summands of the global sections functor). ApplyingR(g×S g)∗ = R(g×S g)! to the displayed map,
we get the map

p∗1,XRHom(Rg∗A,Rf
!Λ)⊗L

Λ p
∗
2,XRg∗A→ RHom(p∗1,XRg∗A,Rp

!
2,XRg∗A)

where p1,X , p2,X : X ×S X → X are the two projections. This is an isomorphism precisely when Rg∗A is
f -universally locally acyclic. �

The following corollary shows that smooth base change generalizes to universally locally acyclic maps.
The general version of this corollary was suggested by David Hansen.
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Corollary IV.2.29 (ULA base change). Consider a cartesian diagram of small v-stacks

X ′ g̃ //

f ′

��

X

f
��

S′ g // S

with f representable in locally spatial diamonds, compactifiable, locally dim. trg f <∞. Assume that Λ is
f -universally locally acyclic. Then the base change map

f∗Rg∗A→ Rg̃∗f
′∗A

is an isomorphism. More generally, if B ∈ Det(X,Λ) is f -universally locally acyclic and A ∈ Det(S
′,Λ),

then
(f∗Rg∗A)⊗L

Λ B
∼−→ Rg̃∗(f

′∗A⊗L
Λ g̃

∗B).

Such base change results are false without some hypothesis on f . For example, if S′ is a countable union
of copies of S and X is a geometric point of S , this base change would assert that taking stalks commutes
with (countable) products, which fails in general.

Proof. We apply Proposition IV.2.19 to the universally locally acyclic DX/S(B), so that by Corol-
lary IV.2.25, we get

f∗Rg∗A⊗L
Λ B
∼= RHomΛ(DX/S(B), Rf !Rg∗A).

By [Sch17a, Theorem 1.9 (iii)], Rf !Rg∗A ∼= Rg̃∗Rf
′!A, and then one can rewrite further as

RHomΛ(DX/S(B), Rg̃∗Rf
′!A) ∼= Rg̃∗RHomΛ(g̃

∗DX/S(B), Rf ′!A).

Now another application of Proposition IV.2.19 and Proposition IV.2.15 gives the result. �

Finally let us note the following consequence of Theorem IV.2.23 and [LZ22].

Proposition IV.2.30. Let K be a complete non-archimedean field with residue characteristic p, f :
X → S a separated morphism of K-schemes locally of finite type, and A ∈ Db

c(X,Λ). Then A is f -
universally acyclic if and only if its analytification Aad is fad,♦-universally locally acyclic, where fad,♦ :
Xad,♦ → Sad,♦.

Proof. The criterion of Theorem IV.2.23 (ii) applies similarly in the algebraic case by [LZ22], and all
operations are compatible with passing to analytic adic spaces (and diamonds).2 �

For example, ifS = SpecK then anyA is f -universally locally acyclic and thusAad is fad,♦-universally
acyclic. This gives plenty of examples of ULA sheaves.

2For this compatibility, the case of ⊗, f∗ and f! is easy. The essential remaining case is Rj∗ for an open immersion j (both
internal Hom and i! for closed immersions reduce to that case, and general f ! can be reduced to closed immersions and smooth
maps, where the latter reduces to f∗). The case of Rj∗ is [Hub96, Theorem 3.8.1].
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IV.2.4. Local acyclicity for morphisms of Artin v-stacks. Using the descent results Remark IV.2.2 and
Proposition IV.2.13, one can extend the previous definition and results to the case of maps of Artin v-stacks
as follows.

Definition IV.2.31. Let f : X → S be a map of Artin v-stacks and assume that there is some separated,
representable in locally spatial diamonds, and cohomologically smooth surjection g : U → X from a locally
spatial diamond U such that f ◦ g : U → S is compactifiable with locally dim. trg(f ◦ g) < ∞. Then
A ∈ Det(X,Λ) is f -universally locally acyclic if g∗A is f ◦ g-universally locally acyclic.

All previous results concerning universally locally acyclic complexes also hold in this setting (assuming
that the relevant operations are defined in the case of interest – we did not define Rf! and Rf ! for general
stacky maps), and follow by the reduction to the case when S and X are locally spatial diamonds. In
particular, the characterization in terms of dualizability gives the following.

Proposition IV.2.32. Let f : X → S be a cohomologically smooth map of Artin v-stacks, and let
A ∈ Det(X,Λ). ConsiderX×SX with its two projections p1, p2 : X×SX → X . ThenA is f -universally
locally acyclic if and only if the natural map

p∗1RHomΛ(A,Λ)⊗L
Λ p

∗
2A→ RHomΛ(p

∗
1A, p

∗
2A)

is an isomorphism.

Proof. Taking a chart for S , we can assume that S is a locally spatial diamond, and then taking a
presentation for X we can assume that also X is a locally spatial diamond, noting that the condition com-
mutes with smooth base change. In that case, replacing some occurences of p∗2 byRp!2 using cohomological
smoothness, the result follows from Theorem IV.2.23. �

There is a simple characterization of `-cohomological smoothness in terms of universal local acyclicity.

Proposition IV.2.33. Let f : X → S be a compactifiable map of v-stacks that is representable in
locally spatial diamonds with locally dim. trg f < ∞. Then f is `-cohomologically smooth if and only if
F` is f -universally locally acyclic and its Verdier dual Rf !F` is invertible.

Note that in checking whether F` is f -universally locally acyclic, condition (a) of Definition IV.2.1 is
automatic. Also, by Theorem IV.2.23, the condition that F` is f -universally locally acyclic is equivalent to
the condition that the natural map

p∗1Rf
!F` → Rp!2F`

is an isomorphism, where p1, p2 : X ×S X → X are the two projections. Thus, f is `-cohomologically
smooth if and only if Rf !F` is invertible and its formation commutes with any base change.

Proof. The conditions are clearly necessary. For the converse, we may assume that S is strictly totally
disconnected. By Proposition IV.2.19, the natural transformation of functors

Rf !Λ⊗L
Λ f

∗ → Rf !

is an equivalence. AsRf !Λ is assumed to be invertible (it commutes with base change by Proposition IV.2.15),
this shows that the condition of [Sch17a, Definition 23.8] is satisfied. �

In particular, we can resolve a question from [Sch17a].
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Corollary IV.2.34. The map f : SpdOE → SpdFq is `-cohomologically smooth for all ` 6= p.

Proof. This is clear if E is of equal characteristic, so assume that E is p-adic. First, we prove that F`
is f -ULA. This follows from f ′ : SpdOẼ ∼= SpdFq[[t1/p

∞
]] → SpdFq being `-cohomologically smooth,

where Ẽ/E is some totally ramified Zp-extension, by the argument of the proof of [Sch17a, Proposition
24.3] (in essence, the compactly supported pushforward for any base change of f are the Zp-invariants
inside the compactly supported pushforward for the corresponding base change of f ′, so constructibility
of the latter implies constructibility of the former).

It remains to show that Rf !F` is invertible. If j : SpdE → SpdOE is the open immersion with
complement i : SpdFq → SpdOE , we have Ri!Rf !F` = F` by transitivity, and j∗Rf !F` ∼= F`(1)[2] by
[Sch17a, Proposition 24.5], so we get a triangle

i∗F` → Rf !F` → Rj∗F`(1)[2].

Using this, one computes Rf !F` ∼= F`(1)[2], as desired. �

IV.3. Formal smoothness

IV.3.1. Definition. A key step in the proof of Theorem IV.4.2, the Jacobian criterion of cohomological
smoothness, is the following notion of formal smoothness.

Definition IV.3.1. Let f : Y → X be a map of v-stacks. Then f is formally smooth if for any affinoid
perfectoid space S of characteristic pwith a Zariski closed subspace S0 ⊂ S , and any commutative diagram

S0
g0 //

��

Y

f
��

S
h // X,

there is some étale map S′ → S containing S0 in its image and a map g : S′ → Y fitting in a commutative
diagram

S′ ×S S0 //

��

S0
g0 //

��

Y

f
��

S′

g

55

// S
h // X.

This kind of formal smoothness is closely related to the notion of absolute neighborhood retracts
([Bor67], [Dol80]). In fact, suppose Y → X is formally smooth with Y and X affinoid perfectoid. Choose
a Zariski closed embedding Y ↪→ BIX for some set I . Then there exists an étale neighborhood U → BIX of
Y such that the closed embedding

i : Y ×BIX
U ↪→ U

admits a retraction r : U → Y ×BIX
U , r ◦ i = Id. Thus, Y /X is a retract of an (étale) neighborhood inside

a ball/X .
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IV.3.2. Examples and basic properties. We will see that formally smooth morphisms share analogous
properties to cohomologically smooth morphisms. Let’s begin with the following observations:

(i) The composite of two formally smooth morphisms is formally smooth,
(ii) The formally smooth property is stable under pullback: if Y → X is formally smooth and X ′ → X is
any map then Y ×X X ′ → X ′ is formally smooth.
(iii) Étale maps are formally smooth.
(iv) For morphisms of locally spatial diamonds, formal smoothness is étale local on the source and the target.

Let us observe that, like cohomologically smooth morphisms, formally smooth morphisms are univer-
sally open.

Proposition IV.3.2. Formally smooth maps are universally open.

Proof. Let Y → X be formally smooth. We can suppose X is affinoid perfectoid. Since any open
subsheaf of Y is formally smooth over X we are reduced to prove that the image of Y → X is open. Let
S → Y be a morphism with S affinoid perfectoid. Choose a Zariski closed embedding S ↪→ BIX for some
set I . The formal smoothness assumption implies that there exists an étale neighborhood U → BIX of
S ⊂ BIX such that S×BIX

U → S → Y extends to a map U → Y ; in particular, the image of S → Y → X

is contained in the image of U → Y → X , and it suffices to prove that the latter is open. We can suppose
U is quasicompact and separated over BIX . Writing BIX = lim←−J B

J
X where J goes through the set of finite

subsets of I , there exists a some J ⊂ I finite and V → BJX such that U → BIX is the pullback of V → BJX
via the projection BIX → BJX , cf. [Sch17a, Proposition 6.4]. Since BIX → BJX is a v-cover,

Im(U → X) = Im(V → X).

Now, using that V → BJX → X is open, since cohomologically smooth for example, this is an open subset
of X . �

Let us begin with some concrete examples. In the following, B → ∗ is the v-sheaf O+ on Perfk and
A1 → ∗ is the v-sheafO.

Proposition IV.3.3. The morphisms B→ ∗, A1 → ∗ and SpdOE → ∗ are formally smooth.

Proof. Let S0 = Spa(R0, R
+
0 ) ↪→ S = Spa(R,R+) be a Zariski closed embedding of affinoid per-

fectoid spaces. Then R → R0 is surjective, which immediately shows that A1 → ∗ is formally smooth.
The case of B → ∗ follows as B ⊂ A1 is open. For SpdOE , note that any untilt of S0 can be given by
some element ξ ∈ WOE (R

+
0 ) of the form ξ0 = π +

∑∞
n=0 π

i[ri,0] where all ri ∈ R◦◦
0 . But R◦◦ → R◦◦

0 is
surjective (cf. the discussion after [Sch17a, Definition 5.7]), so one can lift all ri,0 ∈ R◦◦

0 to ri ∈ R◦◦, and
then ξ = π +

∑∞
n=0 π

i[ri] defines an untilt of S overOE lifting the given one on S0. �

Corollary IV.3.4. Is f : Y → X is a smooth morphism of analytic adic spaces over Zp then f♦ :

Y ♦ → X♦ is formally smooth.

Proof. Any smooth morphism is locally étale over a finite-dimensional ball. �

Let us remark the following.
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Proposition IV.3.5. If f : Y → X is a formally smooth and surjective map of v-stacks, then f is
surjective as a map of étale stacks. Equivalently, in case X is a perfectoid space, the map f splits over an
étale cover of X .

Proof. We can suppose X is affinoid. There exists a surjective morphism X ′ → X with X ′ affinoid
perfectoid and a section s : X ′ → Y of Y → X over X ′. Let us choose a Zariski closed embedding
X ′ ↪→ BIX . Applying the formal smoothness property we deduce there is an étale neighborhood U → BIX
of X ′ ⊂ BIX and a section over U of Y → X . It thus suffices to see that U → X admits a section over an
étale cover of X . As in the proof of Proposition IV.3.2 there exists a finite subset J ⊂ I , and quasicompact
étale map V → BJX such that U → BIX is the pullback of V → BJX via the projection BIX → BJX . This
reduces us to the case I is finite. We may also replace V by its image in BJX . At geometric points, the
splitting follows from [Sch17a, Lemma 9.5]. Approximating a section over a geometric point over an étale
neighborhood then gives the desired splitting on an étale cover. �

According to [Sch17a, Proposition 23.13] cohomological smoothness is cohomologically smooth local
on the source. The same holds for formally smooth morphisms.

Corollary IV.3.6. Let f : Y → X be a morphism of v-stacks. Suppose there exists a v-surjective
formally smooth morphism of v-stacks g : Y ′ → Y such that f ◦ g is formally smooth. Then f is formally
smooth.

Proof. Given a test diagram g0 : S0 → Y , h : S → X as in Definition IV.3.1, we can first lift
S0 → Y étale locally to Y ′ by Proposition IV.3.5, and the required étale neighborhoods lift to S by [Sch17a,
Proposition 6.4] applied to S0 as the intersection of all open neighborhoods in S. Thus, the diagram can
be lifted to a similar test diagram for Y ′ → X , which admits a solution by assumption. �

Let us remark the following.

Proposition IV.3.7. The stack BunG → ∗ is formally smooth.

Proof. Let S0 = Spa(R0, R
+
0 ) ⊂ S = Spa(R,R+) be a Zariski closed immersion of affinoid perfectoid

spaces over Spd k, and fix a pseudouniformizer $ ∈ R. Let E0 be a G-bundle on XS0 . Pick any geometric
point Spa(C,C+) → S0; we intend to find an étale neighborhood U → S of Spa(C,C+) in S such that
the G-bundle over U ×S S0 extends to U .

Note that the pullback of E0 to YC,[1,q] is a trivial G-bundle, by Theorem III.2.2. From [GR03, Propo-
sition 5.4.21] (applied with R = lim−→V

O+(YV,[1,q]), t = π and I = 0, where V → S0 runs over étale
neighborhoods of Spa(C,C+) in S0; all of these lift to S) it follows that after passing to an étale neigh-
borhood as above, we can assume that the pullback of E0 to YS0,[1,q] is a trivial G-bundle. In that case, E0 is
given by some matrix A ∈ G(BR0,[1,1]) encoding the descent. Applying [GR03, Proposition 5.4.21] again,
with

R = lim−→
S0⊂U⊂S

O+(YU,[1,1]), t = π, I = ker(R→ lim−→
U

O+(YU,[1,1])),

then shows that we may lift A into a neighborhood, as desired. �

The following is the analog of Proposition II.3.5 (iii).



130 IV. GEOMETRY OF DIAMONDS

Proposition IV.3.8. Let S be a perfectoid space and let [E1 → E0] be a map of vector bundles on
XS such that E0 is everywhere of positive Harder–Narasimhan slopes, and E1 is everywhere of negative
Harder–Narasimhan slopes. Then BC([E1 → E0])→ S is formally smooth.

Proof. Using the exact sequence

0→ BC(E0)→ BC([E1 → E0])→ BC(E1[1])→ 0

and Proposition II.3.4 (iii) to get étale local surjectivity of the second map, one reduces to the individual
cases of BC(E0) and BC(E1[1]). For E = E0, we can use Corollary II.3.3 to choose étale locally on S a short
exact sequence

0→ G → OXS (1r )
m → E → 0

where G is fiberwise on S semistable of positive slope. Moreover, by Proposition II.3.4 (iii), one can also
ensure that H1(XS′ ,G|XS′ ) = 0 for all affinoid perfectoid spaces S′ → S. In particular, if S0 ⊂ S is a
Zariski closed immersion of affinoid perfectoid spaces, the map OXS (1r )

m(S0) → E(S0) is surjective, and
we can replace E by OXS (1r )

m. But then Proposition II.2.5 (iv) shows that this Banach–Colmez space is
representable by a perfectoid open unit disc, which is formally smooth.

For E = E1, we can use Theorem II.2.6 to find a short exact sequence

0→ E → OXS (d)
m → G → 0

for some d,m > 0 (so G necessarily has only positive slopes), and this induces an exact sequence

0→ BC(OXS (d)
m)→ BC(G)→ BC(E [1])→ 0

where the middle term is formally smooth by the preceding, and the map BC(G) → BC(E [1]) is formally
smooth (as étale locally surjective and its fibre BC(OXS (d)m) is formally smooth). We conclude by Corol-
lary IV.3.6. �

IV.4. A Jacobian criterion

The goal of this section is to prove that certain geometrically defined diamonds are cohomologically
smooth when one expects them to be. We regard this result as the most profound in the theory of diamonds
so far: While we cannot control much of the geometry of these diamonds, in particular we have no way
to relate them to (perfectoid) balls in any reasonable way, we can still prove relative Poincaré duality for
them. The spaces considered below also appear quite naturally in a variety of contexts, so we expect the
result to have many applications.

The setup is the following. Let S be a perfectoid space and let Z → XS be a smooth map of sous-
perfectoid adic spaces — defining this concept of smoothness will be done in a first subsection, but it is
essentially just a family of smooth rigid spaces over XS , in the usual sense. One can then consider the
v-sheafMZ of sections of Z → XS , sending any perfectoid space S′ → S to the set of maps XS′ → Z
lifting XS′ → XS . In general, we cannot prove thatMZ is a locally spatial diamond, but this turns out to
be true when Z is quasiprojective in the sense that it is a Zariski closed subspace of an open subset of (the
adic space) PnXS for some n ≥ 0.

In general, the spaceMZ → S is not (cohomologically) smooth: If tangent spaces ofMZ → S would
exist, one would expect their fibre over S′ → MZ , given by some section s : XS′ → Z , to be given by
H0(XS′ , s∗TZ/XS ), where TZ/XS is the tangent bundle of Z → XS ; and then an obstruction space would
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be given by H1(XS′ , s∗TZ/XS ). Thus, one can expect smoothness to hold only when H1(XS′ , s∗TZ/XS )

vanishes. This holds true, locally on S′, if all slopes of s∗TZ/XS are positive (by Proposition II.3.4 (iii)),
suggesting the following definition.

Definition IV.4.1. LetMsm
Z ⊂ MZ be the open subfunctor of all sections s : XS′ → Z such that

s∗TZ/XS has everywhere positive Harder–Narasimhan slopes.

Roughly speaking, one expectsMsm
Z to look infinitesimally like the Banach–Colmez spaceBC(s∗TZ/XS );

these indeed are cohomologically smooth when all slopes are positive, by Proposition II.3.5 (iii). Unfortu-
nately, we are unable to prove a direct relation of this sort; however, we will be able to relate these spaces
via a “deformation to the normal cone”.

Our goal is to prove the following theorem.
Theorem IV.4.2. Let S be a perfectoid space and let Z → XS be a smooth map of sous-perfectoid

spaces such that Z admits a Zariski closed immersion into an open subset of (the adic space) PnXS for some
n ≥ 0. ThenMZ is a locally spatial diamond, the mapMZ → S is compactifiable, andMsm

Z → S is
cohomologically smooth.

Moreover, for a geometric point x : SpaC →Msm
Z given by a map SpaC → S and a section s : XC →

Z , the mapMsm
Z → S is at x of `-dimension equal to the degree of s∗TZ/XS .

Remark IV.4.3. The mapMsm
Z → S is a natural example of a map that is only locally of finite dimen-

sion, but not globally so (as there are many connected components of increasing dimension).
Remark IV.4.4. In the “classical context” of algebraic curves the preceding theorem is the following

(easy) result. Let X/k be a proper smooth curve and Z → X be quasi-projective smooth. ConsiderMZ

the functor on k-schemes that sends S to morphisms s : X ×k S → Z over X . This is representable by
a quasi-projective scheme over Spec(k). LetMsm

Z be the open sub-scheme defined by the condition that if
s : X ×k S → Z is an S-point ofMsm

Z then the vector bundle s∗TZ/X has no H1 fiberwise on S. Then
Msm

Z → Spec(k) is smooth.
Remark IV.4.5. Suppose that W is a smooth quasi-projective E-scheme. The moduli spaceMZ with

Z =W×EXS classifies morphismsXS →W i.e.MZ is a moduli of morphisms from families of Fargues–
Fontaine curves to W . This is some kind of “Gromov–Witten” situation.

Remark IV.4.6. We could have made the a priori weaker assumption that Z admits a Zariski closed
immersion inside an open subset of P(E) where E is a vector bundle on XS . Nevertheless, since the result
is local on S and we can suppose it is affinoid perfectoid, and since when S is affinoid perfectoid OXS (1)
“is ample” i.e. there is a surjectionOXS (−N)n � E forN,n� 0, this assumption is equivalent to the one
we made i.e. we can suppose E is free.

Example IV.4.7 (The Quot diamond). Let E be a vector bundle on XS . We denote by
QuotE −→ S

the moduli space over S of locally free quotients of E . Fixing the rank of such a quotient, one sees that
QuotE is a finite disjoint union of spacesMZ with Z → XS a Grassmannian of quotients of E . This is thus
representable in locally spatial diamonds, compactifiable, of locally finite dim. trg.

Let Quotsm
E ⊂ QuotE be the open subset parametrizing quotients u : E → F such that fiberwise, the

greatest slope of keru is strictly less than the smallest slope of F . According to Theorem IV.4.2 this is
cohomologically smooth over S.
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Fix an integer n ≥ 1. For some N ∈ Z and r ∈ N≥1, let Quotn,sm,◦O(N)r be the open subset of Quotsm
O(N)r

where the quotient has rank n and its slopes are greater than N . When N and r vary one constructs, as in
the “classical case”, cohomologically smooth charts on BunGLn using Quotn,sm,◦O(N)r . In fact, the morphism

Quotn,sm,◦O(N)r −→ BunGLn

given by the quotient of O(N)r is separated cohomologically smooth. When pulled back by a morphism
S → BunGLn with S perfectoid, this is an open subset of a positive Banach–Colmez space.

We will not use the Quot diamond in the following. In section V.3, using the Jacobian criterion, we
will construct charts on BunG for any G that are better suited to our needs.

IV.4.1. Smooth maps of sous-perfectoid adic spaces. We need some background about smooth mor-
phisms of adic spaces in non-noetherian settings. We choose the setting of sous-perfectoid adic spaces as
defined by Hansen-Kedlaya, [HK20], cf. [SW20, Section 6.3]. Recall that an adic spaceX is sous-perfectoid
if it is analytic and admits an open cover by U = Spa(R,R+) where each R is a sous-perfectoid Tate alge-
bra, meaning that there is some perfectoidR-algebra R̃ such thatR→ R̃ is a split injection in the category
of topological R-modules.

The class of sous-perfectoid rings R is stable under passage to rational localizations, finite étale maps,
and R〈T1, . . . , Tn〉. As smooth maps should be built from these basic examples, we can hope for a good
theory of smooth maps of sous-perfectoid spaces.

Recall that a map f : Y → X of sous-perfectoid adic spaces is étale if locally on the source and target
it can be written as an open immersion followed by a finite étale map.

Definition IV.4.8. Let f : Y → X be a map of sous-perfectoid adic spaces. Then f is smooth if one
can cover Y by open subsets V ⊂ Y such that there are étale maps V → BdX for some integer d ≥ 0.

It can immediately be checked that analytifications of smooth schemes satisfy this condition.

Proposition IV.4.9. Let X = Spa(A,A+) be an affinoid sous-perfectoid adic space, and let f0 : Y0 →
SpecA be a smooth map of schemes. Let f : Y → X be the analytification of f0 : Y0 → SpecA, representing
the functor taking Spa(B,B+)→ Spa(A,A+) to the SpecB-valued points of Y0 → SpecA. Then f : Y →
X is smooth.

Proof. Locally, f0 is the composite of an étale and the projection from affine space. This means that its
analytification is locally étale over the projection from the analytification of affine space, which is a union
of balls, giving the result. �

Let us analyze some basic properties of smooth maps of sous-perfectoid adic spaces.

Proposition IV.4.10. Let f : Y → X and g : Z → Y be maps of sous-perfectoid adic spaces.

(i) The property of f being smooth is local on Y .
(ii) If f and g are smooth, then so is f ◦ g : Z → X .
(iii) If h : X ′ → X is any map of sous-perfectoid adic spaces and f is smooth, then the fibre product
Y ′ = Y ×X X ′ in adic spaces exists, is sous-perfectoid, and f ′ : Y ′ → X ′ is smooth.
(iv) If f is smooth, then f is universally open.
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(v) If f is smooth and surjective, then there is some étale cover X ′ → X with a lift X ′ → Y .

Regarding part (i), we note that we will see in Proposition IV.4.18 that the property of f being smooth
is in fact étale local on Y (and thus smooth local on X and Y , using (v)).

Proof. Part (i) is clear from the definition. For part (ii), the composite is locally a composite of an
étale map, a projection from a ball, an étale map, and another projection from a ball; but we can swap the
two middle maps, and use that composites of étale maps are étale. Part (iii) is again clear, by the stability
properties of sous-perfectoid rings mentioned above. For part (iv), it is now enough to see that f is open, and
we can assume that f is a composite of an étale map and the projection from a ball, both of which are open.
For part (v), using that f is open, we can work locally on Y and thus assume again that it is a composite
of an étale map and the projection from a ball; we can then replace Y by its open image in the ball. By
[Sch17a, Lemma 9.5], for any geometric point Spa(C,C+)→ X of X , we can find a lift to Y . Writing the
geometric point as the limit of affinoid étale neighborhoods, the map to Y ⊂ BdX can be approximated at
some finite stage, and then openness of Y ensures that it will still lie in Y . This gives the desired étale cover
of X over which f splits. �

Of course, the most important structure of a smooth morphism is its module of Kähler differentials.
Recall that if Y is sous-perfectoid, then one can define a stack (for the étale topology) of vector bundles
on Y , such that for Y = Spa(R,R+) affinoid with R sous-perfectoid, the category of vector bundles is
equivalent to the category of finite projective R-modules; see [KL15], [SW20, Theorem 5.2.8, Proposition
6.3.4]. By definition, a vector bundle on Y is anOY -module that is locally free of finite rank.

Definition IV.4.11. Let f : Y → X be a smooth map of sous-perfectoid adic spaces, with diagonal
∆f : Y → Y ×X Y . Let IY /X ⊂ OY×XY be the ideal sheaf. Then

Ω1
Y /X := IY /X/I2Y /X

considered asOY×XY /IY /X = OY -module.

It follows from the definition that there is a canonical OX -linear derivation d : OY → Ω1
Y /X , given

by g 7→ g ⊗ 1− 1⊗ g.

Proposition IV.4.12. Let f : Y → X be a smooth map of sous-perfectoid adic spaces. Then Ω1
Y /X is

a vector bundle on Y . There is a unique open and closed decomposition Y = Y0 t Y1 t . . . t Yn such that
Ω1
Y /X |Yd is of rank d for all d = 0, . . . , n. In that case, for any nonempty open subset V ⊂ Yd with an étale

map V → Bd′X , necessarily d′ = d.

We will say that f is smooth of dimension d if Ω1
Y /X is of rank d. By the proposition, this is equivalent

to asking that Y can be covered by open subsets V that admit étale maps V → BdX . In particular, f is
smooth of dimension 0 if and only if it is étale.

Proof. It is enough to show that if f is a composite of an étale map Y → BdX with the projection
to X , then Ω1

Y /X is isomorphic to OdY . Indeed, this implies that Ω1
Y /X is a vector bundle in general, of

the expected rank; and the decomposition into open and closed pieces is then a general property of vector
bundles.
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Let Y ′ = BdX . Then Y ×X Y → Y ′ ×X Y ′ is étale, and the map Y → Y ′ ×Y ′×XY ′ (Y ×X Y ) is an
open immersion (as the diagonal of the étale map Y → Y ′). It follows that IY /X is the pullback of IY ′/X′ .
But Y ′ ↪→ Y ′ ×X Y ′ is of the form

Spa(R〈T1, . . . , Tn〉, R+〈T1, . . . , Tn〉) ↪→ Spa(R〈T (1)
1 , . . . , T (1)

n , T
(2)
1 , . . . , T (2)

n 〉, R+〈T (1)
1 , . . . , T (2)

n 〉)

if X = Spa(R,R+), and the ideal sheaf is given by (T
(1)
1 − T (2)

1 , . . . , T
(1)
n − T (2)

n ). This defines a regular
sequence after any étale localization, by the lemma below. This gives the claim. �

Lemma IV.4.13. LetX = Spa(R〈T1, . . . , Tn〉, R+〈T1, . . . , Tn〉) whereR is a sous-perfectoid Tate ring,
let Y = Spa(S, S+) where S is a sous-perfectoid Tate ring, and let f : Y → X be a smooth map. Then
T1, . . . , Tn define a regular sequence on S and (T1, . . . , Tn)S ⊂ S is a closed ideal.

Proof. By induction, one can reduce to the case n = 1. The claim can be checked locally, so we can
assume that Y is étale over BdX for some d; replacing X by BdX , we can then assume that f is étale. Let
Y0 ⊂ Y be the base change to X0 = Spa(R,R+) = V (T ) ⊂ X ; then Y and Y0 ×X0 X are both étale over
X and become isomorphic overX0 ⊂ X . By spreading of étale maps, this implies that they are isomorphic
after base change toX ′ = Spa(R〈T ′〉, R+〈T ′〉)where T ′ = $nT for some n (and$ is a pseudouniformizer
of R). This easily implies the result. �

Locally around a section, any smooth space is a ball:

Lemma IV.4.14. Let f : Y → X be a smooth map of sous-perfectoid spaces with a section s :
Spa(K,K+) → Y for some point Spa(K,K+) → X . Then there are open neighborhoods U ⊂ X of
Spa(K,K+) and V ⊂ Y of s(Spa(K,K+)) such that V ∼= BdU .

Proof. We can assume that X and Y are affinoid. If f is étale, then any section extends to a small
neighborhood (e.g. by [Sch17a, Lemma 15.6, Lemma 12.17]), and any section is necessarily étale and thus
open, giving the result in that case. In general, we may work locally around the given section, so we can
assume that f is the composite of an étale map Y → BdX and the projection to X . Using the étale case
already handled, we can assume that Y is an open subset of BdX . Any section Spa(K,K+) → BdX has a
cofinal system of neighborhoods that are small balls over open subsets of X : The section is given by d
elements T1, . . . , Td ∈ K+, and after picking a pseudouniformizer$ and shrinkingX , one can find global
sections T ′

1, . . . , T
′
d of O+

X(X) such that Ti ≡ T ′
i mod $n. Then {|T ′

1|, . . . , |T ′
d| ≤ |$|n} is a small ball

over X , and the intersection of all these is Spa(K,K+). Thus, one of these neighborhoods is contained in
Y , as desired. �

Proposition IV.4.15. Let fi : Yi → X , i = 1, 2, be smooth maps of sous-perfectoid adic spaces, and
let g : Y1 → Y2 be a map over X .

(i) If g is smooth, then the sequence

0→ g∗Ω1
Y2/X

→ Ω1
Y1/X

→ Ω1
Y1/Y2

→ 0

is exact.
(ii) Conversely, if g∗Ω1

Y2/X
→ Ω1

Y1/X
is a locally split injection, then g is smooth.

In particular, if g∗Ω1
Y2/X

→ Ω1
Y1/X

is an isomorphism, then g is étale.
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Proof. Part (i) follows from a routine reduction to the case of projections from balls, where it is clear.
For part (ii), we may assume that Y1 → Bd1X and Y2 → Bd2X are étale. It suffices to see that the composite
Y1 → Y2 → Bd2X is smooth, as g is the composite of its base change Y1 ×Bd2X

Y2 → Y2 with the section
Y1 → Y1 ×Bd2X

Y2 of the étale map Y1 ×Bd2X
Y2 → Y1; any such section is automatically itself étale. Thus,

we may assume that Y2 = Bd2X . Locally on Y1, we may find a projection g′ : Bd1X → Bd1−d2X so that

(g′∗Ω1

Bd1−d2X /X
)|Y1

is an orthogonal complement of g∗Ω1
Y2/X

. (Indeed, looking at Od1X ∼= Ω1
Y1/X

→ g∗Ω1
Y2/X

as a point of the
Grassmannian and using the standard affine cover of the Grassmannian, one shows that one may take g′ to
simply be a projection to a subset of d1 − d2 of the coordinates.) Thus, we can assume that d1 = d2 =: d,
and g∗Ω1

Y2/X
→ Ω1

Y1/X
is an isomorphism.

Our aim is now to prove that g : Y1 → Y2 = BdX is étale. We may assume that all of X , Y1 and Y2
are affinoid. Passing to the fibre over a point S = Spa(K,K+) → X , this follows from a result of Huber,
[Hub96, Proposition 1.6.9 (iii)]. The resulting étale map Y1,S → Y2,S deforms uniquely to a quasicompact
separated étale map Y ′

1,U → Y2,U for a small enough neighborhood U ⊂ X of S , by [Sch17a, Lemma 12.17].
Moreover, the map Y1,U → Y2,U lifts uniquely to Y1,U → Y ′

1,U for U small enough, by the same result.
Replacing X by U , Y1 by Y1,U and Y2 by Y ′

1,U , we can now assume that g : Y1 → Y2 is a map between
sous-perfectoid spaces smooth overX that is an isomorphism on one fibre. It is enough to see that it is then
an isomorphism in a neighborhood. To see this, we may in fact work locally on Y2.

For this, we study Y1 ⊂ Y1×X Y2 → Y2: Here Y1×X Y2 → Y2 is smooth, and Y1 ⊂ Y1×X Y2 is locally
the vanishing locus of d functions (as Y2 ⊂ Y2 ×X Y2 is). Moreover, over fibres lying over the given point
of X , the map Y1 → Y2 becomes an isomorphism, and in particular gives a section of Y1 ×X Y2 → Y2. By
Lemma IV.4.14, after shrinking Y2, we can assume that there is an open neighborhood V ⊂ Y1×X Y2 such
that V ∼= BdY2 . Inside there, Y1 is (locally) given by the vanishing of d functions, and is only a point in one
fibre. Now the result follows from the next lemma, using Y2 in place of X . �

Lemma IV.4.16. Let X = Spa(A,A+) be a sous-perfectoid affinoid adic space with a point X ′ =
Spa(K,K+)→ X . Let f1, . . . , fn ∈ A+〈T1, . . . , Tn〉 be functions such that

K → K〈T1, . . . , Tn〉/(f1, . . . , fn)

is an isomorphism. Then, after replacing X by an open neighborhood of X ′, the map

A→ A〈T1, . . . , Tn〉/(f1, . . . , fn)

is an isomorphism.

Proof. For any ring B with elements g1, . . . , gn ∈ B, consider the homological Koszul complex

Kos(B, (gi)ni=1) = [B → Bn → . . .→ Bn (g1,...,gn)−−−−−−→ B].

We claim that, after shrinking X , we can in fact arrange that

A→ Kos(A〈T1, . . . , Tn〉, (fi)ni=1)

is a quasi-isomorphism.
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Note that all terms of these complexes are free Banach-A-modules, and thus the formation of this com-
plex commutes with all base changes; and one can use descent to establish the statement. In particular, we
can reduce first to the case that X is perfectoid, and then to the case that X is strictly totally disconnected.
In that case, the mapA→ K is automatically surjective, and so we can arrange that under the isomorphism
K ∼= K〈T1, . . . , Tn〉/(f1, . . . , fn), all Ti are mapped to 0. Moreover, applying another change of basis, we
can arrange that the image of fi in K〈T1, . . . , Tn〉/(T1, . . . , Tn)2 is given by aiTi for some nonzero scalar
ai ∈ K+. Note that we are in fact allowed to also localize on BnX around the origin, as away from the ori-
gin the functions f1, . . . , fn locally generate the unit ideal (in the fibre, but thus in a small neighborhood).
Doing such a localization, we can now arrange that fi ≡ Ti mod $ for some pseudouniformizer$ ∈ A+.
But now in fact

A+ → Kos(A+〈T1, . . . , Tn〉, (fi)ni=1)

is a quasi-isomorphism, as can be checked modulo $, where it is the quasi-isomorphism
A+/$ → Kos(A+/$[T1, . . . , Tn], (Ti)

n
i=1). �

Let us draw some consequences. First, we have the following form of the Jacobian criterion in this
setting.

Proposition IV.4.17. Let f : Y → X be a smooth map of sous-perfectoid adic spaces, and let f1, . . . , fr ∈
OY (Y ) be global functions such that df1, . . . , dfr ∈ Ω1

Y /X(Y ) can locally be extended to a basis of Ω1
Y /X .

Then Z = V (f1, . . . , fr) ⊂ Y is a sous-perfectoid space smooth over X .

Proof. We can assume that all fi ∈ O+
Y (Y ) by rescaling, and we can locally find fr+1, . . . , fn ∈

O+
Y (Y ) such that df1, . . . , dfn is a basis ofΩ1

Y /X . This induces an étale mapY → BnX by Proposition IV.4.15,
and then V (f1, . . . , fr) ⊂ Y is the pullback of BrX ⊂ BnX , giving the desired result. �

Moreover, we can prove that being smooth is étale local on the source.

Proposition IV.4.18. Let f : Y → X be a map of sous-perfectoid adic spaces. Assume that there is
some étale cover j : V → Y such that f ◦ j is smooth. Then f is smooth.

Proof. By étale descent of vector bundles on sous-perfectoid adic spaces, Ω1
Y /X := IY /X/I2Y /X is a

vector bundle, together with an OX -linear derivation d : OY → Ω1
Y /X . We claim that locally we can

find functions f1, . . . , fn ∈ OY such that df1, . . . , dfn ∈ Ω1
Y /X is a basis. To do this, it suffices to find

such functions over all fibres Spa(K,K+) → X , as any approximation will then still be a basis (small
perturbations of a basis are still a basis). But over fibres, the equivalence of the constructions in [Hub96,
1.6.2] shows that the df for f ∈ OX form generators of Ω1

Y /X .

Thus, assume that there are global sections f1, . . . , fn such that df1, . . . , dfn ∈ Ω1
Y /X are a basis. Rescal-

ing the fi if necessary, they define a map g : Y → BdX that induces an isomorphism g∗Ω1
BdX/X

→ Ω1
Y /X .

By Proposition IV.4.15, the map Y → BdX is étale locally on Y étale. We may assume that Y andX are affi-
noid; in particular, all maps are separated. Then by [Sch17a, Lemma 15.6, Proposition 11.30] also Y → BdX
is étale. �

Finally, we note that if Y and Y ′ are both smooth over a sous-perfectoid space X , then the concept of
Zariski closed immersions Y ↪→ Y ′ over X is well-behaved.
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Proposition IV.4.19. Let f : Y → X , f ′ : Y ′ → X be smooth maps of sous-perfectoid adic spaces,
and let g : Y → Y ′ be a map over X . The following conditions are equivalent.

(i) There is a cover of Y ′ by open affinoid V ′ = Spa(S′, S′+) such that V = Y ×Y ′ V ′ = Spa(S, S+) is
affinoid and S′ → S is surjective, with S+ ⊂ S the integral closure of the image of S′+.
(ii) For any open affinoid V ′ = Spa(S′, S′+) ⊂ Y ′, the preimage V = Y ×Y ′ V ′ = Spa(S, S+) is affinoid
and S′ → S is surjective, with S+ ⊂ S the integral closure of the image of S′+.

Moreover, in this case the ideal sheaf IY⊂Y ′ ⊂ OY ′ is pseudocoherent in the sense of [KL16], and
locally generated by sections f1, . . . , fr ∈ OY ′ such that df1, . . . , dfr ∈ Ω1

Y ′/X can locally be extended to
a basis.

Proof. We first analyze the local structure under condition (1), so assume that Y ′ = Spa(S′, S′+) and
Y = Spa(S, S+) are affinoid, with S′ → S surjective and S+ ⊂ S the integral closure of the image of
S′+. It follows that g∗Ω1

Y ′/X → Ω1
Y /X is surjective, and letting d′ and d be the respective dimensions of

Y ′ and Y (which we may assume to be constant), we see that r = d′ − d ≥ 0 and that locally we can
find f1, . . . , fr ∈ IY⊂Y ′ so that df1, . . . , dfr generate the kernel of g∗Ω1

Y ′/X → Ω1
Y /X (as the kernel is

generated by the closure of the image of IY⊂Y ′). By Proposition IV.4.17, the vanishing locus of the fi
defines a sous-perfectoid space Z ⊂ Y ′ that is smooth over X . The induced map Y → Z induces an
isomorphism on differentials, hence is étale by Proposition IV.4.15; but it is also a closed immersion, hence
locally an isomorphism.

We see that the ideal sheaf IY⊂Y ′ is locally generated by sections f1, . . . , fr as in the statement of the
proposition. By the proof of Proposition IV.4.17 and Lemma IV.4.13, it follows that the ideal sheaf IY⊂Y ′

is pseudocoherent in the sense of [KL16].
To finish the proof, it suffices to show that (1) implies (2). By the gluing result for pseudocoherent

modules of [KL16], the pseudocoherent sheaf IY⊂Y ′ over V ′ corresponds to a pseudocoherent module I ⊂
S′, and then necessarily V = Spa(S, S+) where S = S′/I with S+ ⊂ S the integral closure of the image
of S′+. �

Definition IV.4.20. In the setup of Proposition IV.4.19, the map g is a Zariski closed immersion if
the equivalent conditions are satisfied.

IV.4.2. Maps from XS into Pn. Our arguments make critical use of the assumption that in Theo-
rem IV.4.2, the space Z → XS is locally closed in PnXS . For this reason, we analyze the special case of Pn
in this section.

Proposition IV.4.21. Let n ≥ 0 and consider the small v-sheafMPn taking any perfectoid space S
to the set of maps XS → PnE . Then MPn → ∗ is partially proper and representable in locally spatial
diamonds, and admits a decomposition into open and closed subspaces

MPn =
⊔
m≥0

Mm
Pn

such that eachMm
Pn → ∗ has finite dim. trg, and the degree of the pullback of OPn(1) to XMm

Pn
is m. In

fact, there is a canonical open immersion

Mm
Pn ↪→ (BC(O(m)n+1) \ {0})/E×.
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Proof. The degree of the pullback L/XS of OPn(1) to XS defines an open and closed decomposition
according to allm ∈ Z. Fix somem. Then over the corresponding subspaceMm

Pn , we can fix a trivialization
L ∼= OXS (m), which amounts to an E×-torsor. After this trivialization, one parametrizes n + 1 sections
of L ∼= OXS (m) without common zeroes. The condition of no common zeroes is an open condition on S:
Indeed, the common zeroes form a closed subspace of |XS |, and the map |XS | → |S| is closed (see the proof
of Lemma IV.1.20). This implies the desired description. �

Proposition IV.4.22. Let S be a perfectoid space and let Z → XS be a smooth map of sous-perfectoid
adic spaces such that Z admits a Zariski closed embedding into an open subspace of PnXS . Then the induced
functor

MZ →MPnXS
is locally closed. More precisely, for any perfectoid space T →MPnXS

, the preimage ofMZ is representable
by some perfectoid space TZ ⊂ T that is étale locally Zariski closed in T , i.e. there is some étale cover of T
by affinoid perfectoid T ′ = Spa(R,R+) → T such that TZ ×T T ′ = Spa(RZ , R+

Z ) is affinoid perfectoid,
with R→ RZ surjective and R+

Z ⊂ RZ the integral closure of the image of R+.
In particular, the map MZ → S is representable in locally spatial diamonds and compactifiable, of

locally finite dim. trg.

Proof. Choose an open subspace W ⊂ PnXS such that Z is Zariski closed in W . For any perfectoid
space T with a map T → MPnXS

corresponding to a map XT → PnXS over XS , the locus TW ⊂ T where
the section factors overW is open. Indeed, this locus is the complement of the image in |T | of the preimage
of |PnXS \W | under |XT | → |PnXS |, and |XT | → |T | is closed.

Replacing T by TW , we can assume that the section XT → PnXS factors over W . We may also assume
that T = Spa(R,R+) is affinoid perfectoid and thatS = T . Pick a pseudouniformizer$ ∈ R, in particular
defining the cover

YS,[1,q] = {|π|q ≤ |[$]| ≤ |π|} ⊂ SpaWOE (R
+)

ofXS . The pullback of the line bundleOPn(1) toXS along this section, and then to YS,[1,q], is étale locally
trivial, as when S is a geometric point, YS,[1,q] is affinoid with ring of functions a principal ideal domain by
Corollary II.1.12. ReplacingW by a small étale neighborhood of this section and correspondingly shrinking
S , we can assume that the pullback ofOPn(1) toW[1,q] =W ×XS YS,[1,q] is trivial. In that case the pullback
Z[1,q] → YS,[1,q] of Z → XS is Zariski closed in an open subset of

An+1
YS,[1,q]

.

Inside An+1
YS,[1,q]

, the image of YSpa(K,K+),[1,q] (via the given section) for a point Spa(K,K+) → S is an
intersection of small balls over YS′,[1,q] for small neighborhoods S′ ⊂ S of Spa(K,K+). Thus, one of
these balls is contained in the open subset of which Z[1,q] is a Zariski closed subset. Thus, after this further
localization, we can assume that there is a Zariski closed immersion

Z[1,q] ↪→ Bn+1
YS,[1,q]

,

and in particularZ[1,q] is affinoid and cut out by global functions onBn+1
YS,[1,q]

by Proposition IV.4.19. Pulling
back these functions along the given section YS,[1,q] → Bn+1

YS,[1,q]
, it suffices to see that if S = Spa(R,R+) is
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an affinoid perfectoid space of characteristic p with a choice of pseudouniformizer $ ∈ R and

f ∈ BR,[1,q] = O(YS,[1,q])

is a function, then there is a universal perfectoid space S′ ⊂ S for which the pullback of f is zero, and
S′ ⊂ S is Zariski closed. This is given by Lemma IV.4.23. �

Lemma IV.4.23. Let S = Spa(R,R+) ∈ PerfFq be affinoid perfectoid with a fixed pseudo-uniformizer
$, I ⊂ (0,∞) a compact interval with rational ends, andZ ⊂ |YS,I | a closed subset defined by the vanishing
locus of an ideal J ⊂ O(YS,I). Then, via the open projection υ : |YS,I | → |S|, the closed subset |S| \
υ(|YS,I | \ Z) is Zariski closed. The corresponding Zariski closed perfectoid subspace of S is universal for
perfectoid spaces T → S such that J 7→ 0 viaO(YS,I)→ O(YT,I).

Proof. Since Y ♦
S,I → S is cohomologically smooth, υ is open. We can suppose J = (f) with f ∈

O(YS,I). For any untilt of Fq(($1/p∞)) over E such that |π|b ≤ |$]| ≤ |π|a if I = [a, b], we get a
corresponding untilt R] of R over E , with a map BR,I → R]. The locus where the image of f in R]

vanishes is Zariski closed by Proposition II.0.2. Intersecting these Zariski closed subsets over varying such
untilts gives the vanishing locus of f , as in any fibre, f vanishes as soon at it vanishes at infinitely many
untilts (e.g., by Corollary II.1.12), and all rings are sous-perfectoid, in particular uniform, so vanishing at
all points implies vanishing. �

IV.4.3. Formal smoothness ofMsm
Z . The key result we need is the following.

Proposition IV.4.24. Let S = Spa(R,R+) be an affinoid perfectoid space over Fq and let Z → XS

be a smooth map of sous-perfectoid adic spaces that is Zariski closed in an open subspace of PnXS . Then
Msm

Z → S is formally smooth.

Proof. Pick a test diagram as in Definition IV.3.1; we can and do assume that the S from there is the
given S , replacing the S in this proposition if necessary. This means we have a diagram

Z

XS0 XS

s0

and, up to replacing S by an étale neighborhood of S0 we try to extend the section s0 to a section over XS

(the dotted line in the diagram). Fix a geometric point Spa(C,C+) → S0; we will always allow ourselves
to pass to étale neighborhoods of this point. Fix a pseudouniformizer $ ∈ R and consider the affinoid
cover YS,[1,q] → XS ; recall that

YS,[1,q] = {|π|q ≤ |[$]| ≤ |π|} ⊂ SpaWOE (R
+)

and we also consider its boundary annuli

YS,[1,1] = {|[$]| = |π|}, YS,[q,q] = {|π|q = |[$]|} ⊂ YS,[1,q].

Let Z[1,q] → Z be its pullback; with pullback Z[1,1], Z[q,q] ⊂ Z[1,q] of YS,[1,1], YS,[q,q] ⊂ YS,[1,q]. In par-
ticular, Z is obtained from Z[1,q] via identification of its open subsets Z[1,1], Z[q,q] along the isomorphism
ϕ : Z[1,1] → Z[q,q].
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Arguing as in the proof of Proposition IV.4.22, we can after étale localization on S embed

Z[1,q] ↪→ Bn+1
YS,[1,q]

as a Zariski closed subset. We thus have a diagram

Z[1,q] Bn+1
YS,[1,q]

YS0,[1,q] YS,[1,q].

Zariski closed

In particular, Z[1,q] is affinoid.

Next, consider the Kähler differentials Ω1
Z[1,q]/YS,[1,q]

. Again, as BC,[1,q] is a principal ideal domain, its
restriction to the section YSpa(C,C+),[1,q] ⊂ Z[1,q] is trivial, and thus it is trivial in a small neighborhood. It
follows that after a further étale localization we can assume that Ω1

Z[1,q]/YS,[1,q]
∼= OrZ[1,q]

is trivial. On the
Zariski closed subset Z0,[1,q] ⊂ Z[1,q] (defined as the pullback of YS0 ⊂ YS), this implies that we may find
functions f1, . . . , fr ∈ O(Z0,[1,q]) vanishing on the section YS0,[1,q] → Z0,[1,q] and locally generating the
ideal of this closed immersion (use Proposition IV.4.19). In particular,

df1, . . . , dfr ∈ Ω1
Z0,[1,q]/YS0,[1,q]

are generators at the image of the section YS0,[1,q] → Z0,[1,q], and thus in an open neighborhood. Picking
lifts of the fi toO(Z[1,q]) and shrinking Z[1,q], Proposition IV.4.15 implies that they define an étale map

Z[1,q] → BrYS,[1,q] .

Moreover, over {0}YS0,[1,q] ⊂ BrYS,[1,q] , this map admits a section. Shrinking further around this section, we
can thus arrange that there are open immersions

(πNB)rYS,[1,q] ⊂ Z[1,q] ⊂ BrYS,[1,q] ,

and that the section over YS0,[1,q] is given by the zero section.
The isomorphism ϕ : Z[1,1] → Z[q,q] induces a map

ϕ′ : (πNB)rYS,[1,1] → BrYS,[q,q] .

Recall that for any compact interval I ⊂ (0,∞), the space

YS,I = Spa(BR,I , B+
(R,R+),I

)

is affinoid. The map ϕ′ is then given by a map

α : BR,[q,q]〈T1, . . . , Tr〉 → BR,[1,1]〈π−NT1, . . . , π−NTr〉
linear over the isomorphism ϕ : BR,[q,q] → BR,[1,1]. The map α is determined by the images of T1, . . . , Tn
which are elements

αi ∈ B+
(R,R+),[1,1]

〈π−NT1, . . . , π−NTr〉.

These have the property that on the quotient BR0,[1,1] they vanish at T1 = . . . = Tr = 0 (as over S0, the
zero section is ϕ-invariant). Moreover, over the geometric point Spa(C,C+)→ S0 fixed at the beginning,
we can apply a linear change of coordinates in order to ensure that the derivative at the origin is given by
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a standard matrix for an isocrystal of negative slopes; i.e., there are cycles 1, . . . , r1; r1 + 1, . . . , r2; . . .;
ra−1 + 1, . . . , ra = r and positive integers d1, . . . , da such that

αi ≡ Ti+1 in BC,[1,1][T1, . . . , Tr]/(T1, . . . , Tr)2

if i 6= rj for some j = 1, . . . , a, and

αrj ≡ π−djTrj−1+1 in BC,[1,1][T1, . . . , Tr]/(T1, . . . , Tr)2.

(Here, we set r0 = 0.) Approximating this linear change of basis over an étale neighborhood, we respect
the condition that the αi’s vanish at T1 = . . . = Tr = 0 over S0, while we can for any large M arrange

αi ≡ Ti+1 in B+
(R,R+),[1,1]

/πM [π−NT1, . . . , π
−NTr]/(π

−NT1, . . . , π
−NTr)

2

if i 6= rj and

αrj ≡ π−djTrj−1+1 in B+
(R,R+),[1,1]

/πM [π−NT1, . . . , π
−NTr]/(π

−NT1, . . . , π
−NTr)

2.

Moreover, rescaling all Ti by powers of π, and passing to a smaller neighborhood around S0, we can then
even ensure that

αi ∈ Ti+1 + πMB+
(R,R+),[1,1]

〈T1, . . . , Tr〉
for i 6= rj and

αrj ∈ π−djTrj−1+1 + πMB+
(R,R+),[1,1]

〈T1, . . . , Tr〉.
At this point, the integers d1, . . . , da are fixed, while we allow ourselves to chooseM later, depending only
on these.

From this point on, we will no longer change S and S0, and instead will merely change coordinates in
the balls (by automorphisms). More precisely, we study the effect of replacing Ti by Ti + εi for some

εi ∈ πd ker(B+
(R,R+),[1,q]

→ BR0,[1,q])

where we take d to be at least the maximum of all dj . This replaces αi by a new power series α′
i, given by

α′
i(T1, . . . , Tr) = αi(T1, . . . , Ti + εi, . . . , Tr)− ϕ(εi)

and the α′
i’s still vanish at T1 = . . . = Tr = 0 over S0. Their nonconstant coefficients will still have the

same properties as for αi (the linear coefficients are unchanged, while all other coefficients are divisible by
πM ), and the constant coefficient satisfies

α′
i(0, . . . , 0) ≡ αi(0, . . . , 0) + εi+1 − ϕ(εi) in B+

(R,R+),[1,1]
/πM+d

if i 6= rj and

α′
rj (0, . . . , 0) ≡ αrj (0, . . . , 0) + π−dj εrj−1+1 − ϕ(εrj ) in B+

(R,R+),[1,1]
/πM+d.

Assume that by some inductive procedure we already achieved αi(0, . . . , 0) ∈ πN
′
B+

(R,R+),[1,1]
for some

N ′ ≥ M . By Lemma IV.4.25 below, there is some constant c depending only on d1, . . . , da such that we
can then find εi ∈ πN

′−cB+
(R,R+),[1,q]

, vanishing over R0, with

αi(0, . . . , 0) = ϕ(εi)− εi+1

for i 6= rj and
αrj (0, . . . , 0) = ϕ(εrj )− π−dj εrj−1+1.
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This means that α′
i(0, . . . , 0) ∈ πM+N ′−cB+

(R,R+),[1,1]
, so if we choose M > c in the beginning (which we

can), then this inductive procedure converges, and in the limit we get a change of basis after which the zero
section defines a ϕ-invariant section of Z[1,q], thus a section s : XS → Z , as desired. Note that we arranged
that this section agrees with s0 over S0, as all coordinate changes did not affect the situation over S0. �

We used the following quantitative version of vanishing of H1(XS , E) for E of positive slopes.

Lemma IV.4.25. Fix a standard Dieudonné module of negative slopes, given explicitly on a basis
e1, . . . , er by fixing cycles 1, . . . , r1; r1+1 . . . , r2; . . .; ra−1+1, . . . , ra = r and positive integers d1, . . . , da >
0, via

ϕ(ei) = ei+1 for i 6= rj , ϕ(erj ) = π−djerj−1+1.

Then there is an integer c ≥ 0 with the following property.
LetS = Spa(R,R+) be an affinoid perfectoid space overFq with Zariski closed subspaceS0 = Spa(R0, R

+
0 ),

and a pseudouniformizer $ ∈ R. Let

I+[1,q] = ker(B+
(R,R+),[1,q]

→ B+

(R0,R
+
0 ),[1,q]

), I+[1,1] = ker(B+
(R,R+),[1,1]

→ B+

(R0,R
+
0 ),[1,1]

).

Then for all f1, . . . , fr ∈ I+[1,1] one can find g1, . . . , gr ∈ π−cI+[1,q] such that

fi = ϕ(gi)− gi+1 for i 6= rj , frj = ϕ(grj )− π−djgrj−1+1.

Proof. We may evidently assume that a = 1; set d = d1. By linearity, we can assume that all but one
of the fi’s is equal to zero, say (by cyclic rotation) f1 = . . . = fr−1 = 0. Thus, it suffices to see that for all
positive integers r and d there is c ≥ 0 such that for all f = fr ∈ I+[1,1] one can find some g ∈ π−cI+[1,qr]
(for the evident definition of I+[1,qr]) such that

f = ϕr(g)− π−dg.

Indeed, one then takes g1 = g, g2 = ϕ(g), . . . , gr = ϕr−1(g). Replacing E by its unramified extension of
degree r, we can then assume that r = 1. At this point, we want to reduce to the qualitative version given
by Lemma IV.4.26 below, saying that the map

ϕ− π−d : I[1,q] → I[1,1]

is surjective. Indeed, assume a constant c as desired would not exist. Then for any integer i ≥ 0 we
can find some Zariski closed immersion S0,i = Spa(R0,i, R

+
0,i) ⊂ Si = Spa(Ri, R+

i ), with choices of
pseudouniformizers $i ∈ Ri, as well as elements fi ∈ I+[1,1],i such that there is no g ∈ π−2iI+[1,q],i with
fi = ϕ(gi) − π−dgi. Then we can define R+ =

∏
iR

+
i with $ = ($i)i ∈ R+, and R = R+[ 1$ ], which

defines an affinoid perfectoid space S = Spa(R,R+), containing a Zariski closed subspace S0 ⊂ S defined
similarly. Moreover, the sequence (πifi)i defines an element of f ∈ I+[1,1]. As ϕ − π−d : I[1,q] → I[1,1] is
surjective by Lemma IV.4.26, we can find some g ∈ I[1,q] with f = ϕ(g) − π−dg. Then πcg ∈ I+[1,q] for
some c, and restricting g to S0,i ⊂ Si with i > c gives the desired contradiction. �

We reduced to the following qualitative version.
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Lemma IV.4.26. Let d be a positive integer, let S0 = Spa(R0, R
+
0 ) ⊂ S = Spa(R,R+) be a Zariski

closed immersion of affinoid perfectoid spaces over Fq , and let $ ∈ R be a pseudouniformizer. Let

I[1,q] = ker(BR,[1,q] → BR0,[1,q]) , I[1,1] = ker(BR,[1,1] → BR0,[1,1]).

Then the map
ϕ− π−d : I[1,q] → I[1,1]

is surjective.

Proof. By the snake lemma and the vanishing H1(XS ,OXS (d)) = 0 (Proposition II.2.5 (iii)), the
lemma is equivalent to the surjectivity of

H0(XS ,OXS (d))→ H0(XS0 ,OXS0 (d)).

For d ≤ [E : Qp] (or if E is of equal characteristic), this follows directly from Proposition II.2.5 (iv) and
the surjectivity of R◦◦ → R◦◦

0 . In general, we can either note that the proof of Proposition II.2.5 (iii) also
proves the lemma, or argue by induction by choosing an exact sequence

0→ OXS (d− 2)→ OXS (d− 1)2 → OXS (d)→ 0

(the Koszul complex for two linearly independent sections of H0(XS ,OXS (1))), and use the vanishing
of H1(XS0 ,OXS0 (d − 2)) = 0 for d > 2, Proposition II.2.5 (iii). This induction gets started as long as
E 6= Qp. For E = Qp, we can write OXS (d) as a direct summand of π∗π∗OXS (d) for any extension
π : XS,E → XS with E 6= Qp. �

IV.4.4. Universal local acyclicity ofMsm
Z → S. The next step in the proof of Theorem IV.4.2 is to

show that F` is universally locally acyclic.

Proposition IV.4.27. Let S be a perfectoid space and let Z → XS be a smooth map of sous-perfectoid
spaces such that Z is Zariski closed inside an open subset of PnXS for some n ≥ 0. Then, for any ` 6= p, the
sheaf F` is universally locally acyclic for the map

Msm
Z → S.

Proof. Recall from Proposition IV.4.22 that MZ → MPnXS
is a locally closed immersion, and the

open embedding
MPnXS

↪→
⊔
m≥0

(BC(OXS (m)n+1) \ {0})/E×

from Proposition IV.4.21. In the following, we fix some m and work on the preimage of

(BC(OXS (m)n+1) \ {0})/E×.

We choose a surjection g : T → BC(OXS (m)n+1\{0})/E× from a perfectoid spaceT as in Lemma IV.4.28;
in particular, g is separated, representable in locally spatial diamonds, cohomologically smooth, and for-
mally smooth. Moreover, locally T admits a Zariski closed immersion into the perfectoid ball B̃nS over S.
Taking the pullback of T toMZ , we get a surjection TZ → MZ for some perfectoid space TZ such that
étale locally TZ admits a Zariski closed immersion into a space étale over B̃nS .

It follows that one can coverMZ via maps h0 : T0 →MZ that are separated, representable in locally
spatial diamonds, cohomologically smooth, and formally smooth, and such that T0 admits a Zariski closed
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immersion into some space étale over B̃nS . We can then also do the same forMsm
Z . By Proposition IV.4.24,

we can, up to further replacement of T0 by an étale cover, assume that the map h0 extends to a map h : T →
Msm

Z for some perfectoid space T étale over B̃nS . Moreover, as T0 →Msm
Z is formally smooth, we can, after

a further étale localization, lift the map T →Msm
Z to a retraction T → T0; thus, T0 is a retract of a space

that is étale over a perfectoid ball. Now the result follows from Corollary IV.2.27. �

We used the following presentation of certain projectivized Banach–Colmez spaces.

Lemma IV.4.28. Let S be a perfectoid space over Fq and let E be a vector bundle on XS that is every-
where of nonnegative Harder–Narasimhan slopes. There is a perfectoid space T → S that is locally Zariski
closed in a perfectoid ball B̃nS over S and that admits a surjective map

T → (BC(E) \ {0})/E×

over S that is separated, representable in locally spatial diamonds, cohomologically smooth, and formally
smooth.

Proof. The target parametrizes line bundles L on XS of slope zero together with a section of E ⊗ L
that is nonzero fibrewise on S. Parametrizing in addition an injection L ↪→ OXS (1) defines a map that
is separated, representable in locally spatial diamonds, cohomologically smooth, and formally smooth (by
Proposition II.3.5 and Proposition IV.3.8). Over this cover, one has locally on S an untilt S] over E
corresponding to the support of the cokernel of L → OXS (1), and one parametrizes nonzero sections of
E(1) that vanish at S] ↪→ XS . This is Zariski closed (by [BS22, Theorem 7.4, Remark 7.5]) inside the space
of all sections of E(1). We see that it suffices to prove the similar result with (BC(E) \ {0})/E× replaced
by BC(E(1)) × SpdE , and this reduces to the individual factors. For BC(E(1)), the result follows from
the argument in Proposition IV.3.8. For SpdE , there is nothing to do in equal characteristic, so assume
that E is p-adic. Then we reduce to [∗/O×

E ] as the fibres of SpdE → [∗/O×
E ] over perfectoid spaces are

given by BC(L) \ {0} for some line bundle L of slope 1, and this in turn admits covers of the desired form.
Finally, for [∗/O×

E ], we can pass to the étale cover [∗/1 + p2OE ] ∼= [∗/OE ], or to [∗/E]. This, finally,
admits a surjection from a perfectoid open unit disc BC(OXS (1)) with the desired properties by passing to
Banach–Colmez spaces in an exact sequence

0→ OXS → OXS (12)→ OXS (1)→ 0

and using Proposition II.3.4. �

IV.4.5. Deformation to the normal cone. The final step in the proof of Theorem IV.4.2 is a deforma-
tion to the normal cone.

By Proposition IV.4.22 and Proposition IV.4.27 (and Proposition IV.2.33), in order to prove Theo-
rem IV.4.2 it only remains to prove that Rf !F` is invertible and sitting in the expected cohomological
degree. Picking a v-cover T → Msm

Z by some perfectoid space T and using that the formation of Rf !F`
commutes with any base change by Proposition IV.2.15, it suffices to prove the following result.

Proposition IV.4.29. Let S be a perfectoid space and let Z → XS be a smooth map of sous-perfectoid
spaces such that Z admits a Zariski closed immersion into an open subset of (the adic space) PnXS for some
n ≥ 0. Let f : MZ → S be the moduli space of sections of Z → XS . Moreover, let s : XS → Z be a
section such that s∗TZ/XS is everywhere of positive Harder–Narasimhan slopes, and of degree d.
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Let t : S →MZ be the section of f corresponding to s. Then t∗Rf !F` is étale locally on S isomorphic
to F`[2d].

Proof. We will prove this by deformation to the normal cone. In order to avoid a general discussion of
blow-ups etc., we will instead take an approach based on the local structure of Z near a section as exhibited
in the proof of Proposition IV.4.24.

We are free to make v-localizations on S (as being cohomologically smooth can be checked after a v-
cover), and replace Z by an open neighborhood of s(XS). With this freedom, we can follow the proof
of Proposition IV.4.24 and ensure that S = Spa(R,R+) is strictly totally disconnected with pseudouni-
formizer $, the pullback Z[1,q] → YS,[1,q] of Z → XS to

YS,[1,q] = {|π|q ≤ |[$]| ≤ |π|} ⊂ SpaWOE (R
+)

satisfies
πNBrYS,[1,q] ⊂ Z[1,q] ⊂ BrYS,[1,q]

and the gluing isomorphism is given by power series

αi ∈ Ti+1 + πMB+
(R,R+),[1,1]

〈T1, . . . , Tr〉

resp.
αrj ∈ π−djT rj−1+1 + πMB+

(R,R+),[1,1]
〈T1, . . . , Tr〉

with notation following the proof of Proposition IV.4.24. Moreover, the constant coefficients of all αi
vanish. These in fact define a map

ϕ : πdBrYS,[1,1] → BrYS,[q,q]
preserving the origin, where d is the maximum of the dj .

For any n ≥ N, d, we can look at the subset

Z
(n)
[1,q] = πnBrYS,[1,q] ∪ ϕ(π

nBrYS,[1,1]) ⊂ Z[1,q],

which descends to an open subset Z(n) ⊂ Z. Letting T (n)
i = π−nTi, the gluing is then given by power

series α(n)
i given by

α
(n)
i = π−nαi(π

nT1, . . . , π
nTn)

which satisfy the same conditions, but the nonlinear coefficients of α(n)
i become more divisible by π. The

limit
α
(∞)
i = lim−→

n→∞
α
(n)
i ∈ BR,[1,1]〈T1, . . . , Tr〉

exists, and is linear in the Ti.
Let S′ = S × N≥N ∪ {∞}, using the profinite set N≥N ∪ {∞}. Let Z ′ → XS′ be the smooth map of

sous-perfectoid spaces obtained by descending

Z ′
[1,q] = BrYS′,[1,q] ∪ ϕ

′(BrYS′,[q,q])

along the isomorphism ϕ′ given by the power series

α′
i = (α

(N)
i , α

(N+1)
i , . . . , α

(∞)
i ) ∈ BR′,[1,1]〈T1, . . . , Tr〉.
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Then the fibre ofZ ′ → XS′ over S×{n} is given byZ(n), while its fibre over S×{∞} is given by an open
subsetZ(∞) of the Banach–Colmez spaceBC(s∗TZ/XS ). Moreover, lettingS′(>N) ⊂ S′ be the complement
of S×{N}, there is natural isomorphism γ : S′(>N) → S′ given by the shift S×{n+1} ∼= S×{n}, and
this lifts to an open immersion

γ : Z ′(>N) = Z ′ ×XS′ XS′(>N) ↪→ Z ′.

We need to check that Z ′ → XS′ still satisfies the relevant quasiprojectivity assumption.

Lemma IV.4.30. The space Z ′ → XS′ admits a Zariski closed immersion into an open subset of PmXS′
for some m ≥ 0.

Proof. One may perform a parallel construction withZ replaced by an open subset ofPmXS , reducing us
to the case that Z is open in PmXS . In that case, the key observation is that the blow-up of PmXS at the section
s : XS → PmXS is still projective, which is an easy consequence of XS admitting enough line bundles. �

Let f ′ : MZ′ → S′ be the projection, with fibres f (n) and f (∞). By Proposition IV.4.27, both F`
and Rf ′!F` are f ′-universally locally acyclic. In particular, the formation of Rf ′!F` commutes with base
change, and we see that the restriction ofRf ′!F` to the fibre over∞ is étale locally isomorphic to F`[2d], as
an open subset of BC(s∗TZ/XS ). As S is strictly totally disonnected, one can choose a global isomorphism
with F`[2d].

The map from F`[2d] to the fibre of Rf ′!F` over∞ extends to a small neighborhood; passing to this
small neighborhood, we can assume that there is a map

β : F`[2d]→ Rf ′!F`

that is an isomorphism in the fibre over ∞. We can assume that this map is γ-equivariant (passing to
a smaller neighborhood). Let Q be the cone of β. Then Q is still f ′-universally locally acyclic, as is its
Verdier dual

DMZ′/S′(Q) = RHomMZ′ (Q,Rf
′!F`).

In particular,Rf ′!DMZ′/S′(Q) ∈ Det(S
′,F`) is constructible, and its restriction to S×{∞} is trivial. This

implies (e.g. by [Sch17a, Proposition 20.7]) that its restriction to S × {n, n+ 1, . . . ,∞} is trivial for some
n � 0. Passing to this subset, we can assume that Rf ′!DMZ′/S′(Q) = 0. Taking Verdier duals and using
Corollary IV.2.25, this implies that Rf ′∗Q = 0.

In particular, for all n ≥ n0, we have Rf (n)∗ Q|M
Z(n)

= 0. Using the γ-equivariance, this is equivalent
to

Rf
(n)
∗ (Q|M(n0)

Z

)|M
Z(n)

= 0,

regardingMZ(n) ⊂ MZ(n0) as an open subset. Taking the colimit over all n and using that the system
MZ(n) ⊂ MZ(n0) has intersection s(S) ⊂ MZ and is cofinal with a system of spatial diamonds of finite
cohomological dimension (as can be checked in the case of projective space), [Sch17a, Proposition 14.9]
implies that

s∗Q|M
Z(n0)

= lim−→
n

Rf
(n)
∗ (Q|M

Z(n0)
)|M

Z(n)
= 0
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(by applying it to the global sections on any quasicompact separated étale S̃ → S), and thus the map

s∗β|MZ
: F`[2d]→ s∗Rf !F`

is an isomorphism, as desired. This finishes the proof of Proposition IV.4.29 and thus of Theorem IV.4.2.
�

The idea of the preceding proof is the following. Let C → XS × A1 be the open subset of the defor-
mation to the normal cone of s : XS ↪→ Z (we did not develop the necessary formalism to give a precise
meaning to this in the context of smooth sous-perfectoid spaces, but it could be done) whose fiber at 0 ∈ A1

is the normal cone of the immersion s (the divisor over 0 ∈ A1 of the deformation to the normal cone is
the union of two divisors: the projective completion of the normal cone and the blow-up of Z along XS ,
both meeting at infinity inside the projective completion). One has a diagram

XS × A1 � � //

$$

C

��
A1

where outside t = 0 ∈ A1 this is given by the section s : XS ↪→ Z , i.e. the pullback over Gm of the
preceding diagram gives the inclusionXS×Gm ↪→ Z×Gm, and at t = 0 this is the inclusion ofXS inside
the normal cone of the section s. Let us note moreover that C is equipped with a Gm-action compatible
with the one on A1.

This gives rise to an E×-equivariant morphism with an equivariant section

MC

g

��
S × E

s

CC

whose fiber at 0 ∈ E is the zero section of BC(s∗TZ/XS ) → S , and is isomorphic toMZ × E× equipped
with the section s outside of 0. Now, the complex s′∗Rg!F` is E×-equivariant on S × E. Its fiber outside
0 ∈ E , i.e. its restriction to S × E×, is s∗Rf !F`, and its fiber at 0 is F`(d)[2d], d = deg(TZ/XS ) (since g is
universally locally acyclic the dualizing complex commutes with base change).

Now one checks that one can replace the preceding diagram by a quasicompact OE \ {0}-invariant
open subset U ⊂MC together with an equivariant diagram

U

h
��

� � //MC

g

��
S ×OE

t

AA

� � // S × E.

s

CC

In the preceding proof one replaces OE by πN∪{∞} ⊂ OE , which does not change anything for the ar-
gument. One concludes using that ×π “contracts everything to 0” and some constructibility argument
using the fact that U is spatial and some complexes are h-universally locally acyclic (see the argument
“Rf ′!DMZ′/S′(Q) ∈ Det(S

′,F`) is constructible” at the end of the proof of Proposition IV.4.29).
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IV.5. Partial compactly supported cohomology

Let us start by recalling the following basic vanishing result. Let C be a complete algebraically closed
nonarchimedean field with pseudouniformizer $ ∈ C. Let SpaZ((t)) ×Z SpaC = D∗

C be the punctured
open unit disc over C , and consider the subsets

j : U = {|t| ≤ |$|} ↪→ D∗
C , j

′ : U ′ = {|t| ≥ |$|} ↪→ D∗
C

Note that the punctured open unit disc has two “ends”: Towards the origin, and towards the boundary. The
open subsets U and U ′ contain one “end” each.

Lemma IV.5.1. The partially compactly supported cohomology groups

RΓ(D∗
C , j!Λ) = 0 = RΓ(D∗

C , j
′
!Λ)

vanish.

As usual Λ is any coefficient ring killed by an integer n prime to p.

Proof. We treat the vanishing RΓ(D∗
C , j!Λ) = 0, the other one being similar. Let k : D∗

C ↪→ DC be
the inclusion. One has an exact triangle

(kj)!Λ −→ Rk∗j!Λ −→ i∗A
+1−−→

where i : {0} ↪→ DC . One has H0(A) = Λ, H1(A) = Λ(1), H i(A) = 0 for i 6= 0, 1, since A =
lim−→n

RΓ(Un,Λ) with Un = {|t| ≤ |$n|} ⊂ D∗
C being a punctured disc. We thus have to prove that the

preceding triangle induces an isomorphism A
∼−→ RΓc(U,Λ)[1]. Let j̃ : P1

C \ {0,∞} ↪→ P1
C \ {0}. There

is a commutative diagram, obtained by applying RΓ(P1
C ,−) to an obvious diagram of sheaves:

RΓc(U,Λ) RΓ(D∗
C , j!Λ) A

RΓc(P1
C \ {0,∞},Λ) RΓ(P1

C \ {0}, j̃!Λ) A .

'

+1

+1

The left vertical map is an isomorphism by inspection (e.g., reduce to U being an affinoid annulus, and the
standard computation of its (compactly supported) cohomology). It thus suffices to check that

RΓ(P1
C \ {0}, j̃!Λ) = 0,

for example in the algebraic setting using comparison theorems, which is an easy exercise. �

Our goal now is to prove a very general version of such a result. Fix an algebraically closed field k|Fq
and work on Perfk. Let X be a spatial diamond such that f : X → ∗ = Spd k is partially proper with
dim. trg f < ∞. Then the base change X ×k S of X to any spatial diamond S is not itself quasicompact.
Rather, it has two ends, and we will in this section study the cohomology with compact support towards
one of the ends.

To analyze the situation, pick quasi-pro-étale and universally open surjections X̃ → X and S̃ → S

from affinoid perfectoid spaces (using [Sch17a, Proposition 11.24]), and pick maps X̃ → Spa k((t)) and
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S̃ → Spa k((u)) by choosing pseudouniformizers. We get a correspondence

X̃ × S̃

X × S Spa k((t))× Spa k((u)) = D∗
k((u))

where all maps are qcqs, and the left map is (universally) open. Now Spa k((t))× Spa k((u)) is a punctured
open unit disc over Spa k((u)), and one can write it as the increasing union of the affinoid subspaces

{|u|b ≤ |t| ≤ |u|a} ⊂ Spa k((t))× Spa k((u))

for varying rational 0 < a ≤ b < ∞. For any two choices of pseudouniformizers, a power of one divides
the other, so it follows that if Ũa,b ⊂ X̃ × S̃ denotes the preimage of {|t|b ≤ |u| ≤ |t|a}, then the
doubly-indexed ind-system {Ũa,b}0<a≤b<∞ is independent of the choice of the maps X̃ → Spa k((t)), S̃ →
Spa k((u)).

Let Ua,b ⊂ X×S be the image of Ũa,b. As X̃× S̃ → X×S is open, this is a qcqs open subset ofX×S.
Moreover, the doubly indexed ind-system {Ua,b}0<a≤b<∞ is independent of all choices made.

We let Ua =
⋃
b<∞ Ua,b and Ub =

⋃
a>0 Ua,b and let

ja,b : Ua,b → X × S , ja : Ua → X × S , jb : Ub → X × S

be the open immersions. We can now define the cohomology groups of interest, or rather the version of
pushforward along β : X × S → S. As usual, Λ is a coefficient ring killed by some integer n prime to p.

Definition IV.5.2. The functors

Rβ!+, Rβ!− : Det(X × S,Λ)→ Det(S,Λ)

are defined by
Rβ!+C := lim−→

a

Rβ∗(ja!C|Ua),

Rβ!−C := lim−→
b

Rβ∗(jb!C|Ub)

for C ∈ Det(X × S,Λ).

The transition maps here are given by (Rβ∗ applied to) the counits of the adjunction between ja,a′! and
j∗a,a′ , where ja,a′ : Ua ⊂ Ua′ is the open immersion. As the ind-systems of Ua and Ub are independent of
all choices, these functors are canonical.

The main result is the following. Here α : X × S → X and β : X × S → S are the two projections.

Theorem IV.5.3. Assume that C = α∗A⊗L
Λ β

∗B for A ∈ Det(X,Λ) and B ∈ Det(S,Λ). Then

Rβ!+C = 0 = Rβ!−C.

Remark IV.5.4. The essential case for applications is C = α∗A, i.e. B = Λ, and S = Spa k((t)). In
other words, we take any coefficient systemA onX , pull it back toX×Spa k((t)), and then take the partially
compactly supported cohomology (relative to S). However, it is sometimes useful to know the result in the
relative case, i.e. for general S , and then it is also natural to allow twists by B ∈ Det(S,Λ).
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Proof. We write the proof for Rβ!+; the other case is exactly the same. Let X• → X be a simplicial
hypercover by affinoid perfectoid spacesXi = Spa(Ri, R+

i ) which are partially proper over Spa k (i.e., R+
i

is minimal, i.e. the integral closure of k + R◦◦). As X is a spatial diamond, we can arrange that the Xi are
the compactifications of quasi-pro-étale maps to X (since X is spatial it admits an hypercover X• → X
with Xi affinoid perfectoid and Xi → X quasi-pro-étale, since X → Spd k is partially proper this extends
to a hypercover Xc

• → X where Xc
i is Huber’s canonical compactification over Spa(k)); in particular,

gi : Xi → X satisfies dim. trg gi = 0 < ∞. Let β• : X• × S → S be the corresponding projection. We
claim that

Rβ!+C
′

is the limit of Rβ•,!+(C ′|X•×S), for any C ′ ∈ Det(X × S,Λ). Writing C ′ as a limit of its Postnikov
truncations ([Sch17a, Proposition 14.15]), we can assume C ′ ∈ D+

et (X × S,Λ). Now gi : Xi → X is a qcqs
map between spaces partially proper over ∗, so gi is proper, and hence so its base changehi : Xi×S → X×S.
This implies that

Rβi,!+(h
∗
iC

′) = Rβ!+(Rhi∗h
∗
iC

′),

as ja! commutes with Rhi∗ by [Sch17a, Theorem 19.2]. Now by [Sch17a, Proposition 17.3], one sees that
C ′ is the limit of Rhi∗h∗iC ′. But Rβ!+ commutes with this limit, using that the filtered colimit does as
everything lies in D+ (with a uniform bound).

By the preceding reduction (used with C ′ = C), we may assume that X = Spa(R,R+) is an affinoid
perfectoid space. We can even assume thatX has no nonsplit finite étale covers (by taking theXi above to be
compactifications of strictly totally disconnected spaces). In that case, there is a map g : X → Y = SpaK ,
where K is the completed algebraic closure of k((t)), which is necessarily proper (as X and Y are partially
proper over ∗), and as above one has

Rβ!+C = RβY,!+(Rh∗C)

whereβY : Y ×S → S is the projection andh : X×S → Y ×S is the base change of g. LetαY : Y ×S → Y
be the other projection. Then the projection formula (and properness of h) [Sch17a, Proposition 22.11] show
that

Rh∗C = Rh∗(α
∗A⊗L

Λ β
∗B) ∼= Rh∗α

∗A⊗L
Λ β

∗
YB

and Rh∗α∗A ∼= α∗
YRg∗A by proper base change.

In other words, we can reduce to the case X = SpaK ; in particular A ∈ Det(SpaK,Λ) = D(Λ) is
just a complex of Λ-modules. In that case, define Ua,b and Ua as above but taking X = X̃ → Spa k((t)) the
natural map. We claim that in this case for all a > 0

Rβ∗(ja!C|Ua) = 0.

To prove this, it suffices to see that for all a′ > a > 0, the cone of

Rβ∗(ja′!C|Ua′ )→ Rβ∗(ja!C|Ua)

vanishes, as Rβ∗(ja!C|Ua) is the limit of these cones as a′ → ∞. Now these cones depend on only a
quasicompact part of X × S , and hence their formation commutes with any base change in S , cf. [Sch17a,
Proposition 17.6]. Therefore, we can reduce to the case S = Spa(L,L+) for some complete algebraically
closed nonarchimedean field L with open and bounded valuation subring L+ ⊂ L, and check on global
sections RΓ(S,−). Moreover, the cone commutes with all direct sums in C , so one can assume that A ∈
Det(SpaK,Λ) = Det(Λ) is simply given by A = Λ.
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It remains to prove the following statement: For all B ∈ Det(Spa(L,L+),Λ) one has
RΓ(SpaK × Spa(L,L+), ja!B|Ua) = 0.

If the stalk of B at the closed point vanishes, this follows from proper base change (writing SpaK ×
Spa(L,L+) as the union of its subspaces proper over Spa(L,L+)), [Sch17a, Theorem 19.2]. Thus we may
assume that B is concentrated at the closed point of S.

Recall thatUa is defined using a choice of a quasi-pro-étale and universally open cover S̃ → S , together
with a map S̃ → Spa k((u)). As we only care about the closed point ofS , we can assume that S̃ is the product
ofS with a profinite set. The map S̃ → Spa k((u)) is then given by a profinite set worth of maps k((u))→ L.
The resulting subsets {|t| ≤ |u|a} are locally constant on this profinite set, and for any two choices one
is contained in the other. It follows that we may actually define Ua using just one map k((u)) → L (i.e.
S̃ = S). Thus, we can now assume that Ua = {|t| ≤ |u|a}, and we can also reduce to the case that B
is constant. Now using as above that the cones for a′ > a > 0 commute with any base change in S and
commute with direct sums inB, we can reduce toB = Λ and the rank-1-geometric point S = SpaLwhere
L is the completed algebraic closure of k((u)).

At this point, we can further replace SpaK by Spa k((t)): One can write SpaK as the inverse limit over
finite extensions of Spa k((t)), each of which is isomorphic to Spa k((t′)), and although a prioriRΓ(SpaK×
SpaL, ja!Λ) does not take this inverse limit to a colimit, this does happen after passing to cones for maps
for a′ > a > 0, which suffices as above. Finally, we have reduced to Lemma IV.5.1. �

IV.6. Hyperbolic localization

In this section we extend some results of Braden, [Bra03], to the world of diamonds. Our presentation
is also inspired by the work of Richarz, [Ric19]. We will use these results throughout our discussion of
geometric Satake, starting in Section VI.3.

Let S be a small v-stack, and let f : X → S be proper and representable in spatial diamonds with
dim. trg f <∞, and assume that there is aGm-action onX/S , whereGm is the v-sheaf sending Spa(R,R+)
to R×. The fixed point space X0 := XGm ⊂ X defines a closed subfunctor.

We make the following assumption about the Gm-action. Here, (A1)+ (resp. (A1)−) denotes the affine
line Spa(R,R+) 7→ R with the natural Gm-action (resp. its inverse).

Hypothesis IV.6.1. There is a decomposition ofX0 into open and closed subsetsX0
1 , . . . , X

0
n such that

for each i = 1, . . . , n, there are locally closed Gm-stable subfunctors X+
i , X

−
i ⊂ X with X0 ∩X+

i = X0
i

(resp. X0 ∩ X−
i = X0

i ) such that the Gm-action on X+
i (resp. X−

i ) extends to a Gm-equivariant map
(A1)+ ×X+

i → X+
i (resp. (A1)− ×X−

i → X−
i ), and such that

X =
n⋃
i=1

X+
i =

n⋃
i=1

X−
i .

We let

X+ =

n⊔
i=1

X+
i , X− =

n⊔
i=1

X−
i ,

so that there are natural maps
q+ : X+ → X , q− : X− → X,



152 IV. GEOMETRY OF DIAMONDS

as well as closed immersions
i+ : X0 → X+ , i− : X0 → X−

and projections
p+ : X+ → X0 , p− : X− → X0;

here p+ is given by the restriction of (A1)+ ×X+
i → X+

i to {0} ×X+
i , and p− is defined analogously.

Although the decomposition of X0 into X0
i for i = 1, . . . , n is a choice, ultimately the functors X+

and X− are independent of any choice. Indeed, we have the following functorial description.

Proposition IV.6.2. Consider the functor (X+)′ sending any perfectoid space T over S to the set
of Gm-equivariant maps from (A1)+ to X . There is a natural map X+ → (X+)′, as there is a natural
Gm-equivariant map (A1)+ ×X+ → X+ → X . The map X+ → (X+)′ is an isomorphism.

Analogously, X− classifies the set of Gm-equivariant maps from (A1)− to X .

Proof. It is enough to handle the case ofX+. There is a natural map (X+)′ → X0 given by evaluating
the Gm-equivariant map on (A1)+× (X+)′ → X on {0}×X+. Let (X+

i )
′ = (X+)′×X0 X0

i ; it is enough
to prove that X+

i → (X+
i )

′ is an isomorphism. For this, it is enough to prove that the map (X+
i )

′ → X

given by evaluation at 1 is an injection whose image is contained in the locally closed subspace X+
i ⊂ X .

This can be checked after pullback to an affinoid perfectoid base space S = Spa(R,R+). As X/S is proper
(in particular, separated) and Gm× (X+

i )
′ ⊂ (A1)+× (X+

i )
′ is dense, it follows that the map (X+

i )
′ → X

is an injection. To bound its image, we can argue on geometric points. If x ∈ |X| is any point in the
image of |(X+

i )
′|, and$ ∈ R is a pseudouniformizer with induced action γ onX , then the sequence γn(x)

converges to a point of |X0
i | for n → ∞. On the other hand, if x 6∈ |X+

i |, then x ∈ |X+
j | for some j 6= i,

which implies that γn(x) converges to a point of |X0
j | for n→∞; this is a contradiction.

Thus, (X+
i )

′ embeds into X+
i ⊂ X , but it also contains X+

i , so indeed X+
i = (X+

i )
′. �

Lemma IV.6.3. The map j : X0 → X+ ×X X− is an open and closed immersion. More precisely, for
any i = 1, . . . , n, the map ji : X0

i → X+
i ×X X−

i is an isomorphism.

Proof. It is enough to prove that for any i = 1, . . . , n, the map ji : X0
i → X+

i ×X X−
i is an isomor-

phism. As it is a closed immersion (as X0
i → X is a closed immersion and the target embeds into X), it is

enough to prove that it is bijective on geometric rank 1 points. Thus, we can assume S = SpaC , and let
x : SpaC = S → X be a section that factors over X+

i ×X X−
i . Then the Gm-action on x extends to a

Gm-equivariant map g : P1
C → X . Consider the preimage of X+

i under g; this is a locally closed subfunc-
tor, and it contains all geometric points. Indeed, on (A1)+C , the map g factors over X+

i by hypothesis, and
at∞, it maps into X0

i ⊂ X
+
i . This implies that the preimage of X+

i under g is all of P1
C . In particular, we

get a map
(A1)+ × P1

C → (A1)+ ×X+
i → X+

i

which, when restricted to the copy of Gm embedded via t 7→ (t, t−1), is constant with value x. By con-
tinuity (and separatedness of X+

i ), this implies that it is also constant with value x when restricted to A1

embedded via t 7→ (t, t−1), i.e. the point (0,∞) ∈ (A1)+ × P1
C maps to x. On the other hand, when re-

stricted to Gm×{∞}, the map is constant with values inX0
i , and thus by continuity also on (A1)+×{∞}.

This implies that x ∈ X0
i , as desired. �
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In this setup, we can define two functors Det(X,Λ)→ Det(X
0,Λ). We use the diagrams

X± X

X0.

p±

q±

Definition IV.6.4. Define the functors
L+
X/S = R(p+)!(q

+)∗ : Det(X,Λ)→ Det(X
0,Λ),

L−
X/S = R(p−)∗R(q

−)! : Det(X,Λ)→ Det(X
0,Λ),

and a natural transformation L−
X/S → L+

X/S as follows. First, there are natural transformations

R(i+)! = R(p+)!R(i
+)!R(i

+)! → R(p+)! , R(p
−)∗ = (i−)∗(p−)∗R(p−)∗ → (i−)∗,

and the desired transformation L−
X/S → L+

X/S arises as a composite

L−
X/S = R(p−)∗R(q

−)! → (i−)∗R(q−)! → (Ri+)!(q+)∗ → R(p+)!(q
+)∗ = L+

X/S ,

where the middle map (i−)∗R(q−)! → (Ri+)!(q+)∗ of functorsDet(X,Λ)→ Det(X
0,Λ) is defined as the

following composite
(i−)∗R(q−)! → (i−)∗R(q−)!R(q+)∗(q

+)∗

= (i−)∗R(q̃−)∗R(q̃
+)!(q+)∗

→ (i−)∗R(q̃−)∗j∗j
∗R(q̃+)!(q+)∗

= (i−)∗(i−)∗Rj
!R(q̃+)!(q+)∗

= R(i+)!(q+)∗,

using base change in the cartesian diagram

X0 � � j // X+ ×X X−

q̃+

��

q̃− // X+

q+

��
X− q− // X.

Equivalently, it is enough to define for each i = 1, . . . , n a natural transformation (i−i )
∗R(q−i )

! → (Ri+i )
!(q+i )

∗

of functors Det(X,Λ)→ Det(X
0
i ,Λ). As

X0
i

i+i //

i−i
��

X+
i

q+i
��

X−
i

q−i // X

is cartesian, this arises as the composite

(i−i )
∗R(q−i )

! → (i−i )
∗R(q−i )

!R(q+i )∗(q
+
i )

∗ = (i−i )
∗(i−i )∗R(i

+)!(q+i )
∗ = R(i+)!(q+i )

∗.

The following is our version of Braden’s theorem, [Bra03], cf. [Ric19, Theorem B].
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Theorem IV.6.5. For any A ∈ Det(X/Gm,Λ) whose restriction to X we continue to denote by A,
the map

L−
X/SA→ L+

X/SA

is an isomorphism. In fact, moreover for any A+ ∈ Det(X
+/Gm,Λ), the map

R(i+)!A+ → R(p+)!A
+

is an isomorphism, and for any A− ∈ Det(X
−/Gm,Λ), the map

R(p−)∗A
− → (i−)∗A−

is an isomorphism, so that

L−
X/SA = R(p−)∗R(q

−)!A ∼= (i−)∗R(q−)!A ∼= R(i+)!(q+)∗A ∼= R(p+)!(q
+)∗A = L+

X/SA

is a series of isomorphisms.

Before we start with the proof, we prove a certain general result about cohomology groups on spaces
with “two ends”, a flow connecting the two ends, and cohomology of sheaves, equivariant for the flow, that
are compactly supported at only one end.

Proposition IV.6.6. Let S = Spa(R,R+) be an affinoid perfectoid space,$ ∈ R a pseudouniformizer,
let f : Y → S be a partially proper map of locally spatial diamonds, and assume that Y is equipped with a
Gm-action over S. Assume that the quotient v-stack Y /Gm is qcqs. In that case, we can find a quasicompact
open subset V ⊂ Y such that Gm × V → Y is surjective and quasicompact. Write

Gm,S = lim−→
n≥0

Un , Un = {x ∈ Gm,S | |x| ≤ |$|−n},

and let jn : Vn ⊂ Y be the open image of the cohomologically smooth map Un×S V ⊂ Gm,S ×S Y → Y .
In this situation, we define for any A ∈ Det(Y,Λ) the relative cohomology with partial supports

lim−→
n

Rf∗(jn!A|Vn) ∈ Det(S,Λ) ;

this functor is canonically independent of the choices made in its definition.
For any A ∈ D+

et (Y /Gm,Λ) (resp. any A ∈ Det(Y /Gm,Λ) if dim. trg f <∞),

lim−→
n

Rf∗(jn!A|Vn) = 0.

Remark IV.6.7. Assume that S = SpaC is a geometric rank 1 point. Then we set

RΓc+(Y,A) = lim−→
n

RΓ(Y, jn!AVn),

which is exactly the above functor lim−→n
Rf∗(jn!A|Vn) under the identificationDet(S,Λ) = D(Λ). Roughly

speaking, the space Y has two ends, one given by
⋃
n<0 γ

n(V ) for V large enough, where γ is the auto-
morphism of Y induced by $ ∈ Gm(S), and the other given by

⋃
n>0 γ

n(V ). We are considering the
cohomology groups of Y that have compact support in one of these directions, but not in the other. If
one replaces the Gm-action by its inverse, this implies a similar result for the direction of compact support
interchanged.
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Proof. One can assume that A ∈ D+
et (Y /Gm,Λ) by a Postnikov limit argument (in case dim. trg f <

∞). Finding a v-hypercover of Y by spaces with Gm-action of the form Gm×Xi, where eachXi is a proper
spatial diamond over S , and using v-hyperdescent, one reduces to the case Y = Gm × Xi. Then there is
the projection Gm ×Xi → Gm,S , and one reduces to Y = Gm,S . There, A is a sheaf on the base S. One
can now write Gm as an increasing union of punctured discs to reduce to Theorem IV.5.3. �

Proof of Theorem IV.6.5. We can assume that A ∈ D+
et (X/Gm,Λ) by pulling through the Post-

nikov limit lim←−n τ
≥−nA, noting that L+

X/S commutes with limits while (q+)∗ commutes with Postnikov
limits and R(p+)! as well by finite cohomological dimension.

By choosing a v-hypercover of S by disjoint unions of strictly totally disconnected spaces S•, and using
v-hyperdescent, we can assume that S is a strictly totally disconnected space; indeed, L+

X/S commutes with
all limits, while (q+)∗ and R(p+)! commute with any base change and so preserve cartesian objects, and
thus also commute with the hyperdescent.

We start by proving that for any A+ ∈ Det(X
+/Gm,Λ), the map

R(i+)!A+ → R(p+)!A
+

is an isomorphism, and similarly for any A− ∈ Det(X
−/Gm,Λ), the map

R(p−)∗A
− → (i−)∗A−

is an isomorphism. Let j+ : X+ \X0 ↪→ X+, j− : X− \X0 ↪→ X− denote the open embeddings. Then
there are exact triangles

(i+)∗R(i
+)!A+ → A+ → R(j+)∗(j

+)∗A+ , (j−)!(j
−)∗A− → A− → (i−)∗(i

−)∗A−.

Using these triangles, we see that it is enough to see that for any B+ ∈ Det((X
+ \ X0)/Gm,Λ), B− ∈

Det((X
− \X0)/Gm,Λ), one has

R(p+)!R(j
+)∗B

+ = 0 , R(p−)∗R(j
−)!B

− = 0

as objects in Det(X
0,Λ). This follows from Proposition IV.6.6 applied to S = X0 and Y = X+ \ X0

(resp. Y = X− \X0), and the following lemma.

Lemma IV.6.8. The Gm-action onX+ \X0 (resp.X− \X0) has the property that the quotient v-stack
(X+ \X0)/Gm (resp. (X− \X0)/Gm) is qcqs over S (thus, over X0).

Proof. It is enough to do the case of X+ \X0, and we may restrict to X+
i \X0

i . We can assume that
S = Spa(R,R+) is an affinoid perfectoid space, and fix a pseudouniformizer $ ∈ R. As Gm,S/$

Z is qcqs
(in fact proper — a Tate elliptic curve), it is equivalent to prove that (X+ \X0)/γZ is qcqs, where γ is the
automorphism given by the action of $ ∈ Gm(S).

Now we use the criterion of Lemma II.2.17 for the action of γ on |X+
i |. As a locally closed partially

proper subspace of the proper spatial diamond X over S , the locally spectral space |X+
i | is taut, and the

condition on generizations is always fulfilled for locally spatial diamonds. The spectral closed subspace
|X0

i | ⊂ |X
+
i | is fixed by γ, and by assumption for all x ∈ |X+

i |, the sequence γn(x) for n→∞ converges
to a point of |X0

i | (as the Gm-action extends to (A1)+). It remains to see that for all x ∈ |X+
i \ X0

i |, the
sequence γn(x) for n → −∞ diverges in |X+

i |. But x ∈ |X−
j | for some j , and j 6= i by Lemma IV.6.3.
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Thus, γn(x), for n→ −∞, converges to a point of |X0
j |, which is outside of |X+

i |, so the sequence diverges
in |X+

i |. �

Now it remains to see that for any A ∈ D+
et (X/Gm,Λ), the map

(i−)∗R(q−)!A→ R(i+)!(q+)∗A

in D+
et (X

0,Λ) = D+((X0)et,Λ) is an isomorphism. This can be done locally on X0, so fix some i ∈
{1, . . . , n}, and choose a quasicompact open neighborhood U0 ⊂ X of X0

i that does not meet any X0
j for

j 6= i and such that X+
i ∩ U0, X

−
i ∩ U0 ⊂ U0 are closed. The Gm-orbit Y = Gm · U0 ⊂ X is still open,

and contains X+
i and X−

i , necessarily as closed subsets.
We are now in the situation of the next proposition. To check conditions (ii) and (iii) of that propo-

sition, note that we may find a quasicompact open subspace V ⊂ Y such that Y = γZ · V by averaging
U0 over {|$| ≤ |t| ≤ 1} ⊂ Gm. Let W be the closure of

⋃
n≥0 γ

n(V ) ⊂ X . To check (iii), it suffices (by
symmetry) to see that ⋂

m≥0

γm(W ) = X−
i

in X . Note that X−
i ⊂

⋃
n≥0 γ

n(V ) (as for all x ∈ X−
i , the sequence γ−n(x) converges into X0

i ⊂
V ), so X−

i is contained in W , and thus in
⋂
m≥0 γ

m(W ). To prove the converse inclusion, let W ′ =⋂
m≥0 γ

m(W ). If X−
i ( W ′, then there is some j 6= i such that X−

j contains a quasicompact open subset
A ⊂W ′. Then Ã =

⋃
n≥0 γ

−n(A) is a γ−1-invariant open subset ofW ′ whose closure is γ−(N∪{∞}) ·A; in
particular, replacing A by γ−n(A) if necessary, we can arrange that this closure is contained in any given
small neighborhood ofX0

j , and in particular intersectsV trivially. Then γn(V )∩A = γn(V ∩γ−n(A)) = ∅
for all n ≥ 0, and hence A intersects

⋃
n≥0 γ

n(V ) trivially, and then also its closure W . But we assumed
that A ⊂W ′ ⊂W , giving a contradiction. �

Proposition IV.6.9. Let S = Spa(R,R+) be a strictly totally disconnected perfectoid space, let f :
Y → S be a compactifiable map of locally spatial diamonds, and assume that Y /S is equipped with a
Gm-action, with fixed points Y 0 ⊂ Y , and the following properties.

(i) There are Gm-invariant closed subspaces q+ : Y + ⊂ Y , q− : Y − ⊂ Y , containing Y 0 (via i+ : Y 0 →
Y +, i− : Y 0 → Y −) such that the action maps extend to maps (A1)+×Y + → Y + resp. (A1)−×Y − → Y −.
(ii) The quotient v-stack Y /Gm is quasicompact. In particular, picking a pseudouniformizer $ ∈ R with
induced action γ on Y , we can find some quasicompact open V ⊂ Y such that Y = γZ · V .
(iii) With V as in (ii), letW− be the closure of γN ·V andW+ the closure of γ−N ·V . Then

⋂
n≥0 γ

n(W−) =

Y − and
⋂
n≥0 γ

−n(W+) = Y +.

Then Y 0 is a spatial diamond, the diagram

Y 0 i+ //

i−
��

Y +

q+

��
Y − q− // Y
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is cartesian, the quotient v-stacks (Y \Y +)/Gm and (Y \Y −)/Gm are qcqs, and for allA ∈ D+
et (Y /Gm,Λ)

(resp. allA ∈ Det(Y /Gm,Λ) if dim. trg f <∞) whose pullback to Y we continue to denote byA, the map

(i−)∗R(q−)!A→ (i−)∗R(q−)!(q+)∗(q
+)∗A = (i−)∗(i−)∗R(i

+)!(q+)∗A = R(i+)!(q+)∗A

in Det(Y
0,Λ) is an isomorphism.

Proof. Note that Y 0/Gm ⊂ Y /Gm is closed and thus Y 0/Gm is quasicompact. As the Gm-action is
trivial on Y 0, this implies that Y 0 is quasicompact. As Y 0 ⊂ Y is closed and Y → S is compactifiable and
in particular quasiseparated, we see that Y 0 → S is qcqs. That the diagram is cartesian follows from the
proof of Lemma IV.6.3.

Next, we check that (Y \ Y +)/Gm and (Y \ Y −)/Gm are qcqs. By symmetry and as Gm,S/γ
Z is qcqs,

it suffices to see that (Y \ Y −)/γZ is qcqs. First, we check that it is quasiseparated. Take any quasicompact
open subspace V − ⊂ Y \ Y −

i ; we need to see there are only finitely many n with V − ∩ γn(V −) 6= ∅. We
can assume that V − ⊂

⋃
n≥0 γ

n(V ) (translating by a power of γ if necessary), and then V − is covered by
the open subsets V − \ γm(W−) ⊂ V − by the claim above. By quasicompacity, the intersection of V −

with γm(W−) is empty for some large enough m, but then also the intersection of V − with γm′
(V −) ⊂

γm(W−) for m′ ≥ m is empty.

To see that (Y \ Y −)/γZ is quasicompact, note that V \
⋃
n>0 γ

n(V ) is a spectral space (as it is closed
in V ) that maps bijectively to (Y \ Y −)/γZ.

Now, for the cohomological statement, we can as usual assume thatA ∈ D+
et (Y /Gm,Λ) by a Postnikov

limit argument. Then we are interested in checking that a map in D+
et (Y0,Λ) = D+(Y0,et,Λ) (cf. [Sch17a,

Remark 14.14]) is an isomorphism, so we need to check that the sections over all quasicompact separated
étale Y ′

0 → Y0 agree. Now we claim that any such quasicompact separated étale Y ′
0 → Y0 lifts to a Gm-

equivariant quasicompact separated étale map Y ′ → Y ; this will then allow us to assume Y ′
0 = Y0 via

passing to the pullback of everything to Y ′.

To see that one may lift Y ′
0 → Y0 to Y ′ → Y , consider the open subspace V (n) ⊂ Y given as the

intersection of
⋃
m≥n γ

m(V ) with
⋃
m≤−n γ

m(V ). It follows from the topological situation that this is
still quasicompact, and that the intersection of all V (n) is equal to Y0 (using condition (iii)). Let Y (n) = γZ ·
V (n) ⊂ Y . Then γ-equivariant quasicompact separated étale maps to Y (n) are equivalent to quasicompact
separated étale maps to V (n) together with isomorphisms between the two pullbacks to V (n)∩γ(V (n)). The
latter data extends uniquely from Y0 to V (n) for small enough n by [Sch17a, Proposition 11.23]. Repeating
a similar argument after taking a product with Gm,S/γ

Z (which is qcqs), and observing that the Y (n) are
cofinal with their Gm-orbits, one can then attain Gm-equivariance.

We have now reduced to checking the statement on global sections. Now consider the compactification
j : Y ↪→ Y = Y

/S → S. Note that Y satisfies all the same conditions of the proposition. Restricted to Y0,
this gives a quasicompact open immersion j0 : Y0 ↪→ Y0. By the above argument, this quasicompact open
immersion spreads to a quasicompact open immersion intoY , and by taking it small enough in the argument
above, we can assume that it is contained in Y . This allows us to assume that j is quasicompact. In that case
the functor Rj∗ commutes with all operations in question by [Sch17a, Proposition 17.6, Proposition 23.16
(i)]. Thus, we can now moreover assume that Y is partially proper.



158 IV. GEOMETRY OF DIAMONDS

Our goal now is to prove that when Y is partially proper and A ∈ D+
et (Y /Gm,Λ), the map

(i−)∗R(q−)!A→ R(i+)!(q+)∗A

becomes an isomorphism after applying Rf0∗ where f0 : Y0 → S is the proper map. For this, we define
another functor Det(Y,Λ) → Det(S,Λ), as follows. Let jn : Vn =

⋃
m≥−n γ

m(V ) ↪→ Y for n ≥ 0. Then
we consider

A 7→ F (A) = lim−→
n

Rf∗(jn!A|Vn) : Det(Y,Λ)→ Det(S,Λ).

Lemma IV.6.10. Let j− : Y \ Y − → Y , j+ : Y \ Y + → Y denote the open immersions.

(i) If A = Rj−∗ A
− for A− ∈ D+

et ((Y \ Y −)/Gm,Λ), then F (A) = 0.
(ii) If A = j+! A

+ for A+ ∈ D+
et ((Y \ Y +)/Gm,Λ), then F (A) = 0.

Proof. This follows from Proposition IV.6.6 and condition (iii). �

There are natural transformations Rf0∗R(p−)∗R(q−)! → F → Rf0∗R(p
+)!(q

+)∗, and the lemma
implies that these are equivalences when evaluated onA ∈ D+

et (Y /Gm,Λ). Using that also (Y + \Y 0)/Gm

and (Y − \ Y 0)/Gm are qcqs (as closed subspaces of (Y \ Y −)/Gm resp. (Y \ Y +)/Gm) so that we can
apply Proposition IV.6.6 again as in the beginning of the proof of Theorem IV.6.5, we get an isomorphism

Rf0∗(i
−)∗R(q−)!A ∼= Rf0∗R(p

−)∗R(q
−)!A ∼= F (A) ∼= Rf0∗R(p

+)!(q
+)∗A ∼= Rf0∗R(i

+)!(q+)∗A.

We need to see that this implies that also the map

Rf0∗(i
−)∗R(q−)!A→ Rf0∗R(i

+)!(q+)∗A

defined in the statement of the proposition is an isomorphism. For this, observe that this map is an isomor-
phism if and only if for A = j+! A

+ with A+ ∈ Det((Y \ Y +)/Gm,Λ), one has

Rf0∗(i
−)∗R(q−)!A = 0.

But this follows from the existence of some isomorphism

Rf0∗(i
−)∗R(q−)!A ∼= Rf0∗R(i

+)!(q+)∗A = 0,

using (q+)∗A = (q+)∗j+! A
+ = 0. �

Using Theorem IV.6.5, we give the following definition.

Definition IV.6.11. Let f : X → S with Gm-action be as above, satisfying Hypothesis IV.6.1. Let
Det(X,Λ)

Gm-mon ⊂ Det(X,Λ) be the full subcategory generated under finite colimits and retracts by the
image of Det(X/Gm,Λ)→ Det(X,Λ). The hyperbolic localization functor is the functor

LX/S : Det(X,Λ)
Gm-mon → Det(X

0,Λ)

given by L−
X/S
∼= L+

X/S .

We observe that Theorem IV.6.5 implies the following further results.
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Proposition IV.6.12. In the situation of Definition IV.6.11, let g : S′ → S be a map of small v-stacks,
with pullback f ′ : X ′ = X ×S S′ → S′, gX : X ′ → X , g0 : X0′ → X0. Then there are natural
equivalences

g0∗LX/S
∼= LX′/S′g∗X , LX/SRgX∗ ∼= Rg0∗LX′/S′ , LX/SRgX!

∼= Rg0!LX′/S′ , Rg0!LX/S
∼= LX′/S′Rg!X ,

the latter two in case g is compactifiable and representable in locally spatial diamonds with dim. trg g <∞
(so that the relevant functors are defined).

Proof. The first and third assertions are clear for L+
X/S , while the second and fourth assertions are

clear for L−
X/S . �

Proposition IV.6.13. In the situation of Definition IV.6.11, let A ∈ Det(X,Λ)
Gm-mon and B ∈

Det(S,Λ). Let L′
X/S denote the hyperbolic localization functor for the inverse Gm-action. Then there

is natural isomorphism

RHom(LX/S(A), Rf
0!B) ∼= L′

X/SRHom(A,Rf !B).

In particular, taking B = Λ, hyperbolic localization commutes with Verdier duality, up to changing the
Gm-action.

Proof. More generally, for all A ∈ Det(X,Λ) and B ∈ Det(S,Λ), we have a natural isomorphism
RHom(L+

X/S(A), Rf
0!B) ∼= L′−

X/SRHom(A,Rf !B). Indeed,

RHom(L+
X/S(A), Rf

0!B) = RHom(R(p+)!(q
+)∗A,Rf0!B) ∼= R(p+)∗RHom((q+)∗A,R(p+)!Rf0!B)

∼= R(p+)∗RHom((q+)∗A,R(q+)!Rf !B) ∼= R(p+)∗R(q
+)!RHom(A,Rf !B).

�

Proposition IV.6.14. In the situation of Definition IV.6.11, assume that A ∈ Det(X,Λ)
Gm-mon is

f -universally locally acyclic. Then LX/S(A) ∈ Det(X
0,Λ) is universally locally acyclic with respect to

f0 : X0 ⊂ X → S.

Proof. As the assumption is stable under base change, we may assume that S is strictly totally discon-
nected, and it suffices to see that LX/S(A) is f0-locally acyclic. For condition (a), we can in fact assume
that S = Spa(C,C+) is strictly local; let j : S0 = Spa(C,OC) ⊂ S be the generic open point. Then we
have to see that LX/S(A) = Rj0∗(LX/S(A)|X0×SS0

), where j0 : X0×S S0 → X0 is the pullback of j. But
this follows from Proposition IV.6.12 and the corresponding property of A.

For condition (b), it suffices to see that the functor RHomΛ(LX/S(A), Rf
0!−) commutes with all

direct sums, as then its left adjoint Rf0! (LX/S(A) ⊗L
Λ −) preserves perfect-constructible complexes. For

this, we compute this functor:

RHomΛ(LX/S(A), Rf
0!−) ∼= L′

X/SRHomΛ(A,Rf
!−)

∼= L′
X/S(DX/S(A)⊗L

Λ f
∗−).

Here, we used Proposition IV.6.13 and Proposition IV.2.19. The final functor clearly commutes with all
direct sums, giving the desired result. �
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IV.7. Drinfeld’s lemma

As a final topic of this chapter, we prove the version of Drinfeld’s lemma that we will need in this
paper. Contrary to the classical formulation [Dri80, Theorem 2.1], cf. also [Lau04, Theorem 8.1.4], this
version actually makes the Weil group of E , not the absolute Galois group of E , appear. (Also, it is worth
remarking that usually, a global Galois group appears, not a local Galois group.)

In this section, we work on Perfk where k = Fq. In that case, we can write the moduli space of de-
gree 1 Cartier divisors on the Fargues–Fontaine curve as Div1 = Spd Ĕ/ϕZ, where ϕ acts on Spd Ĕ =
Spd k ×SpdFq SpdE via the second factor. This admits a natural map

ψ : Div1 → [∗/WE ]

to the classifying space of the Weil group ofE. Indeed, ifC = Ê is a completed algebraic closure ofE , then
there is an action of WE on SpdC , with the inertia subgroup IE ⊂ WE acting via its usual action, while
Frobenius elements act via the composite of the usual action and the Frobenius of SpdC. More precisely,
τ ∈WE acts as τ ◦ Frob− deg τ where deg :WE → Z is the projection; note that this as a map over Spd k as
on Spd k the two Frobenii cancel. The natural map

[SpdC/WE ]→ [Spd Ĕ/ϕZ]

is an isomorphism, thus yielding the natural map

ψ : [Spd Ĕ/ϕZ] ∼= [SpdC/WE ]→ [∗/WE ].

One could equivalently compute
WE × SpdC ∼= SpdC ×Div1 SpdC

for the natural map SpdC → Div1 to arrive at the result.
In particular, for any small v-stack X , we get a natural map

ψX : X ×Div1 → X × [∗/WE ].

As usual, Λ is a ring killed by some integer n prime to p.

Proposition IV.7.1. The functor
ψ∗
X : Det(X × [∗/WE ],Λ)→ Det(X ×Div1,Λ)

is fully faithful. If the natural pullback functor
Det(X,Λ)→ Det(X × SpdC,Λ)

is an equivalence, then ψ∗
X is also an equivalence.

Proof. We apply descent along ∗ → [∗/WE ]. This describesDet(X× [∗/WE ],Λ) in terms of cartesian
objects inDet(X×WE

•,Λ), andDet(X×Div1,Λ) in terms of cartesian objects inDet(X×SpdC×WE
•,Λ).

By [Sch17a, Theorem 1.13], all functorsDet(X×WE
•,Λ)→ Det(X× SpdC×WE

•,Λ) are fully faithful;
this implies the fully faithfulness. Moreover, for essential surjectivity on cartesian objects it is enough to
know essential surjectivity on the degree 0 part of the simplicial resolution, i.e. for Det(X,Λ)→ Det(X ×
SpdC,Λ), giving the desired result. �

We note the following immediate corollary.
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Corollary IV.7.2. For any finite set I , pullback along X × (Div1)I → X × [∗/W I
E ] induces a fully

faithful functor
Det(X × [∗/W I

E ],Λ)→ Det(X × (Div1)I ,Λ).

Proof. This follows inductively from Proposition IV.7.1. �

We need the following refinement, see Proposition VI.9.2. For any small v-stack Y , let

Dlc(Y,Λ) ⊂ Det(Y,Λ)

be the full subcategory of all objects that are v-locally constant with perfect fibres. (Being v-locally constant
with perfect fibres is equivalent to dualizability, and on spatial diamonds such objects are actually étale
locally constant, as follows from [Sch17a, Proposition 20.15].)

Proposition IV.7.3. For any finite set I and any small v-stack X , the functor

Dlc(X × [∗/W I
E ],Λ)→ Dlc(X × (Div1)I ,Λ)

is an equivalence of categories.

We will mostly be using this in case X is a point. The equivalence certainly fails without the local
constancy condition, as there are sheaves supported on proper subsets of |(Div1)I |, like the partial diagonals.

Proof. By Corollary IV.7.2, the functor is fully faithful. By induction, we can reduce to the case that
I has one element. By descent, we can assume that X is strictly totally disconnected. Note that X ×Div1
is a spatial diamond, and using [Sch17a, Proposition 20.15] we can reduce to the case thatX = Spa(C,C+)
is strictly local (by writing any connected component as a cofiltered inverse limit of its open and closed
neighborhoods to see that then any object is locally in the image of the functor). Moreover, the category
Dlc is unchanged if we replace Spa(C,C+) by Spa(C,OC), so we can assume that X is even a geometric
rank 1 point.

At this point, we need to simplify the coefficient ring Λ. The algebra Λ is a Z/nZ-algebra for some n
prime to p; we can then assume n is a power of some prime ` 6= p, and in fact even n = ` by an induction
argument. By [Sch17a, Proposition 20.15], we can also assume that Λ is a finitely generated F`-algebra.
Taking a surjection from a polynomial algebra, one can then assume that Λ = F`[T1, . . . , Td]. Applying
[Sch17a, Proposition 20.15] again, we can assume that Λ is the localization of F`[T1, . . . , Td] at a closed
point, or applying faithfully flat descent in the coefficients, that Λ is the completion of F`[T1, . . . , Td] at a
closed point, but equipped with the discrete topology. Also note that this ring is regular, so all truncations
of perfect complexes are perfect, and we can assume that the complex is concentrated in degree 0.

We are now in the following situation. We have an étale sheaf A of Λ ∼= F`r [[T1, . . . , Td]]-modules on
S = SpaC × Div1, such that for some finitely generated Λ-module M , there are étale local isomorphisms
between A and the constant Λ-module associated to M . Our goal is to see that after pullback along the
WE-torsor

S̃ = SpaC × Spd Ê → S = SpaC ×Div1,
there is an isomorphism between A and M . To see this, we will also need to analyze the behaviour at a
carefully chosen geometric point. In fact, by Lemma II.1.14 we can find a point SpaK → YC of the curve
YC associated with C such that the induced map Gal(K|K) → IE is surjective. This induces a point
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y : SpdK → S , and we can lift it to a geometric point ỹ : Spd K̂ → S̃. DefineM as the stalk ofA at ỹ; our
goal is then to prove the existence of a unique isomorphism between A|S̃ and M that is the identity at ỹ.

To prove this, we first reduce modulo (T1, . . . , Td)
n. Then Λn := Λ/(T1, . . . , Td)

n is a finite ring,
and the space of isomorphisms between A/(T1, . . . , Td)n and M/(T1, . . . , Td)

n is parametrized by a space
finite étale over S. By [SW20, Lemma 16.3.2], all such finite étale covers come via pullback from finite étale
covers of Div1, and are thus trivialized after pullback to S̃; this implies that there is a unique isomorphism
A/(T1, . . . , Td)

n ∼=M/(T1, . . . , Td)
n reducing to the identity at ỹ.

Taking the limit over n, we get an isomorphism Â|S̃ ∼= M̂ |S̃ between the pro-étale sheaves Â =

lim←−nA/(T1, . . . , Td)
n and M̂ = lim←−nM/(T1, . . . , Td)

n after pullback to S̃. This gives in particular an
automorphism of M̂ over

S̃ ×S S̃ ∼=WE × S̃,
and thus by connectedness of S̃ a continuous map WE → AutΛ(M̂) (in fact, it extends continuously to
the absolute Galois group of E). We claim that this map is trivial on an open subgroup of IE (but not
necessarily on an open subgroup of the absolute Galois group ofE — here it is necessary to pass to the Weil
group). Indeed, restricting the map WE → AutΛ(M̂) to Gal(K|K) gives a map Gal(K|K) → AutΛ(M̂)
that is in fact continuous for the discrete topology on the target, as a local system of Λ-modules on SpdK
is given by a continuous representation of Gal(K|K). As Gal(K|K)→ IE is surjective, we get the claim.

By equivariance under an open subgroup of IE , we find that the isomorphism Â|S̃ ∼= M̂ |S̃ descends,
necessarily uniquely, to an isomorphism over

SpaC × SpdE′

for some finite extensionE′|Ĕ. Now we take the pushforward of the isomorphism Â|SpaC×SpdE′ ∼= M̂ |SpaC×SpdE′

to the small étale site of SpaC × SpdE′. As any étale U → SpaC × SpdE′ is locally connected, we have
H0(U,M) = H0(U, M̂) and then also H0(U,A) = H0(U, Â) (as A is étale locally isomorphic to M ) for
all such U , so we get the desired isomorphism A|SpaC×SpdE′ ∼=M |SpaC×SpdE′ . �



CHAPTER V

Det(BunG)

In this chapter, we want to understand the basic structure of Det(BunG,Λ), building it up from all
Det(BunbG,Λ), where we continue to work in the setting where Λ is killed by some integer n prime to p.

Throughout this chapter, we fix an algebraically closed field k|Fq and work on Perfk. Our goal is to
prove the following theorem.

Theorem V.0.1 (Theorem V.3.7, Proposition V.3.6; Proposition V.2.2, Theorem V.1.1; Theorem V.4.1;
Theorem V.5.1; Theorem V.7.1). Let Λ be any ring killed by some integer n prime to p.

(o) For any b ∈ B(G), there is a map
πb :Mb → BunG

that is representable in locally spatial diamonds, partially proper and cohomologically smooth, whereMb

parametrizes G-bundles E together with an increasing Q-filtration whose associated graded is, at all geo-
metric points, isomorphic to Eb with its slope grading. The v-stackMb is representable in locally spatial
diamonds, partially proper and cohomologically smooth over [∗/Gb(E)].
(i) Via excision triangles, there is an infinite semiorthogonal decomposition of Det(BunG,Λ) into the vari-
ous Det(BunbG,Λ) for b ∈ B(G).
(ii) For each b ∈ B(G), pullback along

BunbG ∼= [∗/G̃b]→ [∗/Gb(E)]

gives an equivalence
Det([∗/Gb(E)],Λ) ∼= Det(BunbG,Λ),

and Det([∗/Gb(E)],Λ) ∼= D(Gb(E),Λ) is equivalent to the derived category of the category of smooth
representations of Gb(E) on Λ-modules.
(iii) The category Det(BunG,Λ) is compactly generated, and a complex A ∈ Det(BunG,Λ) is compact if
and only if for all b ∈ B(G), the restriction

ib∗A ∈ Det(BunbG,Λ) ∼= D(Gb(E),Λ)

is compact, and zero for almost all b. Here, compactness in D(Gb(E),Λ) is equivalent to lying in the thick
triangulated subcategory generated by c-IndGb(E)

K Λ as K runs over open pro-p-subgroups of Gb(E).
(iv) On the subcategoryDet(BunG,Λ)ω ⊂ Det(BunG,Λ) of compact objects, there is a Bernstein–Zelevinsky
duality functor

DBZ : (Det(BunG,Λ)ω)op → Det(BunG,Λ)ω

with a functorial identification
RHom(A,B) ∼= π\(DBZ(A)⊗L

Λ B)

163
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for B ∈ Det(BunG,Λ), where π : BunG → ∗ is the projection. The functor DBZ is an equivalence, and
D2
BZ is naturally equivalent to the identity. It is compatible with usual Bernstein–Zelevinsky duality on

D(Gb(E),Λ) for basic b ∈ B(G).
(v) An objectA ∈ Det(BunG,Λ) is universally locally acyclic (with respect to BunG → ∗) if and only if for
all b ∈ B(G), the restriction

ib∗A ∈ Det(BunbG,Λ) ∼= D(Gb(E),Λ)

is admissible, i.e. for all pro-p open subgroups K ⊂ Gb(E), the complex (ib∗A)K is perfect. Universally
locally acyclic complexes are preserved by Verdier duality, and satisfy Verdier biduality.

V.1. Classifying stacks

First, we want to understand Det([∗/G],Λ) for a locally pro-p-group G. Fix a coefficient ring Λ such
that nΛ = 0 for some n prime to p, and assume that G is locally pro-p. Our aim is to prove the following
theorem.

Theorem V.1.1. Let D(G,Λ) be the derived category of the category of smooth representations of G
on Λ-modules. There is a natural symmetric monoidal equivalence

D(G,Λ) ' Det([∗/G],Λ)
under which the functorD(G,Λ)→ D(Λ) forgetting theG-action gets identified with the pullback func-
tor Det([∗/G],Λ)→ Det(∗,Λ) = D(Λ) under the projection ∗ → [∗/G].

The same result holds true for the base change [SpaC/G] = [∗/G] × SpaC for any complete alge-
braically closed nonarchimedean field C/k; more precisely, the base change functor

Det([∗/G],Λ)→ Det([SpaC/G],Λ)
is an equivalence.

Note that indeed
Det(∗,Λ) = D(Λ).

This follows from applying [Sch17a, Theorem 1.13 (ii)] to the small v-stackX = ∗. In fact, for any complete
algebraically closed field C , one has Det(SpaC,Λ) = D(Λ) and there is a sequence

D(Λ) −→ Det(∗,Λ)
fully faithful−−−−−−−−→ Det(SpaC,Λ) = D(Λ)

whose composite is the identity, and D(Λ)→ Det(∗,Λ) is thus an equivalence.

Proof. We start by constructing a functor
D(G,Λ)→ Det([∗/G],Λ)

compatible with the derived tensor product and the forgetful functors. For this, one first constructs a
functor from the category of smooth representations of G on Λ-modules to the heart of Det([∗/G],Λ);
note that this heart is a full subcategory of the heart ofD([∗/G]v,Λ), which is the category of v-sheaves on
[∗/G]. Now one can send a smooth G-representation V to the v-sheaf FV on [∗/G] that takes a perfectoid
space X with a G-torsor X̃ → X to the set of all continuous G-equivariant maps from |X̃| to V . In fact
one checks that for any perfectoid space S and any locally profinite set A,

|S ×A| = |S| ×A,
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and thus |X̃| has a continuous G-action. As v-covers induce quotient maps by [Sch17a, Proposition 12.9],
this is indeed a v-sheaf. Moreover, after pullback along ∗ → [∗/G], it is given by the functor which sendsX
to the set of continuousG-equivariant maps from |X|×G = |X×G| to V . These are canonically the same
(via restriction to X × {1}) as continuous maps |X| → V , so that FV |∗ = V is the v-sheaf corresponding
to V . As V is discrete, this is a disjoint union of points, and in particular (after pullback to any SpaC) an
étale sheaf. According to [Sch17a, Definition 14.13], this implies that FV ∈ Det([∗/G],Λ), as desired.

From now on, we will simply write V forFV . Given any complex of smoothG-representations V •, one
can form the corresponding complex V • of v-sheaves on [∗/G], which defines an object ofDet([∗/G],Λ) ⊂
D([∗/G]v,Λ) (using [Sch17a, Proposition 14.16]), giving the desired functor D(G,Λ) → Det([∗/G],Λ)
compatible with the forgetful functors, using exactness of V 7→ FV . One checks that this functor is com-
patible with derived tensor products by unraveling the definitions.

To check whether the functor is an equivalence, we may by [Sch17a, Theorem 1.13 (ii)] replace [∗/G] by
its base change [SpaC/G] = [∗/G]×SpaC , whereC is some complete algebraically closed nonarchimedean
field.

For the v-stack X = [SpaC/G], we can also consider its étale site Xet ⊂ Xv consisting of all Y ∈ Xv

which are étale (and locally separated) over X . This recovers a classical site.

Lemma V.1.2. The étale site Xet is equivalent to the category G- Set of discrete G-sets, via sending a
discrete set S with continuous G-action to [S × SpaC/G].

Proof. It is clear that the functor S 7→ [S × SpaC/G] maps to Xet ⊂ Xv (as the pullback to SpaC is
given by S × SpaC), and is fully faithful. Conversely, if Y → X = [SpaC/G] is étale, then the pullback
of Y to SpaC is a discrete set, on which G acts continuously, giving the descent datum defining Y . �

Lemma V.1.3. There is a natural equivalence D(G,Λ) ' D(G- Set,Λ), such that the following dia-
gram commutes

D(G,Λ)
∼= //

��

D(G- Set,Λ)
∼= // D([SpaC/G]et,Λ)

��
Det([∗/G],Λ) �

� // Det([SpaC/G],Λ).

Proof. It is enough to give an equivalence of abelian categories between smooth G-representations
on Λ-modules, and sheaves of Λ-modules on discrete G-sets. The construction of the functor is as before:
Send a smooth representation V to the sheaf sending some discrete G-set S to the Λ-module of continuous
G-equivariant maps S → V . This functor is clearly fully faithful. But any sheaf of Λ-modulesF onG- Set
comes from the smooth G-representation V = lim−→H⊂GF(G/H), where H runs over all open subgroups
of G. One directly verifies that the diagram commutes. �

It remains to see that the natural functor
D([SpaC/G]et,Λ)→ Det([SpaC/G],Λ)

is an equivalence. We claim that this reduces to the case that G is pro-p: We first reduce fully faithfulness
to this case. For this, we have to see that, if λ : Xv → Xet denotes the map of sites, then for any A ∈
D([SpaC/G]et,Λ), the natural map

A→ Rλ∗λ
∗A
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is an equivalence. This can be checked locally on [SpaC/G]et, meaning that we can replace G by an open
pro-p-subgroup. Similarly, for essential surjectivity, one needs to see that for all B ∈ Det([SpaC/G],Λ),
the map λ∗Rλ∗B → B is an equivalence, which can again be checked locally.

Thus, we can assume thatG is pro-p. Note that ([SpaC/G]et,Λ) is locally of cohomological dimension
0, as there is no continuous group cohomology of pro-p-groups on Λ-modules if nΛ = 0 for n prime to
p. This implies (cf. [Sta, Tag 0719]) that D([SpaC/G]et,Λ) is left-complete. As Det([SpaC/G],Λ) is also
left-complete by [Sch17a, Proposition 14.11], it is enough to see that the functor

D+([SpaC/G]et,Λ)→ D+
et ([SpaC/G],Λ)

is an equivalence. First, we check fully faithfulness, i.e. that the unit id → Rλ∗λ
∗ of the adjunction is

an equivalence. For this, it is enough to see that for any étale sheaf of Λ-modules, i.e. any smooth G-
representation V , one has

RΓ([SpaC/G]v, V ) = V G,

i.e. its H0 is V G and there are no higher H i. However, one can compute v-cohomology using the Cech
nerve for the cover SpaC → [SpaC/G], which produces the complex of continuous cochains, giving the
desired result.

Finally, for essential surjectivity, it is now enough to check on the heart. But if F is a v-sheaf on
[SpaC/G] whose pullback to SpaC is an étale sheaf, then this pullback is a disjoint union of points, thus
separated and étale, and thereforeF is itself a v-stack which is étale over [SpaC/G], and so defines an object
in the topos [SpaC/G]et. �

Corollary V.1.4. The operation
RHomΛ(−,Λ) : Det([∗/G],Λ)op → Det([∗/G],Λ)

corresponds to the derived smooth duality functor
A 7→ (A∗)sm : D(G,Λ)op → D(G,Λ)

induced on derived categories by the left-exact smooth duality functor
V 7→ (V ∗)sm = {f : V → Λ | ∃H ⊂ G open ∀h ∈ H, v ∈ V : f(hv) = f(v)}.

Proof. The operation A 7→ (A∗)sm on D(G,Λ) satisfies the adjunction

HomD(G,Λ)(B, (A
∗)sm) = HomD(G,Λ)(B ⊗L

Λ A,Λ)

for all B ∈ D(G,Λ). As RHomΛ(−,Λ) is characterized by the similar adjunction in Det([∗/G],Λ) and
the equivalence is symmetric monoidal, we get the result. �

V.2. Étale sheaves on strata

We want to describe Det(BunG,Λ) via its strata BunbG. For this, we need the following result saying
roughly that connected Banach–Colmez spaces are “contractible”.

Proposition V.2.1. Let f : S′ → S be a map of small v-stacks that is a torsor underBC(E) resp.BC(E [1]),
where E is a vector bundle on XS that is everywhere of positive (resp. negative) slopes. Then the pullback
functor

f∗ : Det(S,Λ)→ Det(S
′,Λ)

is fully faithful.
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Proof. By descent [Sch17a, Proposition 17.3, Remark 17.4], the problem is v-local on S , and in par-
ticular one can assume that the torsor is split. In the positive case, we can use Corollary II.3.3 (iv) to find
pro-étale locally on S a short exact sequence

0→ OXS ( 1
2r )

m′ → OXS (1r )
m → E → 0,

inducing a similar sequence on Banach–Colmez spaces. This reduces us to the case E = OXS ( 1n) for some n
(as then pullback under BC(OXS (1r )

m)→ S is fully faithful, as is pullback under BC(OXS (1r )
m)→ S′ =

BC(E)). In that case, BC(E) is a 1-dimensional perfectoid open unit ball over S by Proposition II.2.5 (iv),
in particular cohomologically smooth. It suffices to see that Rf ! is fully faithful, for which it suffices that
for all A ∈ Det(S,Λ), the adjunction map

Rf!Rf
!A→ A

is an equivalence. But note that both Rf! and Rf ! commute with any base change by [Sch17a, Proposition
22.19, Proposition 23.12]. Thus, we may by passage to stalks reduce to the case S = Spa(C,C+) where
C is a complete algebraically closed nonarchimedean field and C+ ⊂ C an open and bounded valuation
subring, and (as we reduced to the stalk) we only need to check the statement on global sections. If the
stalk of A at the closed point s ∈ S is zero, then the same holds true for Rf!Rf !A as Rf !A agrees with
f∗A up to twist, so this follows from the commutation of Rf! with extension by zero. This allows us to
reduce to the case that A is constant, and then as both Rf ! and Rf! commute with all direct sums, even to
the case A = Λ. Thus, we are reduced to the computation of the cohomology of the perfectoid open unit
disc, which is known.

The case of negative Banach–Colmez spaces follows by taking an exact sequence

0→ E → OXS (d)
m → G → 0

with d > 0 (and hence G of everywhere positive slopes) and using the exact sequence

0→ BC(OXS (d)
m)→ BC(G)→ BC(E [1])→ 0. �

Now we can formulate the desired result.

Proposition V.2.2. For any b ∈ B(G), the map

BunbG = [∗/G̃b]→ [∗/Gb(E)]

induces via pullback an equivalence

Det(Gb(E),Λ) ∼= Det([∗/Gb(E),Λ]) ∼= Det([∗/G̃b],Λ).

Moreover, for any complete algebraically closed nonarchimedean field C/k, the map

Det([∗/G̃b],Λ)→ Det([SpaC/G̃b],Λ)

is an equivalence.

Proof. Using [Sch17a, Theorem 1.13] and Theorem V.1.1, it is enough to prove that the functor

Det([SpaC/Gb(E)],Λ)→ Det([SpaC/G̃b],Λ)
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is an equivalence. For this, it is enough to prove that pullback under the section [SpaC/Gb(E)] →
[SpaC/G̃b] induces a fully faithful functor

Det([SpaC/G̃b],Λ)→ Det([SpaC/Gb(E)],Λ),

which follows from Proposition III.5.1 and Proposition V.2.1. �

We see that Det(BunG,Λ) is glued from the categories Det(BunbG,Λ) ∼= D(Gb(E),Λ), which are en-
tirely representation-theoretic.1 In particular, this implies that the base field plays no role:

Corollary V.2.3. For any complete algebraically closed nonarchimedean field C and any locally
closed substack U ⊂ BunG, the functor

Det(U,Λ)→ Det(U × SpaC,Λ)

is an equivalence of categories.

Although this seems like a purely technical result, it will actually play a key role when we study Hecke
operators.

Proof. Fully faithfulness holds true by [Sch17a, Theorem 1.13 (ii)]. To see that it is an equivalence of
categories, it is enough to check on all quasicompact locally closed substacksU ⊂ BunG. These are stratified
into finitely many locally closed substacks BunbG ⊂ BunG, and thus any object of Det(U × SpaC,Λ) is
filtered by objects !-extended from Det(BunbG× SpaC,Λ). By fully faithfulness, it suffices to show that all
the graded pieces lie in the essential image of Det(U,Λ). Now the result follows from Proposition V.2.2
(and compatibility of !-extension with base change to SpaC). �

V.3. Local charts

For any b ∈ B(G) we wish to construct a chart

πb :Mb → BunG

whose image contains BunbG, such that πb is separated, representable in locally spatial diamonds and coho-
mologically smooth, and whose geometry can be understood explicitly.

Example V.3.1. Before we discuss the general case, let us briefly discuss the first interesting case, namely
G = GL2 and the non-basic element b corresponding to O(1)⊕O. In that case, we letMb be the moduli
space of extensions

0→ L → E → L′ → 0

whereL is of degree 0 andL′ is of degree 1. Mapping such an extension to E defines the mapMb → BunG.

Note that there is a natural E× × E×-torsor M̃b → Mb, parametrizing isomorphisms L ∼= O and
L′ ∼= O(1). On the other hand, it is clear that M̃b = BC(O(−1)[1]) is a negative absolute Banach–Colmez
space; thus,Mb is very explicit.

1It would be very interesting to understand the gluing of these categories in terms of pure representation theory.
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Any extension E parametrized by Mb is either isomorphic to O ⊕ O(1), or to O(12). The fibres of
πb : Mb → BunGL2 over a rank 2 bundle E are given by an open subset of the projectivized Banach–
Colmez space (BC(E) \ {0})/E×. Thus, these fibres interpolate between (BC(O(12)) \ {0})/E

×, which is
cohomologically smooth by Proposition II.3.7, and an open subset of

(BC(O ⊕O(1)) \ {0})/E× = (E × Spd k[[t1/p
∞
]] \ {(0, 0)})/E×.

That open subspace is still cohomologically smooth, although E × Spd k[[t1/p∞ ]] is not — the quotient by
E× gets rid of the disconnected nature of the space. In this case, and in fact in complete generality for all
b ∈ B(GLn), one can actually check cohomological smoothness of πb by hand. To handle the general case,
we had to prove the Jacobian criterion, Theorem IV.4.2.

Coming back to the general case, we can in fact construct allMb together, as follows.

Definition V.3.2. The v-stackM is the moduli stack taking S ∈ Perfk to the groupoid of G-bundles
E on XS together with an increasing separated and exhaustive Q-filtration (ρ∗E)≤λ ⊂ ρ∗E (ranging over
algebraic representations ρ : G → GLn, and compatible with exact sequences and tensor products) on the
corresponding fibre functor such that (letting (ρ∗E)<λ =

⋃
λ′<λ(ρ∗E)≤λ

′) the quotient

(ρ∗E)λ = (ρ∗E)≤λ/(ρ∗E)<λ

is a semistable vector bundle of slope λ, for all λ ∈ Q and representations ρ : G→ GLn.

Note that by passing to the associated graded,Mmaps to the moduli stack ofG-bundles in the category
of Q-graded vector bundles onXS where the weight λ piece is semistable of slope λ. By Proposition III.4.7,
this is isomorphic to

⊔
b∈B(G)[∗/Gb(E)]. In particularM decomposes naturally into a disjoint union

M =
⊔

b∈B(G)

Mb,

and for each b ∈ B(G), we have natural maps

qb :Mb → [∗/Gb(E)].

Example V.3.3. When G = GLn,M sends S to the groupoid of filtered vector bundles 0 = Fil0 E (
Fil1 E ( · · · ( Filr E = E for some r, such that Fili+1 E/Fili E is semistable and the slopes (µ(Fili+1 E/Fili E))0≤i<r
form an increasing sequence (the opposite condition to the one defining the Harder–Narasimhan filtration
of a vector bundle). The maps qb send such a vector bundle to the graded vector bundle

⊕r−1
i=0 Fili+1 E/Fili E .

Example V.3.4. Suppose G is quasisplit. Let Mb be the centralizer of the slope morphism, which is a
Levi subgroup. Let Pb be the parabolic subgroup with Levi Mb such that the weights of νb on Lie Pb are
positive. There is a diagram

BunPb BunG

BunMb
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induced by the inclusion Pb ⊂ G and the quotient map Pb →Mb. There is a cartesian diagram

Mb BunPb

BunbMb
BunMb

.

Proposition V.3.5. For any b ∈ B(G), the map

qb :Mb → [∗/Gb(E)].

is partially proper, representable in locally spatial diamonds, and cohomologically smooth, of dimension
〈2ρ, νb〉. In fact, after pullback along ∗ → [∗/Gb(E)], it is a successive torsor under negative Banach–
Colmez spaces.

In particular,Mb is a cohomologically smooth Artin v-stack, of dimension 〈2ρ, νb〉.

Proof. It suffices to check everything after pullback by the v-cover ∗ → [∗/Gb(E)], inducing M̃b →
Mb. LetH → XS be the automorphism group of Eb → XS , see Proposition III.5.2, the pure inner twisting
of G × XS by Eb. This is equipped with a parabolic subgroup H≤0, and moreover a filtration (H≤λ)λ≤0

with unipotent radicalH<0. This is the opposite parabolic subgroup to the one used in the proof of Propo-
sition III.5.1. Then M̃b(S) is identified with the set ofH<0-torsors onXS . The result is deduced using the
description of the graded pieces of (H≤λ)λ<0 as vector bundles of negative slopes. �

We first prove some structural results aboutMb and its universalGb(E)-torsor M̃b →Mb. A general
theme here is the subtle distinction between the absolute property of being a (locally spatial) diamond
(which M̃b is not, but it has a large open part M̃◦

b ⊂ M̃b that is) and the relative notion of M̃b → ∗ being
representable in (locally spatial) diamonds (which M̃b is), and some related subtle distinctions on absolute
and relative quasicompactness.

Proposition V.3.6. The mapMb → [∗/Gb(E)] has a section [∗/Gb(E)] →Mb given by the closed
substack where E is (at every geometric point) isomorphic to Eb, in which case (ρ∗E)≤λ ⊂ ρ∗E is a splitting
of the Harder–Narasimhan filtration of ρ∗E for all representations ρ : G→ GLn.

Consider the open complementM◦
b =Mb \ [∗/Gb(E)], with preimage M̃◦

b = M̃b \ {∗}. Then M̃◦
b

is a spatial diamond.
Moreover, if Uπ := νNb (π) ∈ Gb(E) for any large enough N (so that νNb : Gm → Gb is a well-defined

cocharacter), then M̃◦
b/U

Z
π → ∗ is proper.

Proof. To check that the substack where E is at every geometric point isomorphic to Eb is closed, note
that by semicontinuity it suffices to see that everywhere onMb, the Newton point of E is bounded by b.
By [RR96, Lemma 2.2 (iv)], this reduces to the case of G = GLn, where it is a simple consequence of the
Harder–Narasimhan formalism (the Newton polygon of an extension is always bounded by the Newton
polygon of the split extension). On this closed substack, E has two transverse filtrations, given by (ρ∗E)≤λ
and the Harder–Narasimhan filtration; it follows that E upgrades to aG-bundle inQ-graded vector bundles
on the Fargues–Fontaine curve, with the weight λ-piece semistable of slope λ. We see that this gives the
desired section ofMb → [∗/Gb(E)], using again Proposition III.4.7.
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We claim that the action of Uπ on |M̃b ×k Spa k((t))| satisfies the hypotheses of Lemma II.2.17, with
fixed point locus given by the closed subspace ∗ considered in the previous paragraph. Writing M̃b as a
successive extension of Banach–Colmez spaces, it is clear that for all x ∈ |M̃b ×k Spa k((t))| which are not
in the closed substack, the sequence U−n

π (x) leaves any quasicompact open subspace for large n: Look at
the first step in the successive extensions where x does not project to the origin. Then x gives an element
in the fiber over the origin, which is a negative Banach–Colmez space, on which Uπ = νNb (π) acts via a
positive power of π; thus U−n

π (x) leaves any quasicompact open subspace of this Banach–Colmez space. In
particular, it follows that the fixed points locus of Uπ is precisely the origin. To apply Lemma II.2.17, it
remains to see that for all x ∈ |M̃b ×k Spa k((t))| and quasicompact open neighborhoods U of the origin,
one has γm(x) ∈ U for all sufficiently large m. This can be reduced to the case of GLn by the Tannakian
formalism, so assume G = GLn for this argument. Now fix a map f : Spa(C,C+) → M̃b ×k Spa k((t))
having x in its image; it suffices to construct a map

Spa(C,C+)× N ∪ {∞} → M̃b ×k Spa k((t))

whose restriction to Spa(C,C+)×{0} is f , whose restriction to Spa(C,C+)×{∞}maps to ∗ ⊂ M̃b, and
which is equivariant for the γ-action, with γ acting on the left via shift on the profinite set N ∪ {∞}. The
map f classifies some Q-filtered vector bundle E≤λ ⊂ E of rank n on XC with

⊕
λ Eλ ∼= Eb as Q-graded

vector bundles. After pullback to YC,[1,q], the filtration is split, so we can find an isomorphism

α : E|YC,[1,q] ∼= Eb|YC,[1,q]
of Q-filtered vector bundles on YC,[1,q], such that α reduces on graded pieces to the given identification.
The descent datum is now given by some isomorphism of Q-filtered vector bundles

β : ϕ∗(Eb|YC,[q,q]) ∼= Eb|YC,[1,1]
that reduces to the standard Frobenius on graded pieces. In other words, β is the standard Frobenius on Eb
multiplied by some

β′ : Eb|YC,[1,1] ∼= Eb|YC,[1,1]
and with respect to the Q-grading on Eb, the map β′ is the identity plus a lower triangular matrix.

The action of γ replaces β′ by its Uπ-conjugate. This multiplies all lower triangular entries by powers
of π, so

(β′, γ(β′), γ2(β′), . . . , 1)

composed with the standard Frobenius defines an isomorphism

ϕ∗(Eb|YS,[q,q]) ∼= Eb|YS,[1,1]
where S = Spa(C,C+) × N ∪ {∞}. Using this as a descent datum defines a Q-filtered vector bundle on
XS defining the required map

S = Spa(C,C+)× N ∪ {∞} → M̃b ×k Spa k((t)).

This finishes the verification of the hypotheses of Lemma II.2.17.

It is clear from the definition that M̃◦
b → ∗ is partially proper (as the theory of vector bundles on the

Fargues–Fontaine curve does not depend on R+). Thus, to show that M̃◦
b/U

Z
π → ∗ is proper, it suffices to

see that the map is quasicompact, which can be checked after base change to Spa k((t)); then it follows from
the previous discussion and Lemma II.2.17.
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It remains to see that M̃◦
b is a spatial diamond. For this, we pick a representative b ∈ G(Ĕ) of the

σ-conjugacy class that is decent in the sense of [RZ96, Definition 1.8]. In particular, b ∈ G(Es) for some
unramified extensionEs|E of degree s, and M̃◦

b is already defined over PerfFqs . Let Frobs be the Frobenius
x 7→ xq

s . As b is decent, the action of Uπ = νNb (π) on M̃◦
b agrees with the action of a power of Frobs for

N large enough, by the decency equation for b. We know that

M̃◦
b/U

Z
π ×k Spa k((t))

is a spatial diamond (as it is proper over Spa k((t))). Replacing Uπ by Frobs, and moving the quotient by
Frobenius to the other factor (which is allowed as the absolute Frobenius acts trivially on topological spaces)
one sees that also

M̃◦
b ×k Spa k((t))/FrobZs

is a spatial diamond. But Spa k((t))/FrobZs → ∗ is proper and cohomologically smooth. Thus, Lemma II.3.8
shows that it is a spatial v-sheaf. By [Sch17a, Theorem 12.18], to see that M̃◦

b is a spatial diamond, it suffices
to check on points. Writing M̃b as a successive extension of Banach–Colmez spaces, any point in M̃◦

b has
a minimal step where it does not map to the origin. Then its image is a nontrivial point of an absolute
Banach–Colmez space, and a punctured absolute Banach–Colmez space is a diamond by Proposition II.3.7;
the result follows. �

The following theorem gives the desired local charts for BunG; its proof is based on the Jacobian crite-
rion for (cohomological) smoothness, Theorem IV.4.2.

Theorem V.3.7. The map πb :Mb → BunG forgetting the filtration is partially proper, representable
in locally spatial diamonds, and cohomologically smooth of `-dimension 〈2ρ, νb〉.

The image of πb is open, and consists exactly of the set of points of |BunG | specializing to b.

Proof. First, we show that
M =

⊔
b

Mb → BunG

is partially proper, representable in locally spatial diamonds, and cohomologically smooth. Let S → BunG
be some map for an affinoid perfectoid space S , given by some G-bundle E on XS . Then M ×BunG S
parametrizes Q-filtrations on E whose associated graded Q-bundle has the degree λ-part semistable of slope
λ. Now Q-filtrations are parametrized by sections of a smooth scheme Z = E ×G Fl → X

alg
S , for some

smooth scheme Fl overE withG-action (classifying such Q-filtrations on the forgetful functor RepEG→
VectE). Here Fl is a disjoint union of projective schemes. The condition on the associated graded bundle
is an open condition by openness of the semistable locus. Using the Jacobian criterion Theorem IV.4.2,
it remains to see thatM ⊂ MZ is contained in the smooth locusMsm

Z ⊂ MZ . The tangent bundle of
Z → X

alg
S is the E-twisted form of the tangent bundle of Fl/E. By the usual dscription of tangent bundles

of flag varieties, this tangent bundle admits a Q>0-filtration whose λ-th graded piece is given by the graded
piece of weight λ of E ×G LieG (with respect to its universal Q-filtration). After pullback to a section in
M, these are semistable of slope λ > 0, as desired.

Knowing cohomological smoothness of πb, its `-dimension can be computed as the difference of those
ofMb and BunG. For the final assertion, note that by cohomological smoothness, the image must be open.
Conversely, if b′ ∈ |BunG | is in the image, then it follows from the explicit degeneration used in the proof
of Proposition V.3.6 that BunbG lies in the closure of Bunb′G, giving the desired result. �
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This final assertion was proved in the case of G = GLn by Hansen [Han17], as a step towards the
identification of |BunG |; indeed, [BFH+22] determines the image of πb for G = GLn.

V.4. Compact generation

We are now revisiting the notion of a finite type smooth representation in terms of Det(BunG,Λ).
The goal of this section is to prove the following theorem. As above, we fix some coefficient ring Λ

such that nΛ = 0 for some n prime to p.

Theorem V.4.1. For any locally closed substack U ⊂ BunG, the triangulated category Det(U,Λ) is
compactly generated. An object A ∈ Det(U,Λ) is compact if and only if for all b ∈ B(G) contained in U ,
the restriction

ib∗A ∈ Det(BunbG,Λ) ∼= D(Gb(E),Λ)

along ib : BunbG ⊂ BunG is compact, and zero for almost all b. Here, compactness in D(Gb(E),Λ) is
equivalent to lying in the thick triangulated subcategory generated by c-IndGb(E)

K Λ as K runs over open
pro-p-subgroups of Gb(E).

To prove the theorem, we exhibit a class of compact projective generators. The key result is that M̃b

behaves like a strictly local scheme; in some vague sense, M̃b is the strict henselization of BunG at b.

Proposition V.4.2. Let b ∈ B(G). For any A ∈ Det(M̃b,Λ) with stalk A0 = i∗A ∈ Det(∗,Λ) ∼=
D(Λ) at the closed point i : ∗ ⊂ M̃b, the map

RΓ(M̃b, A)→ A0

is an isomorphism. In particular, RΓ(M̃b,−) commutes with all direct sums.

Proof. ReplacingA by the cone ofA→ i∗A0, we can assume thatA = j!A
′ for someA′ ∈ Det(M̃◦

b ,Λ).
We have to see that

RΓ(M̃b, j!A
′) = 0.

But this follows from Theorem IV.5.3 (applied with X = M̃◦
b and S = Spa k((t)), noting that base change

along S → ∗ follows from smooth base change), using that the partial compactification M̃◦
b ⊂ M̃b is

precisely a compactification towards one of the two ends of M̃◦
b , as follows from the behaviour of the

Frobenius action exhibited in the proof of Proposition V.3.6. �

Remark V.4.3.

(i) Consider the v-sheaf X = Spd(k[[x1, . . . , xd]]) and the quasicompact open subset

U = Spd(k[[x1, . . . , xd]]) \ V (x1, . . . , xd)

that is representable by a perfectoid space. When base changed to S = Spa(k((t))), X becomes isomorphic
to an open unit disk, U becomes the punctured unit disk that has two ends: the origin and the exterior of
the disk. The picture is thus analogous to the preceding one with M̃b, and for any A ∈ Det(X,Λ) one has
RΓ(X,A) ∼= i∗A where i : Spd(k) ↪→ X is V (x1, . . . , xd).
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(ii) This applies more generally to the v-sheaf associated to anyW (k)-affine formal scheme Spf(R) withR
an I-adic ring for a finitely generated ideal I . Then, for anyA ∈ Det(Spd(R),Λ) one hasRΓ(Spd(R), A) =
RΓ(Spd(R/I), i∗A) with i : Spd(R/I) ↪→ Spd(R). In particular, for A ∈ Det(Spd(R) \ V (I),Λ), where
here Spd(R) \ V (I) is representable by a spatial diamond and even a perfectoid space if R is a k-algebra,
one has

RΓ(Spd(R) \ V (I), A) ∼= RΓ(Spd(R/I), i∗Rj∗A).
Thus, Proposition V.4.2 can be seen as a result about “nearby cycles on the strict henselization of BunG at
b”.

Corollary V.4.4. Let b ∈ B(G) and let K ⊂ Gb(E) be an open pro-p-subgroup. Then for any
A ∈ Det(M̃b/K,Λ) with pullbackA0 = i∗A ∈ Det([∗/K],Λ) ∼= D(K,Λ) corresponding to a complex V
of smooth K-representations, the map

RΓ(M̃b/K,A)→ RΓ([∗/K], A0) ∼= V K

is an isomorphism. In particular, RΓ(M̃b/K,−) commutes with all direct sums.

Proof. This follows formally from Proposition V.4.2 by descent along ψ : M̃b → M̃b/K ; more
precisely, by writing any A as a direct summand of ψ∗ψ

∗A. �

Remark V.4.5. Let
i : [∗/Gb(E)] ↪→Mb ←↩M◦

b : j

be the usual diagram. From the corollary, one deduces that if one regards

i∗Rj∗A ∈ Det([∗/Gb(E)],Λ) ∼= D(Gb(E),Λ)

as a complex of Gb(E)-representations, then this is given by

RΓ(M̃◦
b , A).

As M̃◦
b is qcqs (and of finite cohomological dimension) by Proposition V.3.6, this commutes with all direct

sums in A.
For example, in the case of GL2 and Eb = O(1)⊕O, one has

M̃◦
b = BC(O(−1)[1]) \ {0} = Spa k((t1/p

∞
))/SL1(D)

by Example II.3.12 and Example V.3.1. Thus, in this case one can compute

i∗Rj∗A = RΓ(Spa k((t1/p
∞
))/SL1(D), A)

which is a very explicit formula. If one would use the presentation

BC(O(−1)[1])× SpaC = (A1
C])

♦/E

instead, it would be considerably more difficult to compute the answer. In particular, we critically used
quasicompacity of the absoluteM̃◦

b , its base changeM̃◦
b×kSpaC is no longer quasicompact. This highlights

the importance of working with absolute objects, and of using the right local charts.
In fact, Theorem V.3.7, smooth base change, and this formula for i∗Rj∗ show that the gluing of the

representation-theoretic strata Det(BunbG,Λ) ∼= D(Gb(E),Λ) into Det(BunG,Λ) is encoded in the spaces
M̃◦

b , showing that the local chartsMb are of fundamental and not just technical importance.
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Now we can prove Theorem V.4.1.

Proof of Theorem V.4.1. As for closed immersions i, the functor i∗ preserves compact objects, it is
enough to handle the case that U is an open substack. Let b ∈ |U | ⊂ BunG ∼= B(G) be any point of U , and
let K ⊂ Gb(E) be an open pro-p-subgroup, giving rise to the map

fK : M̃b/K → BunG .

By Corollary V.4.4 and Theorem V.3.7, we see that AbK := RfK!Rf
!
KΛ ∈ Det(BunG,Λ) is compact; in

fact,

RHom(AbK , B) ∼= RHom(Rf !KΛ, Rf !KB) ∼= RHom(Rf !KΛ, f∗KB ⊗L
Λ Rf

!
KΛ)

∼= RΓ(M̃b/K, f
∗
KB) ∼= (ib∗B)K .

From this computation, we see that the collection of objectsAbK for varying b ∈ |U | andK ⊂ Gb(E) open
pro-p form a class of compact generators: Indeed, if B is nonzero, then (ib∗B)K must be nonzero for some
b and K.

To prove the characterization of compact objects, we argue by induction on the number of points of
|U |, noting that any compact object must be concentrated on a quasicompact substack, and thus on finitely
many points. So assume that |U | is finite, b ∈ |U | is a closed point and j : V = U \ {b} ⊂ U is the
open complement, so we know the result for V . It suffices to prove that j∗ preserves compact objects.
Indeed, then A ∈ Det(U,Λ) is compact only if j∗A and ib∗A are compact, implying by induction that
all stalks are compact. For the converse, one has to see that !-extension from strata preserves compact
objects. By induction, this is true for all strata except BunbG; and to check it for this one, reduce to the sheaf
corresponding to the representation c-IndGb(E)

K Λ ofGb(E), whereK is pro-p; in that case, the !-extension is
the cone of j!j∗AbK → AbK , which is compact. Indeed, as fK is cohomologically smooth, fK!f

!
K commutes

with any base change and hence the restriction of AbK to BunbG is given by g!g!Λ for the map

g : [∗/K]
g1−→ [∗/Gb(E)]

g2−→ BunbG .

Here, g2!g!2 is the identity by Proposition V.2.2, while g1!g!1Λ = g1!Λ produces the sheaf corresponding to
the representation c-IndGb(E)

K Λ. Thus, the restriction ofAbK to BunbG gives the representation c-IndGb(E)
K Λ,

as desired.
To see that j∗ preserves compact objects, we can check on the given generators. For generators Ab′K

corresponding to b′ 6= b we get j∗Ab′K = Ab
′
K , so there is nothing to prove. On the other hand, j∗AbK =

Rf◦K!f
◦!
KΛ for

f◦K : M̃◦
b/K → V ⊂ BunG .

The compactness of j∗AbK then follows from RΓ(M̃◦
b/K,−) commuting with all direct sums. But this is

true as M̃◦
b is a spatial diamond of finite dim. trg, by Proposition V.3.6 and Proposition V.3.5, and taking

cohomology under K is exact. �
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V.5. Bernstein–Zelevinsky duality

We note that one can define a Bernstein–Zelevinsky involution on (the compact objects of)Det(BunG,Λ).2
More precisely, we have the following result. Here, in anticipation of some functor introduced later, we
write

π\ : Det(BunG,Λ)→ D(∗,Λ) = D(Λ) : A 7→ Rπ!(A⊗L
Λ Rπ

!Λ)

for the left adjoint of π∗, where π : BunG → ∗ is the (cohomologically smooth!) projection.3

Theorem V.5.1. For any compact objectA ∈ Det(BunG,Λ), there is a unique compact objectDBZ(A) ∈
Det(BunG,Λ) with a functorial identification

RHom(DBZ(A), B) ∼= π\(A⊗L
Λ B)

for B ∈ Det(BunG,Λ). Moreover, the functor DBZ is a contravariant autoequivalence of Det(BunG,Λ)ω ,
and D2

BZ is naturally isomorphic to the identity.
If U ⊂ BunG is an open substack and A is concentrated on U , then so is DBZ(A). In particular, DBZ

restricts to an autoequivalence of the compact objects inDet(BunbG,Λ) ∼= D(Gb(E),Λ) for b ∈ B(G) basic,
and in that setting it is the usual Bernstein–Zelevinsky involution.

Proof. By the Yoneda lemma, the uniqueness of DBZ(A) is clear. For simplicity, choose Haar measures
on Gb(E) for all basic b ∈ B(G), leading to an isomorphism Rπ!Λ ∼= Λ (at generic points, but then by
spreading out everywhere, noting that both are invertible), and hence π\ ∼= Rπ!.

For the existence, it suffices to check on a system of generators. For any b ∈ B(G) and K ⊂ Gb(E)
pro-p, consider the map

gK : [∗/K]→ BunG
factoring over [∗/Gb(E)]→ BunbG ⊂ BunG, and considerA = RgK!Λ. These are, up to shift and twist, the
sheaves supported on BunbG corresponding to the representation c-IndGb(E)

K Λ, and are compact generators
of Det(BunG,Λ). Then the functor

B 7→ π\(A⊗L
Λ B) ∼= Rπ!(A⊗L

Λ B) = Rπ!(RgK!Λ⊗L
Λ B) = R(π ◦ gK)!g

∗
KB

is given by B 7→ (ib∗B)K when ib∗B is regarded as Gb(E)-representation. Here, we note that for pro-p-
groups K , the lower !-functor along [∗/K] → ∗ maps isomorphically to the lower ∗-functor, which is
cohomology. By Corollary V.4.4, this agrees with RHom(AbK , B), so DBZ(A) = AbK . This also shows
that if A is concentrated on an open substack U ⊂ BunG, then so is DBZ(A).

Now note that

RHom(DBZ(A), B) ∼= π\(A⊗L
Λ B) ∼= π\(B ⊗L

Λ A)
∼= RHom(DBZ(B), A).

In particular, taking B = DBZ(A), we see that there is a natural functorial map D2
BZ(A) → A. We claim

that this is an equivalence. It suffices to check on generators. We have seen that the Bernstein–Zelevinsky

2The “classical” Bernstein–Zelevinsky duality on smooth representations was first defined on the level of irreducibles of
GLn(E) by Zelevinsky [Zel80], then generalized by Aubert [Aub95] to all groups but still on the level of Grothendieck groups,
independently discovered by Bernstein and Schneider–Stuhler [SS97]. Its categorical formulation as (derived) Hom into the Hecke
algebra is discussed in [Far06].

3The dualizing sheaf Rπ!Λ is, in fact, isomorphic to Λ[0], by fixing a Haar measure on Gb(E) for each basic b ∈ B(G), so π\
is isomorphic to Rπ!.
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dual ofA = gK!Λ isAbK . Its restriction to BunbG corresponds again to the representation ib! c-IndGb(E)
K Λ, so

one easily checks that the map D2
BZ(A)→ A is an isomorphism over BunbG. To see that it is an isomorphism

everywhere, one needs to see that if B = Rj∗B
′, B′ ∈ Det(U,Λ) for some open substack j : U ⊂ BunG

not containing BunbG, then
π\(A

b
K ⊗L

Λ B) = 0.

Twisting a few things away and using the definition of AbK = RfK!Rf
!
KΛ, this follows from the assertion

that for all A′ ∈ Det(M̃◦
b/K,Λ), with jK : M̃◦

b/K ↪→ M̃b/K the open immersion, one has

RΓc(M̃b/K,RjK∗A
′) = 0.

Using the trace map for M̃b → M̃b/K , this follows from Theorem IV.5.3, applied as before withX = M̃◦
b

and S = Spa k((t)), noting that base change along S → ∗ holds by smooth base change and is conservative.
The comparison to Bernstein–Zelevinsky duality follows formally by taking B corresponding to the

regular representation of Gb(E), in which case π\(A ⊗L
Λ B) is isomorphic to the underlying chain com-

plex of A. Moreover, as the regular representation has two commuting Gb(E)-actions, there is a residual
Gb(E)-action, which is the usual action on A. This gives the usual definition of the Bernstein–Zelevinsky
involution as RHom into the regular representation. �

V.6. Verdier duality

It turns out that one can also understand how Verdier duality acts on Det(BunG,Λ). The key result is
the following.

Theorem V.6.1. Let j : V ↪→ U be an open immersion of open substacks of BunG. For any A ∈
Det(V,Λ), the natural map

j!RHomΛ(A,Λ)→ RHomΛ(Rj∗A,Λ)

is an isomorphism in Det(U,Λ).

Note that one always has

Rj∗RHomΛ(A,Λ) = RHomΛ(j!A,Λ);

the theorem asserts that this is also true with j! and Rj∗ exchanged, which is related to a local biduality
statement: If A ∈ Det(V,Λ) is reflexive, the theorem implies formally that j!A ∈ Det(U,Λ) is reflexive.

Proof. We can assume that U and V are quasicompact, and then by induction, we can assume that
V = U \ {b} for some closed b ∈ |U |. The map is clearly an isomorphism over V , so it suffices to see that
for the compact objects

AbK = RfK!f
!
KΛ, fK : M̃b/K → U ⊂ BunG,

one gets an isomorphism after applying RHom(AbK ,−). As RHom(AbK , B) = (ib∗B)K , we see that the
left-hand side

RHom(AbK , j!RHomΛ(A,Λ)) = 0

vanishes. On the other hand, using the left adjoint π\ : Det(BunG,Λ)→ D(∗,Λ) ∼= D(Λ) of pullback, we
have

RHom(AbK , RHomΛ(Rj∗A,Λ)) ∼= RHom(AbK ⊗L
Λ Rj∗A,Λ)

∼= RHom(π\(A
b
K ⊗L

Λ Rj∗A),Λ).
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But by Theorem V.5.1, and the identification of the Bernstein–Zelevinsky dual of AbK as ib! c-IndGb(E)
K Λ,

one has

π\(A
b
K ⊗L

Λ Rj∗A)
∼= RHom(ib! c-IndGb(E)

K Λ, Rj∗A) ∼= RHom(c-IndGb(E)
K Λ, Rib!Rj∗A) = 0. �

Recall that as a cohomologically smooth Artin stack of dimension 0, BunG admits a dualizing complex
DBunG ∈ Det(BunG,Λ) that is locally isomorphic to Λ[0].

Theorem V.6.2. For any open substack U ⊂ BunG, an object A ∈ Det(U,Λ) is reflexive, i.e. the
natural map

A→ RHomΛ(RHomΛ(A,DU ), DU )

is an equivalence, if and only if for all b ∈ B(G) lying in U with corresponding locally closed stratum
ib : BunbG → U , the restriction

ib∗A ∈ Det(BunbG,Λ) = Det([∗/G̃b],Λ) ∼= Det([∗/Gb(E)],Λ) = D(Gb(E),Λ)

is reflexive as a complex of admissibleGb(E)-representations; this means that the complex ofK-invariants
is reflexive in D(Λ) for all open pro-p-subgroups K ⊂ Gb(E).

In the definition of reflexivity, we can replace DU by Λ (as this changes the dual by a twist, and then
the bidual stays the same). The theorem follows immediately from the following result.

Lemma V.6.3. Let U ⊂ BunG be an open substack and A ∈ Det(U,Λ). For any b ∈ B(G) lying in U ,
there is a natural isomorphism

ib∗RHomΛ(RHomΛ(A,Λ),Λ) ∼= RHomΛ(RHomΛ(i
b∗A,Λ),Λ).

Proof. We may assume thatU ⊂ BunG is the set of generalizations of b, and let j : V = U \{b} ↪→ U .
Let B = j∗A. Using the exact triangle

j!B → A→ ib∗i
b∗A→,

and the invertibility of ib!Λ (as BunbG is also cohomologically smooth), it is enough to prove that

ib∗RHomΛ(RHomΛ(j!B,Λ),Λ) = 0.

But RHomΛ(j!B,Λ) = Rj∗RHomΛ(B,Λ), and by Theorem V.6.1,

RHomΛ(Rj∗RHomΛ(B,Λ),Λ) = j!RHomΛ(RHomΛ(B,Λ),Λ). �

V.7. ULA sheaves

Finally, we want to classify the objects A ∈ Det(BunG,Λ) that are universally locally acyclic with
respect to BunG → ∗. Our goal is to prove the following theorem. This gives a geometric interpretation of
the classical notion of admissible representation in terms of Det(BunG,Λ).

Theorem V.7.1. LetA ∈ Det(BunG,Λ). ThenA is universally locally acyclic with respect to BunG →
∗ if and only if for all b ∈ B(G), the pullback ib∗A to ib : BunbG ↪→ BunG corresponds underDet(BunbG,Λ) ∼=
D(Gb(E),Λ) to a complex Mb of smooth Gb(E)-representations for which MK

b is a perfect complex of
Λ-modules for all open pro-p subgroups K ⊂ Gb(E).
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We want to use Proposition IV.2.32. As preparation, we need to understand Det(BunG×BunG,Λ).
More generally, we have the following result.

Proposition V.7.2. Let G1 and G2 be two reductive groups over E , and let G = G1 × G2. Then
BunG ∼= BunG1 ×BunG2 , giving rise to an exterior tensor product

−�− : Det(BunG1 ,Λ)×Det(BunG2 ,Λ)→ Det(BunG,Λ).

For all compact objectsAi ∈ Det(BunGi ,Λ), i = 1, 2, the exterior tensor productA1�A2 ∈ Det(BunG,Λ)
is compact, these objects form a class of compact generators, and for all further objectsBi ∈ Det(BunGi ,Λ),
i = 1, 2, the natural map

RHom(A1, B1)⊗L
Λ RHom(A2, B2)→ RHom(A1 �A2, B1 �B2)

is an isomorphism.

Remark V.7.3. The proposition says that as Λ-linear presentable stable ∞-categories, the exterior
tensor product functor

Det(BunG1 ,Λ)⊗D(Λ) Det(BunG2 ,Λ)→ Det(BunG,Λ)

is an equivalence. Here, we use Lurie’s tensor product [Lur16, Section 4.8].

Proof. We use the compact generators Ai = AbiKi for certain bi ∈ B(Gi), Ki ⊂ Gi,bi(E) open pro-p.
These give rise to b = (b1, b2) ∈ B(G) and K = K1 ×K2 ⊂ Gb(E) = G1,b1(E)×G2,b2(E), and using

Mb
∼=Mb1 ×Mb2

and the Künneth formula, one concludes that A1 � A2
∼= AbK , which is again compact. As B(G) =

B(G1) × B(G2) and open pro-p subgroups of the form K1 ×K2 ⊂ Gb(E) are cofinal, we see that these
objects form a set of compact generators.

Moreover, as RHom(AbK , B) = (ib∗B)K for all B ∈ Det(BunG,Λ) and similarly for AbiKi , we also see
that the map

RHom(Ab1K1
, B1)⊗L

Λ RHom(Ab2K2
, B2)→ RHom(AbK , B1 �B2)

is an isomorphism. As these objects generate, the same follows for all compact A1, A2. �

Now we can prove Theorem V.7.1.

Proof of Theorem V.7.1. By Proposition IV.2.32, we see that A being universally locally acyclic is
equivalent to the map

p∗1RHom(A,Λ)⊗L
Λ p

∗
2A→ RHom(p∗1A, p

∗
2A)

in Det(BunG×BunG,Λ) ∼= Det(BunG×G,Λ) being an isomorphism.
By Proposition V.7.2, this is equivalent to being an isomorphism after applying RHom(A1 � A2,−)

for varying compact Ai ∈ Det(BunGi ,Λ). Using Proposition V.7.2, the left-hand side is given by

RHom(A1, RHom(A,Λ))⊗L
Λ RHom(A2, A) ∼= RHom(π\(A1 ⊗L

Λ A),Λ)⊗L
Λ RHom(A2, A).
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The right-hand side is, using π : BunG → ∗ for the projection,

RHom(A1 �A2, RHom(p∗1A, p
∗
2A))

∼= RHom((A1 ⊗L
Λ A)�A2, p

∗
2A)

∼= RHom(p∗1(A1 ⊗L
Λ A), p

∗
2RHomΛ(A2, A))

∼= RHom(A1 ⊗L
Λ A,Rp1∗p

∗
2RHomΛ(A2, A))

∼= RHom(A1 ⊗L
Λ A, π

∗RHom(A2, A))

∼= RHom(π\(A1 ⊗L
Λ A), RHom(A2, A)),

using usual adjunctions and smooth base change for p2 and π several times. Under these isomorphisms, the
map

RHom(π\(A1 ⊗L
Λ A),Λ)⊗L

Λ RHom(A2, A)→ RHom(π\(A1 ⊗L
Λ A), RHom(A2, A))

is the natural map. This is an isomorphism as soon as π\(A1 ⊗L
Λ A) ∈ D(Λ) is perfect for all compact A1.

In fact, the converse is also true: If one takes A2 = DBZ(A1), then RHom(A2, A) = π\(A1 ⊗L
Λ A), and

hence it follows that for M = π\(A1 ⊗L
Λ A) ∈ D(Λ), the map

RHom(M,Λ)⊗L
Λ M → RHom(M,M)

is an isomorphism, which means that M is dualizable in D(Λ), i.e. perfect.

Now we use the system of compact generators given by ib! c-IndGb(E)
K Λ for varying b ∈ B(G), with

locally closed immersion ib : BunbG → BunG, and K ⊂ Gb(E) open pro-p. This translates the condition
on perfectness of Rπ!(A1 ⊗L

Λ Rπ
!Λ⊗L

Λ A) into the desired condition on stalks. �



CHAPTER VI

Geometric Satake

As before, we fix a nonarchimedean local field E with residue field Fq of characteristic p and a uni-
formizer π ∈ E. We also fix a reductive group G over E , and a coefficient ring Λ killed by some integer n
prime to p.

Recall that for any perfectoid space S over Fq , we defined the “curve” YS over OE , as well as YS =
YS \V (π) and the quotientXS = YS/ϕ

Z. In this chapter, we are interested in studying modifications ofG-
torsors on these spaces, and perverse sheaves on such. Our discussion will mirror this three-step procedure
of the construction of XS : If one has understood the basic theory over YS , the basic results carry over
easily to YS and then toXS . While as in previous chapters our main focus is onXS , in this chapter we will
actually make critical use of YS in order to degenerate to the Witt vector affine Grassmannian, and hence
to apply some results from the setting of schemes (notably the decomposition theorem). As the discussion
here is very much of a local sort, one can usually reduce easily to the case that G is split, and hence admits
a (split) reductive model overOE , and we will often fix such a split model of G.

For any d ≥ 0, we consider the moduli space DivdY parametrizing degree d Cartier divisors D ⊂ YS .
For affinoid S , one can form the completion B+ of OXS along D. Inverting D defines a localization B
of B+. One can then define a positive loop group L+

DivdY
G and loop group LDivdY

G, with values given by
G(B+) resp. G(B); for brevity, we will simply write L+G and LG here. One can then define the local
Hecke stack

HckG,DivdY
= [L+G\LG/L+G]→ DivdY

We will often break symmetry, and first take the quotient on the right to define the Beilinson–Drinfeld
Grassmannian

GrG,DivdY
= LG/L+G→ DivdY

so that
HckIG = L+G\GrIG .

The Beilinson–Drinfeld Grassmannian GrG,DivdY
→ DivdY is a small v-sheaf that can be written as an

increasing union of closed subsheaves that are proper and representable in spatial diamonds, by bounding
the relative position; this is one main result of [SW20]. On the other hand,L+G can be written as an inverse
limit of truncated positive loop groups, which are representable in locally spatial diamonds and cohomo-
logically smooth; moreover, on each bounded subset, it acts through such a finite-dimensional quotient.
This essentially reduces the study of all bounded subsets ofHckG,DivdY

to Artin stacks.

For any small v-stack S → DivdY , we let

HckG,S/DivdY
= HckG,DivdY

×DivdY
S

181
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be the pullback. Let
Det(HckG,S/DivdY

,Λ)bd ⊂ Det(HckG,S/DivdY
,Λ)

be the full subcategory of all objects with quasicompact support over DivdY . This is a monoidal category
under convolution ?. Here, we use the convolution diagram

HckG,S/DivdY
×SHckG,S/DivdY

(p1,p2)←−−−− L+G\LG×L+G LG/L+G
m−→ HckG,S/DivdY

and define
A ? B = Rm∗(p

∗
1A⊗L

Λ p
∗
2B).

OnDet(HckG,S/DivdY
,Λ)bd, one can define a relative perverse t-structure (where an object is perverse if

and only if it is perverse over any geometric fibre of S), see Section VI.7. In particular, this t-structure is
compatible with any base change in S. For this t-structure, the convolution ? is left t-exact (and t-exactness
only fails for issues related to non-flatness over Λ). To prove this, we reinterpret convolution as fusion, and
use some results on hyperbolic localization.

Moreover, one can restrict to the complexes A ∈ Det(HckG,S/DivdY
,Λ)bd that are universally locally

acyclic over S. This condition is also preserved under convolution. For d = 1, or in general when S maps
to the locus of distinct untilts (DivdY) 6= ⊂ DivdY , one can describe the category of universally locally acyclic
by the condition that the restriction to any Schubert cell is locally constant with perfect fibres. To prove
that all such sheaves are universally locally acyclic, we also introduce (for d = 1) the affine flag variety, in
Section VI.5, and use their Demazure resolutions.

Definition VI.0.1. The Satake category

Sat(HckG,S/DivdY
,Λ) ⊂ Det(HckG,S/DivdY

,Λ)bd

is the category of all A ∈ Det(HckG,S/DivdY
,Λ)bd that are perverse, flat over Λ (i.e., for all Λ-modules M ,

also A⊗L
Λ M is perverse), and universally locally acyclic over (Div1)I .

Intuitively, Sat(HckG,S/DivdY
,Λ) are the “flat families of perverse sheaves onHckG,S/DivdY

→ S”, where
flatness refers both to the geometric aspect of flatness over S (encoded in universal local acyclicity) and the
algebraic aspect of flatness in the coefficients Λ. The Satake category Sat(HckG,S/DivdY

,Λ) is a monoidal
category under convolution. The forgetful functor

Sat(HckG,S/DivdY
,Λ)→ Det(GrG,S/DivdY

,Λ)

is fully faithful. If d = 1 and S = SpdFq , then one can compare it to the category considered by Zhu
[Zhu17] and Yu [Yu22], defined in terms of the Witt vector affine Grassmannian. Moreover, the categories
for S = SpdOC and S = SpdC are naturally equivalent to the category for S = SpdFq , via the base
change functors; here C = Ê. Thus, the Satake category is, after picking a reductive model of G, naturally
the same for the Witt vector affine Grassmannian and theB+

dR-affine Grassmannian. At this point, we could
in principle use Zhu’s results [Zhu17] (refined integrally by Yu [Yu22]) to identify the Satake category with
the category of representations of Ĝ, at least when G is unramified. However, for the applications we
actually need finer knowledge of the functoriality of the Satake equivalence including the case for d > 1;
we thus prove everything we need directly.
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More precisely, we now switch to (Div1X)d in place of DivdY , replacing also the use of YS by XS ; the
two local Hecke stacks are locally isomorphic, so this poses no problems. For any finite set I , let

HckIG = HckG,(Div1X)I

and consider the monoidal category

SatIG(Λ) = Sat(HckIG,Λ).
In fact, the monoidal structure naturally upgrades to a symmetric monoidal structure. This relies on the
fusion product, for which it is critical to allow general finite sets I . Namely, given finite sets I1, . . . , Ik ,
letting I = I1 t . . . t Ik , one has an isomorphism

HckIG×(Div1)I (Div1)I;I1,...,Ik ∼=
k∏
j=1

HckIjG ×(Div1)I (Div1)I;I1,...,Ik

where (Div1)I;I1,...,Ik ⊂ (Div1)I is the open subset where xi 6= xi′ whenever i, i′ ∈ I lie in different Ij ’s.
The exterior tensor product then defines a functor

�kj=1 :

k∏
j=1

SatIjG (Λ)→ SatI;I1,...,IkG (Λ)

where SatI;I1,...,IkG (Λ) is the variant of SatIG(Λ) forHckIG×(Div1)I (Div1)I;I1,...,Ik . However, the restriction
functor

SatIG(Λ)→ SatI;I1,...,IkG (Λ)

is fully faithful, and the essential image of the exterior product lands in its essential image. Thus, we get a
natural functor

∗kj=1 :

k∏
j=1

SatIjG (Λ)→ SatIG(Λ),

independent of the ordering of the Ij . In particular, for any I , we get a functor

SatIG(Λ)× SatIG(Λ)→ SatItIG (Λ)→ SatIG(Λ),
using functoriality of SatJG(Λ) in J , which defines a symmetric monoidal structure ∗ on SatIG(Λ), commut-
ing with ?. This is called the fusion product. In general, for any symmetric monoidal category (C, ∗) with a
commuting monoidal structure ?, the monoidal structure ? necessarily agrees with ∗; thus, the fusion prod-
uct refines the convolution product. (As usual in geometric Satake, we actually need to change ∗ slightly
by introducing certain signs into the commutativity constraint, depending on the parity of the support of
the perverse sheaves.)

Moreover, restricting A ∈ SatIG(Λ) to GrIG and taking the pushforward to (Div1)I , all cohomology
sheaves are local systems of Λ-modules on (Div1)I . By a version of Drinfeld’s lemma, these are equivalent
to representations of W I

E on Λ-modules. This defines a symmetric monoidal fibre functor

F I : SatIG(Λ)→ RepW I
E
(Λ),

where RepW I
E
(Λ) is the category of continuous representations of W I

E on finite projective Λ-modules. Us-
ing a version of Tannaka duality, one can then build a Hopf algebra in the Ind-category of RepW I

E
(Λ) so

that SatIG(Λ) is given by its category of representations (internal in RepW I
E
(Λ)). For any finite set I , this
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is given by the tensor product of I copies of the corresponding Hopf algebra for I = {∗}, which in turn is
given by some affine group scheme G

∧

over Λ with WE-action.

Theorem VI.0.2 (Theorem VI.11.1). There is a canonical isomorphism G

∧∼= Ĝ with the Langlands
dual group, under which the action of WE on G

∧

agrees with the usual action of WE on Ĝ up to an explicit
cyclotomic twist. If √q ∈ Λ, the cyclotomic twist can be trivialized, and SatIG(Λ) is naturally equivalent
to the category of (ĜoWE)

I -representations on finite projective Λ-modules.

For the proof, one can restrict to Λ = Z/`nZ; passing to a limit over n, one can actually build a group
scheme over Z`. Its generic fibre is reductive, as the Satake category with Q`-coefficients is (geometrically)
semisimple: For this, we use the degeneration to the Witt vector affine Grassmannian and the decompo-
sition theorem for schemes. To identify the reductive group, we argue first for tori, and then for rank 1
groups, where everything reduces to G = PGL2 which is easy to analyze by using the minuscule Schubert
cell. Here, the pinning includes a cyclotomic twist as of course the cohomology of the minuscule Schu-
bert variety P1 of GrPGL2 contains a cyclotomic twist. Afterwards, we apply hyperbolic localization in
order to construct symmetric monoidal functors SatG → SatM for any LeviM ofG, inducing dually maps
M

∧

→ G

∧

. This produces many Levi subgroups of G

∧

Q` from which it is easy to get the isomorphism with
ĜQ` , including a pinning. As these maps M

∧

→ G

∧

are even defined integrally, and Ĝ(Z`) ⊂ Ĝ(Q`) is a
maximal compact open subgroup by Bruhat–Tits theory, generated by the rank 1 Levi subgroups, one can
then deduce that G

∧∼= Ĝ integrally, again with an explicit (cyclotomic) pinning.
We will also need the following addendum regarding a natural involution. Namely, the local Hecke

stackHckIG has a natural involution sw given by reversing the roles of the twoG-torsors; in the presentation
in terms of LG, this is induced by the inversion on LG. Then sw∗ induces naturally an involution of
SatIG(Λ), and thus involution can be upgraded to a symmetric monoidal functor commuting with the fibre
functor, thus realizing a WE-equivariant automorphism of Ǧ ∼= Ĝ.

Proposition VI.0.3 (Proposition VI.12.1). The action of sw∗ on SatIG induces the automorphism of Ĝ
that is the Chevalley involution of the split group Ĝ, conjugated by ρ̂(−1).

VI.1. The Beilinson–Drinfeld Grassmannian

First, we define the base space of the Beilinson–Drinfeld Grassmannian for any d ≥ 0.

Definition VI.1.1. For any d ≥ 0, consider the small v-sheaves on PerfFq given by

DivdY = (SpdOE)d/Σd, DivdY = (SpdE)d/Σd, DivdX = Divd = (SpdE/ϕZ)d/Σd,

where Σd is the symmetric group.

As always, quotients of small v-sheaves are taken inside v-sheaves, and are still small (and in particular
exist).

Proposition VI.1.2. For any d ≥ 0, there is a functorial injection

(i) from DivdY(S) into the set of closed Cartier divisors on YS ,
(ii) from DivdY (S) into the set of closed Cartier divisors on YS ,
(iii) from DivdX(S) into the set of closed Cartier divisors on XS .
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Moreover, in case (i) and (ii), if S = Spa(R,R+) is affinoid perfectoid, then for any closed Cartier divisor
D ⊂ YS resp. D ⊂ YS in the image of this embedding, the adic space D = Spa(Q,Q+) is affinoid. In case
(iii), the same happens locally in the analytic topology on S.

Proof. We handle case (i) first. Over (SpdOE)d and for S = Spa(R,R+) affinoid, we get d untilts
R]i , i = 1, . . . , d of R, and there are elements ξi ∈ WOE (R

+) generating the kernel of θi : WOE (R
+) →

R]+i . Each of the ξi defines a closed Cartier divisor by Proposition II.1.4. Then ξ =
∏
i ξi defines another

closed Cartier divisor, given by Spa(A,A+) for A = WOE (R
+)[ 1

[$] ]/ξ, and A+ the integral closure of
WOE (R

+)/ξ, where $ ∈ R is a pseudouniformizer.
Now the ideal sheaf of this closed Cartier divisor is a line bundle, and by [SW20, Proposition 19.5.3],

line bundles on YS satisfy v-descent. Thus, even if we are only given a map S → DivdY = (SpdOE)d/Σd,
we can still define a line bundle I ⊂ OYS , and it still defines a closed Cartier divisor as this can be checked
v-locally. Also, V (I) ⊂ YS is quasicompact over S , as this can again be checked v-locally. This implies
that it is contained in some affinoid YS,[0,n], and hence D = Spa(A,A+) is affinoid in general.

The case (ii) now follows formally by passing to an open subset, and case (iii) by passing to the quotient
under Frobenius. �

Remark VI.1.3. As in [Far18] one checks that DivdY(S) is the set of “relative Cartier divisors” of degree
d, that is to say Cartier divisors that give degree dCartier divisors when pulled back via any geometric point
Spa(C,C+)→ S. The same holds for DivdY and DivdX .

In the following we will consider a perfectoid space S equipped with a map f : S → DivdY (resp. f :

S → DivdY , resp. f : S → DivdX ). We denote by DS ⊂ YS (resp. DS ⊂ YS , DS ⊂ XS) the corresponding
closed Cartier divisor. Let IS ⊂ OYS (resp. IS ⊂ OYS , IS ⊂ OXS ) be the corresponding invertible ideal
sheaf.

Let us note the following descent result for vector bundles.

Proposition VI.1.4. Sending S as above to the category of vector bundles on DS defines a v-stack.

Proof. Any vector bundle on DS defines a v-sheaf on PerfS : This reduces formally to the structure
sheaf ofDS , which then further reduces to the structure ofOYS (resp.OYS , resp.OXS ). It remains to prove
that v-descent of vector bundles is effective. The case of XS reduces to YS as locally on S , the relevant DS

is isomorphic; and clearly YS reduces to YS .
Now assume first that S = Spa(C,C+) for some complete algebraically closed C. Then DS is given

by a finite sum of degree 1 Cartier divisors on YS , and one can reduce by induction to the case of degree 1
Cartier divisors, where the result is [SW20, Lemma 17.1.8] applied to the corresponding untilt of S.

On the other hand, assume that T → S is an étale cover with a vector bundle ET onDT equipped with a
descent datum toDS ; we want to prove descent toDS . By the argument of de Jong–van der Put [dJvdP96,
Proposition 3.2.2], cf. [KL15, Proposition 8.2.20], one can reduce to the case that T → S is a finite étale
cover. Then DT → DS is also finite étale (as YT → YS is), and the result follows from usual finite étale
descent.

Now let S be general and T → S a v-cover with a vector bundle ET on DT equipped with a descent
datum toDS . For any geometric point Spa(C,C+)→ S , one can descent ET×SSpa(C,C+) to a vector bundle
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ESpa(C,C+) on DSpa(C,C+). Now we follow the proof of [SW20, Lemma 17.1.8] to see that one can in fact
descend ET in an étale neighborhood of Spa(C,C+), which is enough by the previous paragraph. We can
assume that S and T are affinoid. As ESpa(C,C+) is necessarily free, also ET×SSpa(C,C+) is free, and by an étale
localization we can assume that ET is free. Then the descent datum is given by some matrix with coefficients
inODT×ST

. Moreover, by approximating the basis coming via pullback from ESpa(C,C+), we can ensure that
this matrix has coefficients in 1 + [$]O+

YT×ST
(YT×ST,[0,n])/ξ for some n so that DS ⊂ YS,[0,n]; here ξ is a

generator of IS . Now one uses that the v-cohomology group H1
v (S,O(Y[0,n])+) is almost zero, as follows

from almost vanishing in the perfectoid case, and writing it as a direct summand of the positive structure
sheaf of the base change toOE [π1/p

∞
]∧. Then the argument from [SW20, Lemma 17.1.8] applies, showing

that one can successively improve the basis to produce a basis invariant under the descent datum in the
limit. �

Assuming that DS is affinoid, as is the case locally on S , we let

B+
DivdY

(S) (resp. B+
DivdY

(S), resp. B+
DivdX

(S))

be (the global sections of) the completion ofOYS along IS (resp. ofOYS along IS , resp. ofOXS along IS),
and

BDivd
(−)

(S) = B+
Divd

(−)

(S)[ 1
IS ].

This defines v-sheaves B+
Divd

(−)

⊂ BDivd
(−)

over Divd(−) in all three cases. In the case of d = 1, those rings

are the ones that are usually denoted B+
dR, resp. BdR.

Definition VI.1.5. Let Z be an affine scheme over OE . The positive loop space L+
DivdY

Z (resp. loop

space LDivdY
Z) of Z is the v-sheaf over DivdY given by

S 7→ L+
DivdY

(S) = Z(B+
DivdY

(S)) (resp. S 7→ LDivdY
(S) = Z(BDivdY

(S))).

Similarly, ifZ is an affine scheme overE , one defines the positive loop spaceL+
DivdY

Z andL+
DivdX

Z (resp. loop
space LDivdY

Z and LDivdX
Z).

We note that we use affinity of Z to see that these are actually v-sheaves — this makes it possible to
reduce to the v-sheaf property of the structure sheaf. (It is likely that they define v-sheaves for general
schemes Z , using Bhatt’s Tannaka result [Bha16] together with descent results for perfect complexes, but
we do not pursue this here.) Now we can define the local Hecke stacks.

Definition VI.1.6. Let G be a reductive group overOE (resp. over E , resp. over E). The local Hecke
stackHckG,DivdY

(resp.HckG,DivdY
, resp.HckG,DivdX

) is the functor sending an affinoid perfectoidS → DivdY
(resp. S → DivdY , resp. S → DivdX , assuming that DS is affinoid) to the groupoid of pairs of G-bundles
E1, E2 over B+

DivdY
(S) (resp. over B+

DivdY
(S), resp. over B+

DivdX
(S)) together with an isomorphism E1 ∼= E2

over BDivdY
(S) (resp. over BDivdY

(S), resp. over BDivdX
(S)).

TheG-bundles here are taken in the algebraic sense, as living on the spectrum of the respective rings. As
in Chapter III, we will generally think ofG-bundles in Tannakian terms, as tensor functors from RepEG to
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vector bundles; and over an affine or affinoid base, vector bundles will always correspond to finite projective
modules, so the notion of G-bundle is rather insensitive to the underlying geometric formalism.

Also note that in the case of DivdX , the local Hecke functor is only defined on a certain full subcategory
of affinoid perfectoid S → DivdX , namely those where DS is affinoid; but any S → DivdX admits an open
cover by such by Proposition VI.1.2, so we have still defined the functor on a basis.

Proposition VI.1.7. The local Hecke stack HckG,DivdY
(resp. HckG,DivdY

, resp. HckG,DivdX
) is a small

v-stack. There is a natural isomorphism of étale stacks over DivdY (resp. over DivdY , resp. over DivdX )

HckG,DivdY
∼= (L+

DivdY
G)\(LDivdY

G)/(L+
DivdY

G)

(resp.
HckG,DivdY

∼= (L+
DivdY

G)\(LDivdY
G)/(L+

DivdY
G),

resp.
HckG,DivdX

∼= (L+
DivdX

G)\(LDivdX
G)/(L+

DivdX
G).)

Proof. The category of vector bundles overB+
DivdY

(resp.B+
DivdY

,B+
DivdX

) satisfies v-descent: It is enough
to check this modulo powers of the ideal IS , where the result is Proposition VI.1.4. By the Tannakian
formalism, it follows that the category of G-bundles also satisfies v-descent, so one can descend E1, E2. The
isomorphism between E1 and E2 over BDivdY

(S) (resp. over BDivdY
(S), resp. over BDivdX

(S)) is then given
by a section of an affine scheme over the respective ring, which again satisfies v-descent. Smallness follows
from the argument of Proposition III.1.3.

Any G-bundle over B+
DivdY

(S) is étale locally on S trivial. Indeed, if S is a geometric point then

B+
DivdY

(S) is a product of complete discrete valuation rings with algebraically closed residue field, so that all

G-torsors are trivial. In general, note that triviality of the G-torsor over B+
DivdY

(S) is implied by triviality
modulo IS (as one can always lift sections over nilpotent thickenings). Then the result follows from [GR03,
Proposition 5.4.21]. Trivializing E1 and E2 étale locally then directly produces the given presentations. �

Similarly, one can define the Beilinson–Drinfeld Grassmannians.

Definition VI.1.8. Let G be a reductive group over OE (resp. over E , resp. over E). The Beilinson–
Drinfeld Grassmannian GrG,DivdY

(resp. GrG,DivdY
, resp. GrG,DivdX

) is the functor sending an affinoid per-
fectoid S → DivdY (resp. S → DivdY , resp. S → DivdX , assuming again that DS is affinoid) to the groupoid
ofG-bundles E overB+

DivdY
(S) (resp. overB+

DivdY
(S), resp. overB+

DivdX
(S)) together with a trivialization of

E over BDivdY
(S) (resp. over BDivdY

(S), resp. over BDivdX
(S)).

Proposition VI.1.9. The Beilinson–Drinfeld Grassmannian GrG,DivdY
(resp. GrG,DivdY

, resp. GrG,DivdX
)

is a small v-sheaf. There is a natural isomorphism of étale sheaves over DivdY (resp. over DivdY , resp. over
DivdX )

GrG,DivdY
∼= (LDivdY

G)/(L+
DivdY

G)

(resp.
GrG,DivdY

∼= (LDivdY
G)/(L+

DivdY
G),
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resp.
GrG,DivdX

∼= (LDivdX
G)/(L+

DivdX
G).)

Proof. The proof is identical to the proof of Proposition VI.1.7. �

The positive loop group L+
DivdY

G admits the natural filtration by closed subgroups

(L+
DivdY

G)≥m ⊂ L+
DivdY

G

defined for all m ≥ 1 by the kernel of
G(B+

DivdY
)→ G(B+

DivdY
/ImS );

we refer to these as the principal congruence subgroups of L+
DivdY

G. Similar definitions of course apply also

over DivdY and DivdX . For d = 1, one can easily describe the graded pieces of this filtration (and again the
result also holds for Div1Y and Div1X ).

Proposition VI.1.10. There are natural isomorphisms

L+
Div1Y

G/(L+
Div1Y

G)≥1 ∼= G♦

and
(L+

Div1Y
G)≥m/(L+

Div1Y
G)≥m+1 ∼= (LieG)♦{m}

where {m} signifies a “Breuil-Kisin twist” by ImS /Im+1
S .

Here G♦ is defined as in [Sch17a, Section 27, before Proposition 27.5], and sends S = Spa(R,R+) to a
choice R] of untilt of R, and an element of G(R]).

Proof. The first equality follows directly from the definitions, while the second comes from the expo-
nential. �

For general d, we still have the following result.

Proposition VI.1.11. For any d and m ≥ 1, the quotient

(L+
DivdY

G)≥m/(L+
DivdY

G)≥m+1

sends a perfectoid space S → DivdY with corresponding Cartier divisor DS ⊂ YS with ideal sheaf IS to

(LieG⊗OE I
m
S /Im+1

S )(S)

where ImS /Im+1
S is a line bundle onDS . This is representable in locally spatial diamonds, partially proper,

and cohomologically smooth of `-dimension equal to d times the dimension of G.
Moreover, one can filter

(L+
DivdY

G)≥m/(L+
DivdY

G)≥m+1 ×DivdY
(Div1Y)d

with subquotients given by twists of

(LieG)♦ ×Div1Y ,πi
(Div1Y)d
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where πi : (Div1Y)d → Div1Y is the projection to the i-th factor.

Proof. The description of the subquotient follows from the exponential sequence again. To check that
it is representable in locally spatial diamonds, partially proper, and cohomologically smooth, we can pull
back to (Div1Y)d, and then these properties follow from the existence of the given filtration. For this in turn,
note that over (Div1Y)d, we have d ideal sheaves I1, . . . , Id, and one can filter ODS by ODS/I1, I1/I1I2,
. . ., I1 · · · Id−1/I1 · · · Id, each of which is, after pullback to an affinoid perfectoid space S , isomorphic to
O
S]i

. �

One can also show that the first quotient is cohomologically smooth, but this is slightly more subtle.

Proposition VI.1.12. For any d, the quotient

L+
DivdY

G/(L+
DivdY

G)≥1 → DivdY

parametrizes over a perfectoid space S → DivdY maps DS → G. For any quasiprojective smooth scheme Z
overOE , the sheaf

TZ → DivdY
taking a perfectoid S over DivdY to maps DS → Z (of locally ringed spaces) is representable in locally
spatial diamonds, partially proper, and cohomologically smooth over DivdY of `-dimension equal to d times
the dimension of Z ; in particular, this applies to this quotient group.

Proof. The description of the quotient group is clear. To analyze TZ , we first note that ifZ is an affine
space, then the result holds true, as was proved in the previous proposition. In fact, after pullback via the
quasi-pro-étale surjective morphism (Div1Y)d → DivdY , there is a sequence of morphisms

TAn =W1 −→W2 −→ · · · −→Wd+1 = (Div1Y)d

where, for S affinoid perfectoid with S → Wi+1 giving rise to the untilts (S]1, . . . , S
]
d) ∈ (Div1Y)d(S),

Wi ×Wi+1 S → S is locally on S isomorphic to An,♦
S]i

.

If Z ′ → Z is any separated étale map between schemes over OE , we claim that TZ′ → TZ is also
separated étale. For this, we analyze the pullback along any S → TZ given by some perfectoid space S and
a map DS → Z (of locally ringed spaces). Then D′ = DS ×Z Z ′ → DS is separated étale (here, the fibre
product is taken as in [Hub94, Proposition 3.8]), and the fibre product TZ′×TZ S parametrizes S′ → S with
a lift DS′ → D′ over DS . By Lemma VI.1.13 below, this is representable by a perfectoid space separated
étale over S. In case Z ′ → Z is an open immersion, it follows that TZ′ → TZ is injective and étale, thus an
open immersion.

Now note that for any geometric point of TZ , the corresponding map DS → Z has finite image, and
is thus contained in some open affine subscheme. It follows that TZ admits an open cover by TZ′ for affine
Z ′. If Z is affine, then one sees directly that TZ is representable in locally spatial diamonds and partially
proper by taking a closed immersion into AnOE for some n. For cohomological smoothness, we observe that
we can in fact choose these affines so that they admit étale maps to AdOE , as again we only need to arrange
this at finitely many points at a time. Now the result follows from the discussion of AdOE and of separated
étale maps. �
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Lemma VI.1.13. Let S be a perfectoid space with a map S → DivdY giving rise to the Cartier divisor
DS ⊂ YS . Let D′ → DS be a separated étale map. Then there is a separated étale map S′ → S such that
for T → S , maps T → S′ over S are equivalent to lifts DT → D′ over DS .

Proof. By descent of separated étale maps [Sch17a, Proposition 9.7], we can assume that S is strictly
totally disconnected. ExhaustingD′ by a rising union of quasicompact subspaces, we can assume thatD′ is
quasicompact. In any geometric fibre, D′ is then a disjoint union of open subsets (as any geometric fibre is,
up to nilpotents, a finite disjoint union of untilts Spa(C]i , C

]+
i )), and this description spreads into a small

neighborhood by [Sch17a, Proposition 11.23, Lemma 15.6]. We can thus reduce to the case thatD′ → DS is
an open immersion. Now the lemma follows from the observation that the map |DS | → |S| is closed. �

VI.2. Schubert varieties

Now we recall the Schubert varieties. Assume in this section that G is a split reductive group overOE
(or overE , but in that case we can always choose a model overOE). Fix a split torus and Borel T ⊂ B ⊂ G.
Note that we can always pass to the situation of split G by making a finite étale extension of OE resp. E;
this way, the results of this section are useful in the general case. Similarly, the cases of XS and YS reduce
easily to the case of YS , so we only do the latter case explicitly here.

Assume first that d = 1. In that case, for every geometric point S = Spa(C,C+) → Div1Y = SpdOE
given by an untilt S] = Spa(C], C]+) of S , one hasB+

Div1Y
= B+

dR(C
]) andBDiv1Y

= BdR(C
]) for the usual

definition of B+
dR and BdR (relative toOE). Recall that B+

dR(C
]) is a complete discrete valuation ring with

residue field C], fraction field BdR(C
]), and uniformizer ξ. It follows that by the Cartan decomposition

G(BdR(C
])) =

⊔
µ∈X∗(T )+

G(B+
dR(C

]))µ(ξ)G(B+
dR(C

])),

so as a set
HckG,Div1Y

(S)/∼= = X∗(T )
+,

the dominant cocharacters of T . Recall that on X∗(T )
+, we have the dominance order, where µ ≥ µ′ if

µ− µ′ is a sum of positive coroots with Z≥0-coefficients.

Remark VI.2.1. Since we work over Y and do not restrict ourselves to Y , we include the case of the
Cartier divisor π = 0. For this divisor, C] = C and B+

dR(C
]) =WOE (C).

Definition VI.2.2. For any µ ∈ X∗(T )
+, let

HckG,Div1Y ,≤µ
⊂ HckG,Div1Y

be the subfunctor of all those mapsS → HckG,Div1Y
such that at all geometric pointsS′ = Spa(C,C+)→ S ,

the corresponding S′-valued point is given by some µ′ ∈ X∗(T )
+ with µ′ ≤ µ. Moreover,

GrG,Div1Y ,≤µ
⊂ GrG,Div1Y

is the preimage ofHckG,Div1Y ,≤µ
⊂ HckG,Div1Y

.

Recall the following result.
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Proposition VI.2.3 ([SW20, Proposition 20.3.6]). The inclusion

HckG,Div1Y ,≤µ
⊂ HckG,Div1Y

is a closed subfunctor and
HckG,Div1Y

= lim−→
µ

HckG,Div1Y ,≤µ
;

thus, similar properties hold for GrG,Div1Y
. Here, the index category is the partially ordered set of µ’s under

the dominance order, which is a disjoint union (over π1(G)) of filtered partially ordered sets.
The map GrG,Div1Y ,≤µ

→ Div1Y is proper and representable in spatial diamonds.

Proof. It is enough to prove the assertions over GrG,Div1Y
as this is a v-cover of HckG,Div1Y

. Then
[SW20, Proposition 20.3.6] gives the results, except for the assertion that

GrG,Div1Y
= lim−→

µ

GrG,Div1Y ,≤µ
.

For this, note that the map from right to left is clearly an injection. For surjectivity, note that for any
quasicompact S with a map S → GrG,Div1Y

, only finitely many strata can be met, as the meromorphic
isomorphism of G-bundles necessarily has bounded poles. This, coupled with the fact GrG,Div1Y

→ Div1Y
is separated while GrG,Div1Y ,≤µ

→ Div1Y is proper, implies that the map
⊔
µ GrG,Div1Y ,≤µ

→ GrG,Div1Y
is a

v-cover, whence we get the desired surjectivity. �

In particular,

HckG,Div1Y ,µ
= HckG,Div1Y ,≤µ

\
⋃
µ′<µ

HckG,Div1Y ,≤µ′
⊂ HckG,Div1Y ,≤µ

is an open subfunctor, and similarly its preimage GrG,Div1Y ,µ
⊂ GrG,Div1Y ,≤µ

. By the Cartan decomposition,
the space HckG,Div1Y ,µ

has only one point in every geometric fibre over Div1Y . This point can in fact be
defined as a global section

[µ] : Div1Y → GrG,Div1Y ,µ

given by µ(ξ) ∈ (LDiv1Y
G)(S) whenever ξ is a local generator of IS ; up to the action of L+

Div1Y
G, this is

independent of the choice of ξ.

Proposition VI.2.4. The map

[µ] : Div1Y → HckG,Div1Y ,µ

given by µ is a v-cover. This gives an isomorphism

HckG,Div1Y ,µ
∼= [Div1Y/(L

+
Div1Y

G)µ]

where (L+
Div1Y

G)µ ⊂ L+
Div1Y

G is the closed subgroup stabilizing the section [µ] of GrG,Div1Y
/Div1Y . Recalling

the principal congruence subgroups

(L+
Div1Y

G)≥m ⊂ L+
Div1Y

G,
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we let
(L+

Div1Y
G)≥mµ = (L+

Div1Y
G)µ ∩ (L+

Div1Y
G)≥m ⊂ (L+

Div1Y
G)µ.

Then
(L+

Div1Y
G)µ/(L

+
Div1Y

G)≥1
µ
∼= (P−

µ )♦ ⊂ L+
Div1Y

G/(L+
Div1Y

G)≥1 ∼= G♦

and
(L+

Div1Y
G)≥mµ /(L+

Div1Y
G)≥m+1

µ
∼= (LieG)♦µ≤m{m} ⊂ (L+

Div1Y
G)≥m/(L+

Div1Y
G)≥m+1 ∼= (LieG)♦{m},

where P−
µ ⊂ G is the parabolic with Lie algebra (LieG)µ≤0, and (LieG)µ≤m ⊂ LieG is the subspace on

which µ acts via weights ≤ m via the adjoint action.
In particular,

GrG,Div1Y ,µ
∼= L+

Div1Y
G/(L+

Div1Y
G)µ

is cohomologically smooth of `-dimension 〈2ρ, µ〉 over Div1Y .

Proof. We first handle the caseG = GLn with its standard upper-triangular Borel and diagonal torus.
In that case, µ is given by some sequence k1 ≥ . . . ≥ kn of integers, and GrG,Div1Y ,µ

parametrizes B+
Div1Y

-
lattices

Ξ ⊂ Bn
Div1Y

that are of relative position µ at all points. Let S = Spa(R,R+) be an affinoid perfectoid space with a
map S → Div1Y = SpdOE given by an untilt S] = Spa(R], R]+) over OE of S. By the proof of [SW20,
Proposition 19.4.2], the R]-modules

FiliΞ(R])n = (ξiΞ ∩B+
dR(R

])n)/(ξiΞ ∩ ξB+
dR(R

])n)

are finite projective of rank equal to the number of occurrences of−i among k1, . . . , kn. Localizing, we may
assume that they are finite free. We may then pick a basis e1, . . . , en of (R])n so that any FiliΞ(R])n is freely
generated by a subset e1, . . . , eni of e1, . . . , en. Lifting eni−1+1, . . . , eni to elements of fni−1+1, . . . , fni ∈
ξiΞ ∩ B+

dR(R
])n, and setting gni−1+1 = ξ−ifni−1+1, . . ., gni = ξ−ifni , or equivalently gj = ξkjfj for j =

1, . . . , n, one sees that f1, . . . , fn form a B+
dR(R

])-basis of B+
dR(R

])n, and g1, . . . , gn will form a B+
dR(R

])-
basis of Ξ. Thus, changing basis to the fi’s, one has moved Ξ to the lattice

ξk1B+
dR(R

])⊕ . . .⊕ ξknB+
dR(R

]).

This is the lattice corresponding to [µ] ∈ GrGLn,Div1Y
, showing that the map

Div1Y → HckGLn,Div1Y ,µ

is indeed surjective.
Moreover, the stabilizer (L+

Div1Y
GLn)µ of ξk1B+

dR(R
]) ⊕ . . . ⊕ ξknB+

dR(R
]) in L+

Div1Y
GLn is the set of

all matrices A = (Aij) ∈ GLn(B+
Div1Y

) such that for i < j , Aij ∈ ξki−kjB+
Div1Y

. This easily implies the
description of

(L+
Div1Y

GLn)µ/(L+
Div1Y

GLn)≥1
µ
∼= (P−

µ )♦ ⊂ GL♦
n

and
(L+

Div1Y
GLn)≥mµ /(L+

Div1Y
GLn)≥m+1

µ
∼= (Lie GLn)♦µ≤m{m} ⊂ (Lie GLn)♦{m}.
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The description also implies that (L+
Div1Y

GLn)µ contains L+
Div1Y

P−
µ and (L+

Div1Y
Ua)

≥µ(a) for any positive
root a.

In general, picking a closed immersion of G into GLn (compatible with the torus and the Borel), one
sees that

(L+
Div1Y

G)µ/(L
+
Div1Y

G)≥1
µ ⊂ (P−

µ )♦ ⊂ G♦

and
(L+

Div1Y
G)≥mµ /(L+

Div1Y
G)≥m+1

µ ⊂ (LieG)♦µ≤m{m} ⊂ (LieG)♦{m}

as these subquotients embed into the similar subquotient for GLn. Moreover, one sees that (L+
Div1Y

G)µ con-

tains L+
Div1Y

P−
µ and (L+

Div1Y
Ua)

≥µ(a) for any positive root a. These imply that the two displayed inclusions
are actually equalities.

A consequence of these considerations is that the map

L+
Div1Y

G/(L+
Div1Y

G)µ → L+
Div1Y

GLn /(L+
Div1Y

GLn)µ

is a closed immersion (as this happens on all subquotients for the principal congruence filtration). The
target is isomorphic to GrGLn,Div1Y ,µ

, which contains GrG,Div1Y ,µ
as a closed subspace (by [SW20, Proposition

20.3.7]). We see that we get an inclusion

L+
Div1Y

G/(L+
Div1Y

G)µ ↪→ GrG,Div1Y ,µ
⊂ GrGLn,Div1Y ,µ

of closed subspaces, with the same geometric points: This implies that it is an isomorphism (e.g., as the map
is then necessarily a closed immersion, thus qcqs, so one can apply [Sch17a, Lemma 12.5]). From here, all
statements follow. �

Remark VI.2.5. The map

GrG,Div1Y ,µ
= L+

Div1Y
G/(L+

Div1Y
G)µ → L+

Div1Y
G/(L+

Div1Y
G)≥1

µ
∼= (G/P−µ)

♦

is the Białynicki-Birula map, see [CS17].

Passing to general d, we first note that any geometric fibre of

HckG,DivdY
→ DivdY

is isomorphic to a product of geometric fibres ofHckG,Div1Y
→ Div1Y . More precisely, if f : Spa(C,C+)→

DivdY is a geometric point, it is given by an unordered tuple Spa(C]i , C
]+
i ), i ∈ I with |I| = d, of untilts

over OE . Some of these may be equal, so one can partition I into sets I1, . . . , Ir of equal untilts. Then we
really have r untilts, given by maps f1, . . . , fr : Spa(C,C+)→ Div1Y , and one has an isomorphism

HckG,DivdY
×DivdY ,f

Spa(C,C+) ∼=
r∏
i=1

HckG,Div1Y
×Div1Y ,fi

Spa(C,C+),
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and similarly

L+
DivdY

G×DivdY ,f
Spa(C,C+) ∼=

r∏
i=1

L+
Div1Y

G×Div1Y ,fi
Spa(C,C+),

LDivdY
G×DivdY ,f

Spa(C,C+) ∼=
r∏
i=1

LDiv1Y
G×Div1Y ,fi

Spa(C,C+),

GrG,DivdY
×DivdY ,f

Spa(C,C+) ∼=
r∏
i=1

GrG,Div1Y
×Div1Y ,fi

Spa(C,C+).

Indeed, it suffices to prove this on the level of the positive loop and loop group, where in turn it follows
from a similar decomposition of B+

DivdY
after pullback, which is clear.

In particular, we can define the following version of Schubert varieties.

Definition VI.2.6. For any unordered collection µ• = (µj)j∈J of elements µj ∈ X∗(T )
+ with

|J | = d, let
HckG,DivdY ,≤µ•

⊂ HckG,DivdY
be the subfunctor of all those S → HckG,DivdY

such that at all geometric points Spa(C,C+) → S , then

equipped with an (unordered) tuple of d untilts Spa(C]i , C
]+
i ), i ∈ I with |I| = d, there is some bijection

between ψ : I ∼= J such that the relative position of E1 and E2 at Spa(C]i , C
]+
i ) is bounded by∑

j∈J,C]
ψ(j)

∼=C]i

µj .

Let
GrG,DivdY ,≤µ•

⊂ GrG,DivdY
be the preimage ofHckG,DivdY ,≤µ•

⊂ HckG,DivdY
.

Proposition VI.2.7. The inclusion
HckG,DivdY ,≤µ•

⊂ HckG,DivdY

is a closed subfunctor. The map GrG,DivdY ,≤µ•
→ DivdY is proper, representable in spatial diamonds, and of

finite dim. trg.

Proof. This can be checked after pullback to (Div1Y)d. Then it follows from [SW20, Proposition
20.5.4]. �

Moreover, we have the following result. Here, we let

(L+
DivdY

G)<m = L+
DivdY

G/(L+
DivdY

G)≥m

be the quotient by the principal congruence subgroup.

Proposition VI.2.8. For any µ• = (µj)j∈J as above, the action of L+
DivdY

G on GrG,DivdY ,≤µ•
factors

over (L+
DivdY

G)<m where m is chosen so that for µ =
∑

j∈J µj , all weights of µ on LieG are ≤ m.
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Proof. We need to see that the action of (L+
DivdY

G)≥m is trivial. As everything is separated, this can
be checked on geometric points, where one reduces to d = 1 by a decomposition into products. Then it
follows from Proposition VI.2.4. �

VI.3. Semi-infinite orbits

For this section, we continue to assume that G is split, and again we only spell out the case of DivdY ;
analogous results hold for DivdY and DivdX , and follow easily from the case presented.

Previously, we stratified the affine Grassmanian using the Cartan decomposition, the strata being affine
Schubert cells. We now use the Iwasawa decomposition to obtain another stratification by semi-infinite
orbits.

Fix a cocharacter λ : Gm → T ⊂ G, inducing a Levi Mλ with Lie algebra (LieG)λ=0, a parabolic
Pλ = P+

λ with Lie algebra (LieG)λ≥0 and its unipotent radical Uλ with Lie algebra (LieG)λ>0. We get an
action of the v-sheaf Gm (taking an affinoid perfectoid space S = Spa(R,R+) of characteristic p to R×)
on GrG,DivdY

via the composition of the Teichmüller map

[·] : Gm → L+
DivdY

Gm,

the map
L+

DivdY
λ : L+

DivdY
Gm → L+

DivdY
G

and the action of L+
DivdY

G on GrG,DivdY
. We wish to apply Braden’s theorem in this setup. For this purpose,

we need to verify Hypothesis IV.6.1. To construct the required stratification, we use the affine Grassman-
nian

GrPλ,DivdY

associated to the parabolic Pλ. Note that this admits a map

GrPλ,DivdY
→ GrMλ,DivdY

→ GrMλ,DivdY

where Mλ is the Levi quotient of Pλ and Mλ is the maximal torus quotient of Mλ (the cocenter). Then
GrMλ,DivdY

admits a surjection from a disjoint union of copies of (Div1Y)d parametrized byX∗(Mλ)
d. While

there are many identifications between these copies, the sum µ :=
∑d

i=1 µi ∈ X∗(Mλ) defines a well-
defined locally constant function

(VI.3.1) GrMλ,DivdY
→ X∗(Mλ).

More precisely, for Spa(C,C+) → GrMλ,DivdY
a geometric point, let C]1, . . . , C

]
r be the corresponding

distinct untilts with 1 ≤ r ≤ d. Then

GrMλ,DivdY
×DivdY

Spa(C,C+) ∼=
r∏
i=1

GrMλ,Div1Y
×Div1Y

Spa(C,C+)
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where the morphism Spa(C,C+) → Div1Y is given by C]i on the i-th component of the product. This is
identified with

r∏
i=1

X∗(Mλ)× Spa(C,C+)

and the weighted sum morphism X∗(Mλ)
r → X∗(Mλ) (weighing each term with the multiplicity of C]i

as an untilt of C in the morphism Spa(C,C+)→ DivdY ) defines thus a function

GrMλ,DivdY
×DivdY

Spa(C,C+) −→ X∗(Mλ).

This defines the locally constant function of (VI.3.1).

For ν ∈ X∗(Mλ) let
Grν

Pλ,DivdY
⊂ GrPλ,DivdY

be the corresponding open and closed subset obtained as the preimage.

Proposition VI.3.1. The map

GrPλ,DivdY
=

⊔
ν

Grν
Pλ,DivdY

→ GrG,DivdY

is bijective on geometric points, and it is a locally closed immersion on each Grν
Pλ,DivdY

. The union
⋃
ν′≤ν Grν′

Pλ,DivdY
has closed image in GrG,DivdY

. The action of Gm via L+λ on GrPλ,DivdY
extends to an action of the monoid

A1, and the Gm-fixed points agree with GrMλ,DivdY
.

Applying this proposition also in the case of the inverse Gm-action, and pulling back to a relative
Schubert variety, verifies Hypothesis IV.6.1 in this situation.

Proof. The action of Gm on Pλ via conjugation extends to an action of the monoid A1. Applying
loop spaces to this observation and the observation that the map LDivdY

Pλ → GrPλ,DivdY
is equivariant for

the action of L+
DivdY

Gm on the source via conjugation and on the target via the given action (as we quotient

by the right action of L+
DivdY

Pλ) gives the action of the monoid L+
DivdY

A1, and thus of A1 via restricting to
Teichmüller elements. As everything is separated, this also shows that Gm-fixed points necessarily lie in
the image of LDivdY

Mλ, thus the Gm-fixed points agree with GrMλ,DivdY
.

Bijectivity of the map
GrPλ,DivdY

→ GrG,DivdY
on geometric points follows from the Iwahori decomposition. It remains to prove that the map is a locally
closed immersion on each Grν

Pλ,DivdY
, and the union over ν ′ ≤ ν is closed. Picking a closed embedding

into GLn, this reduces to the case G = GLn, and by writing any standard parabolic as an intersection of
maximal parabolics, we can assume that Pλ ⊂ GLn is a maximal parabolic. Passing to a higher exterior
power, we can even assume that Pλ ⊂ GLn is the mirabolic, fixing a one-dimensional quotient of the
standard representation. In that case, GrGLn,DivdY

parametrizes finite projective B+
DivdY

-modules M with
an identification M ⊗B+

DivdY

BDivdY
∼= Bn

DivdY
, and GrPλ,DivdY

parametrizes such M for which the image

L ⊂ BDivdY
of M in the quotient Bn

DivdY
→ BDivdY

: (x1, . . . , xn) 7→ xn is a line bundle over B+
DivdY

. It also
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suffices to prove the result after pullback along (Div1Y)d → DivdY . Now the result follows from the next
lemma. �

In the following, the “relative position” of a B+-lattice L ⊂ B to the standard lattice B+ ⊂ B refers
to the image under the map

GrGm,DivdY
→ X∗(Gm) = Z

defined above.

Lemma VI.3.2. LetS = Spa(R,R+) be an affinoid perfectoid space overFq with untiltsS]i = Spa(R]i , R
]+
i )

over OE for i = 1, . . . , n. Let ξi ∈ WOE (R
+) generate the kernel of θi : WOE (R

+) → R]+i and let
ξ = ξ1 · · · ξn. Let B+ be the ξ-adic completion of WOE (R

+)[ 1
[$] ] where $ ∈ R is a pseudouniformizer,

and let B = B+[1ξ ]. Finally, let
L ⊂ B

be a finitely generatedB+-module that is open and bounded, i.e. there is some integerN such that ξNB+ ⊂
L ⊂ ξ−NB+ ⊂ B.

For anym ∈ Z, let Sm ⊂ S be the subset of those points at which the relative position ofL toB+ ⊂ B
is given by m. Then

⋃
m′≥m Sm′ is closed, and if Sm = S then the B+-module L is a line bundle.

Proof. We can assume that L ⊂ B+ via multiplying by a power of ξ. Let s ∈ S be any point, corre-
sponding to a map Spa(K(s),K(s)+)→ Sm. LetB+

s be the version ofB+ constructed from (K(s),K(s)+).
ThenB+

s is a finite product of discrete valuation rings, and the image Ls of L⊗B+ B+
s inB+

s is necessarily
free of rank 1. Then s ∈ Sm if and only if the length of B+

s /Ls as B+
s -module is given by m. Localizing

on S if necessary, we can find an element l ∈ L ⊂ B whose image in Ls is a generator. In a neighborhood
of s, the element l generates a submodule L′ = B+ · l ⊂ L whose relative position toB+ is bounded above
by m at all points by the next lemma, and then the relative position of L ⊂ B is also bounded above by m
at all points as L′ ⊂ L. This gives the desired semicontinuity of the stratification (noting that as L is open
and bounded, only finitely many values of m can appear). If Sm = S , then the containment L′ ⊂ L has to
be an equality, and hence L = L′ is generated by l, so L is a line bundle. �

Lemma VI.3.3. In the situation of the previous lemma, let f ∈ B+ be any element, and consider the
map

|S| → Z≥0 ∪ {∞}
sending any point s of S to the length of B+

s /f as B+
s -module. This map is semicontinuous in the sense

that for any m ≥ 0, the locus where it is ≤ m is open.

Proof. For any i = 1, . . . , n, one can look at the closed subspace Si ⊂ S where the image of f in R]i
vanishes. On the open complement of all Si, the function is identically 0. By induction, we can thus pass
to a closed subspace Si ⊂ S , where we can consider the function fi = f

ξi
; the length function for f is then

the length function for fi plus one. This gives the result. �

Example VI.3.4. Suppose λ ∈ X∗(T ) is regular dominant. Then Pλ = B. We then obtain the
stratification by semi-infinite orbits

Sν = Grν
B,DivdY
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for ν ∈ X∗(T ). One has Sν ↪→ GrG,DivdY
, a locally closed immersion, and

GrG,DivdY
=

⋃
ν∈X∗(T )

Grν
B,DivdY

(disjoint union) at the level of points.

We can now apply Theorem IV.6.5. Here, we also use the opposite parabolic P−
λ ⊂ G. If S → DivdY is

a small v-stack, we denote
GrG,S/DivdY

= GrG,DivdY
×DivdY

S

and similarly
HckG,S/DivdY

= HckG,DivdY
×DivdY

S.

For any A ∈ Det(GrG,S/DivdY
,Λ), we call A bounded if it arises via pushforward from some finite union

GrG,S/DivdY ,≤µ•
⊂ GrG,S/DivdY

. We let

Det(GrG,S/DivdY
,Λ)bd ⊂ Det(GrG,S/DivdY

,Λ)

be the corresponding full subcategory.

Corollary VI.3.5. Let S → DivdY be any small v-stack. Consider the diagram

GrPλ,DivdY
q+

yy

p+

&&
GrG,DivdY

GrMλ,DivdY

GrP−
λ ,DivdY

q−
ee

p−
88

and denote by q+S etc. the base change along S → DivdY . Consider the full subcategory

Det(GrG,S/DivdY
,Λ)Gm-mon,bd ⊂ Det(GrG,S/DivdY

,Λ)bd

of all A ∈ Det(GrG,S/DivdY
,Λ) that are bounded and Gm-monodromic in the sense of Definition IV.6.11.

On Det(GrG,S/DivdY
,Λ)Gm-mon,bd, the natural map

R(p−S )∗R(q
−
S )

! → R(p+S )!(q
+
S )

∗

is an equivalence, inducing a “constant term” functor

CTPλ : Det(GrG,S/DivdY
,Λ)Gm-mon,bd → Det(GrMλ,S/DivdY

,Λ)bd.

This functor commutes with any base change in S and preserves the condition of being universally locally
acyclic over S (which is well-defined for bounded A).

Proof. This follows from Proposition VI.3.1 and Theorem IV.6.5, Proposition IV.6.12 and Proposi-
tion IV.6.14. �
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Example VI.3.6 (Follow-up to Example VI.3.4). In the context of Example VI.3.4, suppose d = 1.
Then, GrT,S/Div1Y

= X∗(T )×S , and the corresponding semi-infinite orbits are denoted by Sν ⊂ GrG,Div1Y
for ν ∈ X∗(T ). Thus,

CTB(A) =
⊕

ν∈X∗(T )

R(pν)!(A|Sν )

with pν : Sν ×Div1Y
S → S ⊂ GrT,S/Div1Y

the embedding indexed by ν.

As a final topic here, let us analyze more closely the semi-infinite orbits in the special fibre, i.e. for
the Witt vector affine Grassmannian GrWitt

G (so that (GrWitt
G )♦ ∼= GrG,SpdFq/Div1Y

), which is an increasing
union of perfections of projective varieties over Fq by [BS17], cf. also [Zhu17]. For any λ ∈ X∗(T ) as above,
we have the semi-infinite orbit

Sλ = LU · [λ] ⊂ GrWitt
G .

Proposition VI.3.7. For any µ ∈ X∗(T )
+, the intersection Sλ ∩GrWitt

G,≤µ is representable by an affine
scheme.

Proof. Picking a closed immersion G ↪→ GLn, one can reduce to G = GLn. In that case, there is an
ample line bundle L on GrWitt

G constructed in [BS17]. We first claim that the pullback of L to GrWitt
B is

trivial. Indeed, recall that if SpecR → GrWitt
G corresponds to a lattice Ξ ⊂ WOE (R)[

1
π ]
n, then L is given

by det(π−mWOE (R)/Ξ) for any large enough m, using the determinant

det : Perf(WOE (R) on R)→ Pic(R),

which is multiplicative in exact triangles. On GrWitt
B , one has a universal filtration of Ξ compatible with the

standard filtration on the standard lattice, which induces a similar filtration on Ξ/πmWOE (R), where all
the graded quotients are locally constant (and constant on Sλ). This means that the line bundle is naturally
trivialized over each connected component Sλ of GrWitt

B .
We claim that this section over Sλ extends uniquely to a section over the closed subset

⋃
λ′≤λ Sλ′ that

vanishes over the complement of Sλ, showing that the intersection of Sλ with each GrWitt
G,≤µ must be affine.

To see this, by the v-descent results of [BS17], it suffices to check that for any rank 1 valuation ring V with
a map SpecV → GrWitt

G whose generic point SpecK maps into Sλ, the section of L over SpecK extends to
SpecV and is nonzero in the special fibre precisely when all of SpecV maps into Sλ. Now the filtration

0 = ΞK,0 ⊂ ΞK,1 ⊂ . . . ⊂ ΞK,n = ΞK

with
ΞK,i = ΞK ∩WOE (K)[ 1π ]

i ⊂WOE (K)[ 1π ]
i

has the property that
ΞK,i/ΞK,i−1 = πλiWOE (K)

for the cocharacter λ = (λ1, . . . , λn). Moreover, the filtration by the ΞK,i extends integrally to the filtra-
tion

0 = Ξ0 ⊂ Ξ1 ⊂ . . . ⊂ Ξn = Ξ

with
Ξi = Ξ ∩WOE (V )[ 1π ]

i ⊂WOE (V )[ 1π ]
i,
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which is still a filtration by finite projective WOE (V )-modules by [SW20, Lemma 14.2.3]. The injection of
Ξi/Ξi−1 into WOE (V )[ 1π ] (projecting to the i-th coordinate) has image contained in

WOE (V )[ 1π ] ∩ π
λiWOE (K) = πλiWOE (V ),

so we get natural injections Ξi/Ξi−1 ↪→ πλiWOE (V ), that are isomorphisms after inverting π or [a] for a
pseudouniformizer a ∈ V . Now the relevant line bundle can be written as the tensor product of the line
bundles given by the determinants of the complexes

πλiWOE (V )/(Ξi/Ξi−1) ∈ Perf(WOE (R) on R).

These line bundles are indeed naturally trivial over K as the perfect complex is acyclic there. Now this
complex is concentrated in degree 0, and is torsion, so admits a filtration by complexes of the form V /a ∼=
[aV ↪→ V ] for pseudouniformizers a ∈ V . The associated line bundle on V is then given by the alternating
tensor product V ⊗V (aV )−1 = a−1V , and the natural section by 1 ∈ a−1V . We see that the section is
indeed integral, and that it is nonzero in the special fibre if and only if all the above complexes are acyclic,
equivalently if Ξi/Ξi−1 → πλiWOE (V ) is an isomorphism. But this is precisely the condition that all of
SpecV maps into Sλ. �

The union
⋃
λ,〈2ρ,λ〉≤d Sλ ⊂ GrWitt

G is closed, thus so is⋃
λ,〈2ρ,λ〉≤d

Sλ ∩GrWitt
G,≤µ ⊂ GrWitt

G,≤µ .

For d = 〈2ρ, µ〉, this is all of GrWitt
G,≤µ, while for d = −〈2ρ, µ〉 it contains only a point, corresponding to [λ]

for λ the antidominant representative of the Weyl orbit of µ. Also, only d of the same parity as 〈2ρ, µ〉 are
relevant. By Proposition VI.3.7, the successive complements⋃

λ,〈2ρ,λ〉≤d

Sλ ∩GrWitt
G,≤µ \

⋃
λ,〈2ρ,λ〉≤d−2

Sλ ∩GrWitt
G,≤µ =

⊔
λ,〈2ρ,λ〉=d

Sλ ∩GrWitt
G,≤µ

are affine. This means that at each step, the dimension can drop by at most 1. However, in 〈2ρ, µ〉 steps, it
drops by 〈2ρ, µ〉. We get the following corollary on Mirković–Vilonen cycles, cf. [MV07, Theorem 3.2],
and [GHKR10], [Zhu17, Corollary 2.8] for a different proof based on point counting, the classical Satake
isomorphism, and the Kato-Lusztig formula [Kat82], [Lus83].

Corollary VI.3.8. The scheme Sλ ∩GrWitt
G,≤µ is equidimensional of dimension 〈ρ, µ+ λ〉.

VI.4. Equivariant sheaves

Now we go back to the setting of general reductive groups G over OE (resp. over E if we work over
DivdY or DivdX ). As usual, let Λ be some coefficient ring killed by some integer n prime to p. We want to
study Det(−,Λ) for the local Hecke stack

HckG,DivdY
= L+

DivdY
G\GrG,DivdY

or its versions for DivdY and DivdX . Neither this nor its bounded versions HckG,DivdY ,≤µ•
(say, when G is

split) is an Artin stack as L+
DivdY

G is not finite-dimensional. However, Proposition VI.2.8 shows that on the
bounded version, the action factors over a finite-dimensional quotient.
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First, we observe that on the level of Det(−,Λ), one can then forget about the rest of the action.

Proposition VI.4.1. Let H be a group small v-sheaf over a small v-sheaf S that admits a filtration
H≥m ⊂ H by closed subgroups such that, v-locally on S , for each m ≥ 1 each quotient H≥m/H≥m+1

admits a further finite filtration with graded pieces given by (A1
S]
)♦ for some untilt S] of S (that may

depend on the graded piece). Let X be some small v-sheaf over S with an action of H that factors over
H<m = H/H≥m for some m > 0. Then the pullback functor

Det(H
<m\X,Λ)→ Det(H\X,Λ)

is an equivalence.

Proof. Both stacks live over the classifying stack [H<m\S] of H<m over S. Applying descent along
S → [H<m\S], one reduces to the case that H<m is trivial. In that case, the map X/H → X/H<m = X
admits a section s : X → X/H , and it is enough to prove that s∗ is fully faithful. Doing descent once
more, it is enough to prove that for any affinoid perfectoid space S′ over S over which a filtration by A1’s
exists, pullback

Det(S
′,Λ)→ Det(S

′ ×H,Λ)

is fully faithful. Replace S by S′ and let f : H → S be the projection. We need to see that for all
A ∈ Det(S,Λ), the map

A→ Rf∗f
∗A

is an isomorphism; doing this for all S , it is enough to check it on global sections, i.e.

RΓ(S,A)→ RΓ(S ×H, f∗A)

is an isomorphism. Using Postnikov towers, we can assume that A ∈ D+
et (S,Λ). We can write H as a

filtered colimit of subgroups Hj ⊂ H such that each Hj is a successive extension as before, but now the
quotients are balls inside each A1

S]
. In particular, each Hj is a spatial diamond, and it is enough to prove

that
RΓ(S,A)→ RΓ(S ×Hj , f

∗A)

is an isomorphism for all j. Now each Hj = lim←−mH
<m
j is an inverse limit of spatial diamonds, so by

[Sch17a, Proposition 14.9] it is enough to prove that

RΓ(S,A)→ RΓ(S ×H<m
j , f∗nA)

is an isomorphism for all m and j. But this follows easily from each H<m
j being a successive extension of

balls inside A1
S]

. �

Using hyperbolic localization, we can prove the following important conservativity result.

Proposition VI.4.2. Assume that B ⊂ G is a Borel. Let S → DivdY be any small v-sheaf. Let
A ∈ Det(HckG,S/DivdY

,Λ) with support quasicompact over S. Assume that the hyperbolic localization
CTB(A) = 0 of the pullback of A to GrG,S/DivdY

vanishes. Then A = 0.

The similar assertion holds with DivdY and DivdX in place of DivdY .
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Proof. Note that the formation of CTB commutes with any base change in S , by Corollary VI.3.5.
We can thus assume that S = Spa(C,C+) is strictly local. Up to replacing d by a smaller integer, removing
double points, we can assume that the mapS → DivdY is given by d distinct untiltsS]i overOE , i = 1, . . . , d.
Let E′|E be an extension splitting G, assumed unramified in our situation where we work over Y . We can
then lift all S]i toOE′ , and thereby reduce to the case of split G. The corresponding geometric fibre

HckG,S/DivdY

has a stratification enumerated by µ1, . . . , µd ∈ X∗(T )
+, with strata

[S/(
d∏
i=1

(L+
Div1Y

G)µi ×Div1Y
S)].

IfA is nonzero, we can find a maximal such stratum on whichA is nonzero. Now we apply Corollary VI.3.5,
see Example VI.3.6. One has an isomorphism

S ×X∗(T )
d ∼= GrT,S/DivdY

.

Over the copy ofS enumerated by the antidominant representatives of (the Weyl group orbits of)µ1, . . . , µn
the functor CTB is the pullback of A to a section of the stratum corresponding to µ1, . . . , µn ∈ X∗(T )

+

(which, as we recall, correspond to a maximal stratum whereA is nonzero). This shows that the restriction
of A to a section over this maximal stratum is zero. This gives the desired contradiction, so A = 0. �

VI.5. Affine flag variety

At a few isolated spots, it will be useful to use the affine flag variety, the main point being that the
Schubert varieties in the affine flag variety admit explicit resolutions of singularities, given by Demazure
resolutions (also known as Bott–Samelson resolutions). It will be enough to appeal to these in the setting
of a split reductive groupG, with a reductive model overOE and BorelB ⊂ G defined overOE , for d = 1,
and for a small v-stack S → Div1Y factoring over SpdOC where C = Ê , so we restrict attention to this
setting.

Consider the base change GA of G to A =WOE (OC[). We have Fontaine’s map θ : A→ OC , and we
can define an “Iwahori” group scheme I → GA, flat overA, whose points in a ker θ-torsionfreeA-algebraR
are given those elements g ∈ G(R) such that θ(g) ∈ G(R⊗AOC) lies inB(R⊗AOC). Similarly, for any
parabolic P ⊂ G containingB, we get a “parahoric” group scheme P → GA, flat overA, whose points in a
ker θ-torsionfreeA-algebraR are those g ∈ G(R) such that θ(g) ∈ P (R⊗AOC). In particular, this applies
to the parabolics Pi corresponding to the simple reflections si; let Pi be the corresponding parahorics. Still
more generally, for any affine simple reflection si, one can define a parabolicPi → GA flat overA, and such
that I → GA factors overPi. (The construction of these parahoric group schemes overA can be reduced to
the case of WOE (k)[[u]] via a faithfully flat embedding WOE (k)[[u]] ↪→ A along which everything arises
via base change, and then one can appeal to the work of Bruhat–Tits [BT84, Section 3.9.4].)

Definition VI.5.1. In the situation above, including a small v-stack S over SpdOC , mapping to Div1Y ,
let

F`G,S → S

be the étale quotient LG/L+I , where L+I(R,R+) = I(B+
dR(R

])).
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Note here that as S lives over SpdOC , any Spa(R,R+) over S comes with an untilt R] over OC , in
which case B+

dR(R
]) is an A =WOE (OC)-algebra, so that I(B+

dR(R
])) is well-defined.

Proposition VI.5.2. There is a natural projection map

F`G,S → GrG,S/Div1Y

that is v-locally isomorphic to a product with (G/B)♦. In particular, it is proper, representable in spatial
diamonds, and cohomologically smooth.

Proof. This follows from the identificationL+G/L+I ∼= (G/B)♦, which follows from the definition,
and the similar properties of (G/B)♦ → SpdOE . �

We analyze the stratification of F`G,S into L+I-orbits. Let N(T ) ⊂ T be the normalizer of T , and

W̃ = N(T )(BdR(C
′))/T (B+

dR(C
′))

be the affine Weyl group, for any complete algebraically closed field C ′ over OE with a map C[ → C ′[;
this is naturally independent of the choice of C ′. As T (BdR(C

′))/T (B+
dR(C

′)) ∼= X∗(T ), there is a short
exact sequence

0→ X∗(T )→ W̃ →W → 0,

where W is the usual Weyl group of G.

Proposition VI.5.3. The decomposition of F`G,S(C ′) into L+I(C ′)-orbits is given by

F`G,S(C ′) =
⊔
w∈W̃

L+I(C) · w.

Proof. If C ′ lives over E , we can choose an isomorphism BdR(C
′) ∼= C ′((ξ)) and the result follows

from the classical result. If C ′ lives over the residue field Fq of E , this reduces to the assertion for the Witt
vector affine flag variety, for which we refer to [Zhu17]. �

Recall that W̃ acts on X∗(T ). Fixing the alcove a corresponding to the Iwahori group I , one gets
a set of affine simple reflections si as the reflections along the faces of the alcove; these generate a normal
subgroupWaff ⊂ W̃ . Letting Ω ⊂ W̃ denote the stabilizer of the alcove, there is a split short exact sequence

1→Waff → W̃ → Ω→ 1.

One gets the Bruhat order on W̃ : If wi = wi,0ωi ∈ W̃ = Waff o Ω for i = 1, 2 are two elements, then
w1 ≤ w2 if ω1 = ω2 and in one (hence every) presentation of w2 as a product of affine simple reflections,
w1 is obtained by removing some factors.

Definition VI.5.4. For w ∈ W̃ , the affine Schubert cell is the subfunctor F`G,w,S ⊂ F`G,S of all
maps Spa(R,R+) → F`G,S that on all geometric points lie in the L+I-orbit of w. The affine Schubert
variety is the subfunctor F`G,≤w,S of all maps Spa(R,R+)→ F`G,S that on all geometric points lie in the
L+I-orbit of w′ for some w′ ≤ w.

Theorem VI.5.5. For each w ∈ W̃ , the subfunctor F`G,≤w,S ⊂ F`G,S is closed, and F`G,≤w,S →
SpdOC is proper and representable in spatial diamonds, of finite dim. trg. The subfunctor F`G,w,S ⊂
F`G,≤w,S is open and dense.
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Proof. We will prove the theorem by constructing the Demazure resolution of F`G,≤w,S . Write w =

w0ω ∈ W̃ = Waff o Ω, and fix a decomposition w0 =
∏l
j=1 sij as a product of affine simple reflections of

minimal length, so l(w) = l(w0) = l. We write ẇ for the element w with such a choice of decomposition.
For each affine simple reflection si, we have a corresponding parahoric group Pi → GA corresponding

to the face of a; one has L+Pi/L+I ∼= (P1)♦.

Definition VI.5.6. The Demazure variety corresponding to ẇ is the étale sheaf

Demẇ,S = L+Psi1 ×
L+I L+Psi2 ×

L+I . . .×L+I L+Psil/L
+I → S,

equipped with the left L+I-action and the L+I-equivariant map

Demẇ,S → F`G,S

given by (p1, . . . , pl) 7→ p1 · · · pl · ω.

It is clear from the definition that Demẇ → S is a successive (P1)♦-fibration over S , and in partic-
ular is a spatial diamond, proper over S of finite dim. trg. As F`G,S → S is partially proper, it follows
that the image of Demẇ,S → F`G,S is proper. Moreover, the image can be identified on geometric points,
and we see that Demẇ,S → F`G,≤w,S is surjective, F`G,≤w,S ⊂ F`G,S is closed, and F`G,≤w,S is proper
over S. In particular, F`G,w,S ⊂ F`G,≤w,S is open, as the complement is a finite union of closed subfunc-
tors. As F`G,S → GrG,S is locally a product with (G/B)♦, it follows from [SW20, Theorem 19.2.4] that
F`G,S ×GrG,S GrG,≤µ,S is a spatial diamond, and thus so is F`G,≤w,S , as it is a closed subspace for µ large
enough.

Also, by checking on geometric points and reducing to the classical case, the map Demẇ,S → F`G,≤w,S
is an isomorphism over F`G,w,S whose preimage is given by

(L+Psi1 \ L
+I)×L+I (L+Psi2 \ L

+I)×L+I . . .×L+I (L+Psil \ L
+I)/L+I.

This implies thatF`G,w,S ⊂ F`G,≤w,S is dense, as desired. As usual, a consequence of this discussion is that
the Bruhat order is independent of the choice of ẇ. �

Using Demazure resolutions, one can prove that the standard sheaves on the affine flag variety are
universally locally acyclic.

Proposition VI.5.7. For any w ∈ W̃ , let jw : F`G,w,S ↪→ F`G,≤w,S be the open embedding. Then
jw!Λ ∈ Det(F`G,≤w,S ,Λ) is universally locally acyclic over S.

Proof. Using Proposition IV.2.11, it suffices to prove the same for j̃w : F`G,w,S ↪→ Demẇ,S and j̃w!Λ.
Then j̃w!Λ can be resolved in terms of Λ and all iẇ′,ẇ,∗Λ for

iẇ′,ẇ : Demẇ′,S → Demẇ,S

the closed immersion from another Demazure variety, corresponding to a subword of ẇ′ of ẇ; note that
combinatorially, we are dealing with the situation of a normal crossing divisor at the boundary. By coho-
mological smoothness of all Demẇ′,S → S and Proposition IV.2.11, the result follows. �
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VI.6. ULA sheaves

We will be interested in universally locally acyclic sheaves on the local Hecke stack.

Definition VI.6.1. Let S → DivdY be any small v-stack. An object
A ∈ Det(HckG,S/DivdY

,Λ)

is universally locally acyclic over S if it is bounded, and its pullback to
GrG,S/DivdY

is universally locally acyclic over S.
Let

DULA
et (HckG,S/DivdY

,Λ) ⊂ Det(HckG,S/DivdY
,Λ)

be the corresponding full subcategory.

This definition is a priori not symmetric in the two bundles E1, E2 parametrized by the local Hecke
stack. However, we can check that it actually is.

Proposition VI.6.2. Consider the automorphism
sw : HckG,S/DivdY

∼= HckG,S/DivdY

switching E1 and E2. Then A ∈ Det(HckG,S/DivdY
,Λ) is universally locally acyclic over S if and only if

sw∗A is universally locally acyclic over S.

Proof. Fix any large enough substack U ⊂ HckG,S/DivdY
quasicompact over S containing the support

ofA. Let (LDivdY
G)U ⊂ LDivdY

G be the preimage ofU . Universal local acyclicity after pullback to GrG,DivdY
is equivalent to universal local acyclicity after pullback to

(LDivdY
G)U/(L

+
DivdY

G)≥m

for any m > 0, by Proposition VI.1.11 and Proposition VI.1.12. We need to see that this is equivalent to
universal local acyclicity after pullback to

(L+
DivdY

G)≥m\(LDivdY
G)U

for any m > 0. For this, we note that these two pro-systems in m are pro-isomorphic. By the next
lemma, the transition maps back and forth are also cohomologically smooth, which implies the desired
equivalence. �

In the following lemma, we call a map f universally locally acyclic if Λ is f -universally locally acyclic.

Lemma VI.6.3. Let
X4

f3−→ X3
f2−→ X2

f1−→ X1
f0−→ X0

be surjective maps of locally spatial diamonds that are compactifiable and of locally finite dim. trg. Assume
that f0◦f1 and f1◦f2 are cohomologically smooth. Then f0 is universally locally acyclic. If f1 is universally
locally acyclic and f0 ◦ f1 is cohomologically smooth, then f1 is cohomologically smooth. Thus, if f0 ◦ f1,
f1 ◦ f2 and f2 ◦ f3 are cohomologically smooth, then f0 and f1 are cohomologically smooth.
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We would expect that f3 : X4 → X3 should be unnecessary in order for f0 to be cohomologically
smooth.

Proof. We claim that for any map g0 : Y0 → X0, with pullbacks gi : Yi → Xi and f̃i : Yi+1 → Yi,
the natural transformation

f̃∗0Rg
!
0 → Rg!1f

∗
0

is an isomorphism. Indeed, we have natural maps

f̃∗2 f̃
∗
1 f̃

∗
0Rg

!
0 → f̃∗2 f̃

∗
1Rg

!
1f

∗
0 → f̃∗2Rg

!
2f

∗
1 f

∗
0 → Rg!3f

∗
2 f

∗
1 f

∗
0

and the composite of any two maps is an isomorphism. By the two-out-of-six-lemma, this implies that all
maps are isomorphisms. By surjectivity of f1 and f2, this implies that f̃∗0Rg!0 → Rg!1f

∗
0 is an isomorphism.

Applying this with Y0 = X1 and to the constant sheaf Λ then shows, by the criterion of Theorem IV.2.23,
that Λ is f0-universally locally acyclic.

Now assume that f1 is universally locally acyclic and f0 ◦ f1 is cohomologically smooth, then

R(f0 ◦ f1)!Λ ∼= f∗1Rf
!
0Λ⊗L

Λ Rf
!
1Λ

is invertible. This implies that both tensor factors are invertible, and in particular Rf !1Λ is invertible, so
f1 is cohomologically smooth. For the final statement, we now know that the hypotheses imply that f0
and f1 are universally locally acyclic, so the displayed equation implies that f0 and f1 are cohomologically
smooth. �

Using the conversativity result Proposition VI.4.2, we can characterize universally locally acyclic sheaves
in terms of their hyperbolic localization. Note that we can always reduce to the case of quasisplitG by étale
localization on S.

Proposition VI.6.4. LetB ⊂ G be a Borel with torus quotient T . Let S be a small v-stack with a map
S → DivdY , and let

A ∈ Det(HckG,S/DivdY
,Λ)bd.

Then A is universally locally acyclic over S if and only if the hyperbolic localization

CTB(A) ∈ Det(GrT,S/DivdY
,Λ)bd

is universally locally acyclic over S. This, in turn, is equivalent to the property that

RπT,S,∗CTB(A) ∈ Det(S,Λ)

is locally constant with perfect fibres.

Here
πT,S : GrT,S/DivdY

→ S

is the projection.

Proof. The forward direction follows from Corollary VI.3.5 and the ind-properness ofπT,S and Corol-
lary IV.2.12. For the converse direction, we may assume thatS is strictly totally disconnected andG is split.
Note that to prove universal local acyclicity of A, it is enough to prove that the map

p∗1RHom(A,Rπ!G,SΛ)⊗L
Λ p

∗
2A→ RHom(p∗1A,Rp

!
2A)
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is an isomorphism (by Theorem IV.2.23). (Implicitly, we pass here to a bounded part ofHckG,DivdY
and re-

place the quotient by L+
DivdY

G by a finite-dimensional quotient in order to be in the setting of Artin stacks.)
By Proposition VI.4.2 applied to G × G, it is enough to prove this after applying CTB−×B , where B− is
the opposite Borel. Using that hyperbolic localization commutes with exterior tensor products, and Propo-
sition IV.6.13, this translates exactly into the similar isomorphism characterizing universal local acyclicity
of CTB(A). The final statement follows from Proposition IV.2.28. �

In the case of one leg, one can completely characterize universally locally acyclic sheaves.

Proposition VI.6.5. Assume that G is split. Let S → Div1Y be any small v-stack. Consider

A ∈ Det(HckG,S/Div1Y
,Λ)bd.

Then A is universally locally acyclic over S if and only if for all µ ∈ X∗(T )
+, the restriction of A to the

section [µ] : S → HckG,S/Div1Y
is locally constant with perfect fibres in Det(S,Λ).

If G is not split, a similar characterization holds, by applying the result étale locally to reduce to the
case of split G. Again, there is also the obvious version for Div1Y and Div1X .

Proof. First, we prove that if all fibres are locally constant with perfect fibres, then A is universally
locally acyclic. This easily reduces to the case of jµ!Λ where

jµ : HckG,Div1Y ,µ
↪→ HckG,Div1Y

is the inclusion of an open Schubert cell, and S = Div1Y . We can also argue v-locally on Div1Y and so
base change to the case S = SpdOC . In that case, Proposition VI.5.2 and Proposition IV.2.13 show that it
suffices to prove the similar assertion for the affine flag variety, where it follows from Proposition VI.5.7.

Now for the converse, we argue by induction on the support ofA. On a maximal Schubert cell GrG,S/Div1Y ,µ
where A is nonzero, its restriction is universally locally acyclic, and as on the Hecke stack this stratum is
the classifying space of a (pro-)cohomologically smooth group, it follows that the restriction ofA along the
section [µ] : S → HckG,S/Div1Y

is locally constant with perfect fibres. Replacing A by the cone of

jµ!A|Hck
G,S/Div1Y ,µ

→ A,

the claim follows. �

In the following corollaries, we no longer assume that G is split.

Corollary VI.6.6. Let S → Div1Y be any small v-stack. Then

DULA
et (HckG,S/Div1Y

,Λ)

is stable under Verdier duality and − ⊗L
Λ −, RHomΛ(−,−) as well as j!j∗, Rj∗j∗, j!Rj!, Rj∗Rj! where

j is the locally closed immersion of a Schubert cell. Moreover, all of these operations commute with all
pullbacks in S.

Proof. Stability under Verdier duality and compatibility with base change in S follow from Corol-
lary IV.2.25. For the other assertions, one can reduce to the case that G is split by working locally on
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S , where it follows from the previous proposition, and juggling with the six functors, and the stalkwise
characterization of the previous proposition. �

Corollary VI.6.7. For a complete algebraically closed extension C of E with residue field k, taking
S = SpdOC , S = SpdC and S = Spd k, the functors

DULA
et (HckG,SpdC/Div1Y

,Λ)← DULA
et (HckG,SpdOC/Div1Y

,Λ)→ DULA
et (HckG,Spd k/Div1Y

,Λ)

are equivalences.

Proof. Use that the formation of RHom commutes with any base change in S , and that the category
of locally constant sheaves with perfect fibres on any such S is equivalent to the category of perfect Λ-
modules. �

In fact, the previous results extend to the case of general d as long as S → DivdY has image in the open
subset (DivdY)6= ⊂ DivdY where all untilts are distinct. After passing to a finite étale cover of S , we can then
in fact assume that S maps to (Div1Y)d6=.

Proposition VI.6.8. Assume that G is split. Let S → (Div1Y)d6= → DivdY be a small v-stack. Consider

A ∈ Det(HckG,S/DivdY
,Λ)bd.

Then A is universally locally acyclic over S if and only if for all µ1, . . . , µd ∈ X∗(T )
+, the restriction of

A to the section [µ•] : S → HckG,S/DivdY
is locally constant with perfect fibres in Det(S,Λ).

The category
DULA

et (HckG,S/DivdY
,Λ)

is stable under Verdier duality and − ⊗L
Λ −, RHomΛ(−,−) as well as j!j∗, Rj∗j∗, j!Rj!, Rj∗Rj! where

j is the locally closed immersion of a Schubert cell. Moreover, all of these operations commute with all
pullbacks in S.

Proof. We have the decomposition

HckG,S/DivdY
∼=

d∏
i=1

HckG,S/πiDiv1Y

where π1, . . . , πd : S → Div1Y are the d projections, and the product on the right is taken over S. One
can then stratify according to Schubert cells parametrized by tuples µ• = (µ1, . . . , µd) and the above
arguments imply the result. Here, in the beginning, to see that jµ•!Λ is universally locally acyclic, one uses
that exterior tensor products preserve universal local acyclicity, see Corollary IV.2.25, to reduce to the case
of one leg. �

VI.7. Perverse Sheaves

For any small v-stack S → DivdY , we define a (relative) perverse t-structure on

Det(HckG,S/DivdY
,Λ)bd.
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Definition/Proposition VI.7.1. Let S → DivdY be a small v-stack. There is a unique t-structure
(pD≤0, pD≥0) on Det(HckG,S/DivdY

,Λ)bd such that

A ∈ pD≤0
et (HckG,S/DivdY

,Λ)bd

if and only if for all geometric points Spa(C,C+)→ S and open Schubert cells of

HckG,Spa(C,C+)/DivdY
,

parametrized by some µ1, . . . , µr ∈ X∗(T )
+ (where r is the number of distinct untilts at Spa(C,C+) →

DivdY ), the pullback of A to this open Schubert cell sits in cohomological degrees ≤ −
∑r

i=1〈2ρ, µi〉.

Proof. We note that on any bounded closed subset of Z ⊂ HckG,DivdY
there is a presentable stable

∞-category Det(Z ×DivdY
S,Λ) refining the derived category, and the given class of objects is stable under

all colimits and extensions (and is generated by a set of objects). Thus, the existence and uniqueness of the
t-structure follow from [Lur16, Proposition 1.4.4.11]. Moreover, one easily checks that when enlarging Z ,
the inclusion functors are t-exact, so these glue to a t-structure in the direct limit. �

Let
Perv(HckG,S/DivdY

,Λ) ⊂ Det(HckG,S/DivdY
,Λ)bd

be the heart of the perverse t-structure. On it, pullback to the affine Grassmannian is fully faithful.

Proposition VI.7.2. The pullback functor

Perv(HckG,S/DivdY
,Λ)→ Det(GrG,S/DivdY

,Λ)bd

is fully faithful.
Moreover, if

A ∈ pD≤0
et (HckG,S/DivdY

,Λ)bd and B ∈ pD≥0
et (HckG,S/DivdY

,Λ)bd,

then RHomΛ(A,B) ∈ D≥0
et (HckG,S/DivdY

,Λ)bd.

Proof. For the final statement, we need to see that if C ∈ D≤−1
et (HckG,S/DivdY

,Λ)bd, then there are
no nonzero maps C → RHomΛ(A,B); equivalently, there are no nonzero maps C ⊗L

Λ A → B. But this
follows from the simple observation that C ⊗L

Λ A lies in pD≤−1.
Now using this property of RHomΛ(A,B), descent implies that it is enough to see that if A,B ∈

Perv(HckG,S/DivdY
,Λ), then any map between their pullbacks to GrG,S/DivdY

is automatically invariant un-
der the action of L+

DivdY
G. This follows from Lemma VI.7.3 applied to a finite-dimensional approximation

of
GrG,S/DivdY

×DivdY
L+

DivdY
G→ GrG,S/DivdY

. �

We used the following lemma on actions of connected groups on étale sheaves.
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Lemma VI.7.3. Let f : Y → X be a compactifiable cohomologically smooth map of locally spatial
diamonds with a section s : X → Y . Assume that all geometric fibres of f are connected. Then for all
A ∈ D≥0

et (X,Λ), the map
H0(Rf∗f

∗A)→ H0(A)

given by evaluation at the section s is an isomorphism.

Proof. Note that
Rf∗f

∗A ∼= RHom(Rf!Rf
!Λ, A)

where Rf!Rf !Λ sits in cohomological degrees ≤ 0 with H0 ∼= Λ. Indeed, this reduces easily to the case
of discrete Λ, and then to Λ = F`, and can be checked on geometric stalks. But if S = Spa(C,C+) and
i : {s} ↪→ S is the closed point, then i∗Rf!Rf !F` ∈ D(F`) with dual

RHom(i∗Rf!Rf
!F`,F`) ∼= RΓ(Y, f∗i∗F`)

which sits in degrees ≥ 0 and is equal to F` in degree 0, as the geometric fibres are connected. Using the
section, we get Rf!Rf !Λ ∼= Λ ⊕ B for some B that sits in cohomological degrees ≤ −1, and the lemma
follows. �

Unfortunately, it is a priori not easy to describe the category pD≥0. It is however possible to describe
it via hyperbolic localization. This also implies that pullbacks in S are t-exact.

Proposition VI.7.4. For any S′ → S → DivdY , pullback along
HckG,S′/DivdY

→ HckG,S/DivdY

is t-exact for the perverse t-structure. Moreover, if G is split, then

CTB : Det(HckG,S/DivdY
,Λ)bd → Det(GrT,S/DivdY

,Λ)

satisfies the following exactness property. There is the natural locally constant map GrT,DivdY
→ X∗(T )

measuring the sum of relative positions, and by pairing with 2ρ, we get a locally constant map deg :
GrT,DivdY

→ Z. Then CTB[deg] is t-exact for the perverse t-structure on the source, and the standard
t-structure on the right. As CTB[deg] is conservative, this implies in particular that

A ∈ pD≤0
et (HckG,S/DivdY

,Λ)bd (resp. A ∈ pD≥0
et (HckG,S/DivdY

,Λ)bd)

if and only if

CTB(A)[deg] ∈ D≤0
et (GrT,S/DivdY

,Λ) (resp. CTB(A)[deg] ∈ D≥0
et (GrT,S/DivdY

,Λ)).

Proof. To prove t-exactness of pullbacks, we need to see that pullback commutes with t-truncations.
By descent, it is enough to check that this holds v-locally on S; this allows us to reduce to the case that G
is split. It is then enough to prove t-exactness of CTB[deg], as by conservativity of CTB[deg] (see Proposi-
tion VI.4.2) this gives the characterization in terms of the t-structure in terms of CTB[deg], and the latter
characterization is clearly preserved under pullback (as hyperbolic localization commutes with pullback,
see Corollary VI.3.5).

We can assume that S → DivdY lifts to S → (Div1Y)d. We have a stratification of S into finitely
many strata ia : Sa ↪→ S , obtained by pulling back the partial diagonals of (Div1Y)d. Accordingly, we get
triangles expressing A as a successive extension of ia!i∗aA resp. Ria∗Ri!aA; if A ∈ pD≤0 (resp. A ∈ pD≥0),
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then also all ia!i∗aA ∈ pD≤0 (resp. Ria∗Ri!aA ∈ pD≥0). This allows us to reduce to the cases of ia!i∗aA
andRia∗Ri!aA. As hyperbolic localization commutes with all functors by Proposition IV.6.12, we can then
reduce to the case that S = Sa for some a. Reducing d if necessary, we can then assume that S maps into
the locus of distinct untilts (Div1Y)d6= ⊂ (Div1Y)d. There is then a stratification in terms of open Schubert
cells

jµ• : HckG,S/DivdY ,µ•
↪→ HckG,S/DivdY

parametrized by µ• = (µ1, . . . , µd), µi ∈ X∗(T )
+. Now A ∈ pD≤0 if and only if all

j∗µ•A ∈ D
≤−dµ•

for dµ• =
∑d

i=1〈2ρ, µi〉, and dually A ∈ pD≥0 if and only if all

Rj!µ•A ∈ D
≥−dµ• .

Using excision triangles, we can then assume that

A = jµ•!Aµ• , Aµ• ∈ D≤−dµ• (HckG,S/DivdY ,µ•
,Λ)

resp.
A = Rjµ•∗Aµ• , Aµ• ∈ D≥−dµ• (HckG,S/DivdY ,µ•

,Λ).

Moreover, filtering by cohomology sheaves, we can actually assume that Aµ• is concentrated in degree
−dµ• . Recall that

[µ•] : S → HckG,S/DivdY ,µ•

is a v-cover, and the automorphism group of the stratum is an inverse limit of smooth and connected groups
(as follows from Proposition VI.2.4 and the Künneth formula); this implies that for complexes concentrated
in one degree, pullback under [µ•]∗ is fully faithful, cf. Lemma VI.7.3. We can thus assume thatAµ• comes
via pullback from some B ∈ D(S,Λ) concentrated in cohomological degree−dµ• . Note that at this point,
the desired statement (that CTB(A)[deg] sits in the correct degrees) can be checked after pullback along
Spa(C,C+) → S , so we can assume S = Spa(C,C+) is strictly local, and it is enough to check that
CTB(A)[deg] sits in the correct degrees in the fibre over the closed point of S. This fibre in turn depends
only on the restriction of A to the fibre over the closed point of S , by Proposition IV.6.12. We can thus
assume that B is in fact constant. We can assume Λ = Z/nZ for some n prime to p, and then by dévissage
that Λ = F` for some ` 6= p. One can then further reduce to the case B = F`[dµ• ]. Also, by the Künneth
formula, we can then reduce to the case d = 1. Thus, finally

A = jµ!F`[〈2ρ, µ〉]

resp.
A = Rjµ∗F`[〈2ρ, µ〉],

and we want to see that CTB(A)[deg] ∈ D≤0 (resp. CTB(A)[deg] ∈ D≥0). By Proposition IV.6.13, it
suffices to handle the first case. Note thatA is now universally locally acyclic, and the claim can be checked
in the universal case S = Div1Y . As GrT,Div1Y

→ Div1Y is a disjoint union of X∗(T ) many copies of Div1Y ,
and the image is universally locally acyclic, thus locally constant, it is in fact enough to check the result
after pullback to the special fibre S = SpdFq → Div1Y , where

GrG,SpdFq/Div1Y
∼= (GrWitt

G )♦.



212 VI. GEOMETRIC SATAKE

Using [Sch17a, Section 27], we can now translate all computations to the setting of schemes. Let λ ∈
X∗(T ) be any element, giving rise to the semi-infinite orbit Sλ ⊂ GrWitt

G , i.e.

Sλ = GrWitt
B ×GrWitt

T
[λ].

By Corollary VI.3.8, the dimension of Sλ ∩GrWitt
G,µ is bounded by 〈ρ, λ+ µ〉. The restriction of

CTB(jµ!F`[〈2ρ, µ〉])

to [λ] ∈ GrWitt
T is given by

RΓc((Sλ ∩GrWitt
G,µ )Fq ,F`)[〈2ρ, µ〉]

and thus sits in degrees ≤ 2〈ρ, λ+ µ〉 − 〈2ρ, µ〉 = 〈2ρ, λ〉, giving the desired bound. �

We note that if d = 1, G is split, and S = Spd k → Div1Y for k = Fq , then under the full inclusion

Perv(HckG,Spd k/Div1Y
,Λ) ⊂ Det(GrG,Spd k/Div1Y

,Λ)bd,

the identification GrG,Spd k/Div1Y
∼= (GrWitt

G,k )
♦ and the full embedding

Det(GrWitt
G,k ,Λ)

bd ↪→ Det(GrG,Spd k/Div1Y
,Λ)bd

from [Sch17a, Proposition 27.2], the category
Perv(HckG,Spd k/Div1Y

,Λ)

identifies with the full subcategory

PervL+G(GrWitt
G,k ,Λ) ⊂ Det(GrWitt

G,k ,Λ)
bd

of L+G-equivariant perverse sheaves on GrWitt
G,k ; this was considered by Zhu [Zhu17] and Yu [Yu22]. In

particular, this discussion implies the following result that we will need later.

Proposition VI.7.5. Assume that G is split, so that for any µ ∈ X∗(T )
+ we have the inclusion

jµ : HckG,Div1Y ,µ
↪→ HckG,Div1Y

of the open Schubert cell, of dimension dµ = 〈2ρ, µ〉. Then
pjµ!Λ[dµ] =

pH0(jµ!Λ[dµ]),
pRjµ∗Λ[dµ] =

pH0(Rjµ∗Λ[dµ])

are universally locally acyclic, and their image under CTB[deg] is locally finite free overΛ. Their formation
commutes with any base change in Λ. The natural map

pRjµ∗Λ[dµ](dµ)→ D(pjµ!Λ[dµ])
is an isomorphism.

Moreover, if Λ is a Z`-algebra, then there is some integer a = a(µ) (independent of Λ) such that the
kernel and cokernel of the map

pH0(jµ!Λ[dµ])→ pH0(Rjµ∗Λ[dµ])

are killed by `a.

We remark that the final statement ultimately makes use of the decomposition theorem (and thus re-
quires the degeneration to the Witt vector affine Grassmannian).
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Proof. Consider A = jµ!Λ[dµ] ∈ pD≤0, which is universally locally acyclic. Then CTB(A)[deg] sits
in degrees ≤ 0, and is universally locally acyclic. Moreover, its degree 0 part is locally finite free over Λ.
Indeed, this can be computed in terms of the top compactly supported cohomology group of the Mirković–
Vilonen cycles Sλ ∩ GrWitt

G,µ , which (as for any separated variety) is finite free over Λ. As CTB(A)[deg] is
t-exact, this implies thatA′ = pH0(A) has the property that CTB(A

′)[deg] is locally finite free over Λ. Ap-
plying Verdier duality and using Proposition IV.6.13, we see that CTB(D(A))[deg] ∼= D(w∗

0CTB(A)[deg])
(where w0 is the longest Weyl group element), which then sits in cohomological degrees ≥ 0, and is finite
free in degree 0, with degree 0 parts also under Verdier duality. This shows that the natural map

pRjµ∗Λ[dµ](dµ)→ D(pjµ!Λ[dµ])

is an isomorphism. The proof also shows that the formation commutes with any base change in Λ.
For the final statement, we can first of all reduce by universal local acyclicity and Corollary VI.6.7 to

the same statement on GrWitt
G,k . By base change, we can assume that Λ = Z/`NZ, and we can even formally

pass to the inverse limit overN , and then invert `; it is thus enough to show that on the perfectly projective
scheme GrWitt

G,k,≤µ, the map
pjµ!Q`[dµ]→ pRjµ∗Q`[dµ]

is an isomorphism. This follows from [Zhu17, Lemma 2.1], cf. also [Gai01, Proposition 1], [Lus83]. Let us
recall the argument. It is enough to prove injectivity, as then surjectivity follows by Poincaré duality (as the
two sheaves are Verdier dual, as we have already proved), using that we are working with field coefficients
now. Let jµ!∗Q`[dµ] be the image of the displayed map (i.e., the intersection complex of GrWitt

G,k,≤µ). It is
enough to see that for i : GrWitt

G,k,<µ ↪→ GrWitt
G,k,≤µ the complementary closed, that i∗jµ!∗Q`[dµ] lies in pD≤−2.

Indeed, we have a short exact sequence

0→ i∗K → pjµ!Q`[dµ]→ jµ!∗Q`[dµ]→ 0

for some perverse sheaf K on GrWitt
G,k,<µ; but this gives a map i∗jµ!∗Q`[dµ] → K[1], so if i∗jµ!∗Q`[dµ] ∈

pD≤−2, then necessarily K = 0.
To prove that i∗jµ!∗Q`[dµ] ∈ pD≤−2, it suffices to prove that all geometric fibres of jµ!∗Q`[dµ] are

concentrated in degrees of the same parity as dµ; indeed, any other stratum in GrG,k,≤µ has dimension of
the same parity as dµ, so the trivial bound i∗jµ!∗Q`[dµ] ∈ pD≤−1 gets amplified by one on each stratum
for parity reasons. This parity claim about the intersection complex can be checked smooth locally. We
have the smooth map F`Witt

G,k → GrWitt
G,k from the Witt vector affine flag variety, and choosing the element

w in the Iwahori-Weyl group corresponding to the generic stratum on the preimage of the Schubert cell,
we get the smooth map F`Witt

G,k,≤w → GrWitt
G,k,≤µ. It is thus enough to prove the similar claim about the

intersection complex of F`Witt
G,k,≤w. Choosing a reduced expression ẇ = s1 · · · sr · ω as above, we get the

Demazure-Bott-Samuelson resolution

πẇ : DemWitt
ẇ → F`Witt

G,k,≤w.

This has the property that all geometric fibres admit stratifications into affine spaces, cf. [Zhu17, Section
1.4.2]. In particular, all geometric fibres of Rπẇ∗Q` sit only in even degrees. On the other hand, by the
decomposition theorem, the intersection complex is a direct summand ofRπẇ∗Q`[dµ], giving the claim. �
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As a consequence of Proposition VI.7.4, we see, perhaps surprisingly, that containment in pD≥0 can be
checked in geometric fibres over S. (Note however that we are using a relative perverse t-structure.) This
gives a complete justification for calling it a relative perverse t-structure.

Corollary VI.7.6. Let S → DivdY be any small v-stack and let

A ∈ Det(HckG,S/DivdY
,Λ)bd.

Then A ∈ pD≥0
et if and only if this holds true after pullback to all strictly local Spa(C,C+) → S. In

particular,
A ∈ Perv(HckG,S/DivdY

,Λ)

if and only if for all strictly local Spa(C,C+)→ S , the pullback of A toHckG,Spa(C,C+)/DivdY
is perverse.

Also note that over geometric points, we are simply considering the usual perverse t-structure corre-
sponding to the stratification in terms of open Schubert cells, and then pD≥0 admits its usual characteriza-
tion in terms of !-restriction to the open Schubert cells.

Proof. It suffices to check after a cover, as pullback is t-exact. This allows us to reduce to the case that
G is split. But then it follows from the condition in terms of the hyperbolic localization. �

VI.7.1. The Satake category. We also get the following characterization. The condition asked here is
stronger than perversity.

Proposition VI.7.7. Let S be any small v-stack over DivdY and assume that G is split. Then

A ∈ DULA
et (HckG,S/DivdY

,Λ)

has the property that A is a flat perverse sheaf (in the sense that A⊗L
ΛM is perverse for all Λ-modules M )

if and only if
RπT∗CTB(A)[deg] ∈ Det(S,Λ)

is étale locally on S isomorphic to a finite projective Λ-module in degree 0.

Proof. The functor RπT∗CTB(A)[deg] preserves universally locally acyclic sheaves and hence takes
values in sheaves that are locally constant with perfect fibres. By Proposition VI.7.4 and as any bounded
part of GrT,DivdY

→ DivdY is finite over the base, the conditionA ∈ pD≤0 is equivalent toRπT∗CTB(A)[deg] ∈
D≤0. The flatness then ensures that this is locally isomorphic to a perfect complex of Tor-amplitude [0, 0],
i.e. a finite projective Λ-module in degree 0. �

In the following definition, S → DivdY is any small v-stack, and G is general.

Definition VI.7.8. Let

Sat(HckG,S/DivdY
,Λ) ⊂ Det(HckG,S/DivdY

,Λ)

be the full subcategory of all objects that are universally locally acyclic and flat perverse.
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This definition has the virtue that it is invariant under switching sw∗. Let us give some examples of
objects in the Satake category, when d = 1. Assume for simplicity that G is split. For any µ ∈ X∗(T )

+,
we get the open Schubert cell

jµ : HckG,Div1Y ,µ
↪→ HckG,Div1Y

of dimension dµ = 〈2ρ, µ〉. The following proposition gives the analogue of highest weight modules in the
Satake category.

Proposition VI.7.9. The perverse sheaves
pjµ!Λ[dµ] =

pH0(jµ!Λ[dµ]),
pRjµ∗Λ[dµ] =

pH0(Rjµ∗Λ[dµ])

lie in the Satake category Sat(HckG,Div1Y
,Λ).

Proof. This follows from Proposition VI.7.7 and Proposition VI.7.5. �

Definition/Proposition VI.7.10. The functor
RπG,S∗ : Sat(HckG,S/DivdY

,Λ)→ Det(S,Λ)

of pullback to GrG,S/DivdY
and pushforward along πG,S : GrG,S/DivdY

→ S takes values in complexes
C ∈ Det(S,Λ) such that allHi(C) are local systems of finite projective Λ-modules, and each functor

Hi(RπG,S∗) : Sat(HckG,S/DivdY
,Λ)→ LocSys(S,Λ).

is exact.
Let

FG,S =
⊕
i∈Z
Hi(RπG,S∗) : Sat(HckG,S/DivdY

,Λ)→ LocSys(S,Λ).

The functor FG,S is exact, faithful, and conservative. Moreover, if f : A→ B is a map in
Sat(HckG,S/DivdY

,Λ)

such that kerFG,S(f) is a direct summand of FG,S(A), then f admits a kernel in Sat(HckG,S/DivdY
,Λ);

similarly for cokernels.

The final statement in particular ensures the condition of “existence of coequalizers of FG,S-split par-
allel pairs” appearing in the Barr–Beck theorem.

Remark VI.7.11. It is not clear whether there are natural isomorphisms FG,S(sw∗A) ∼= FG,S(A), so
this fibre functor is (at least a priori) destroying part of the symmetry. What makes this question slightly
delicate is that it is asking for extra structure, and ideally one would like to produce this structure in a clean
way; it is conceivable that one can reduce to geometric points and then use the affirmative answers we give
later under stronger assumptions on S.

Proof. Localize on S to reduce to the case that G is split, and fix a Borel B ⊂ G with torus T . Using
the stratification of GrG into the strata Sν , we get a filtration onRπG,S∗Awhose associated graded is given
by

⊕
ν Rpν!A|Sν . Restricting to connected components of GrG and for A in the Satake category, these are

concentrated in degrees of the same parity, so the corresponding spectral sequence necessarily degenerates.
Thus, most of this follows from Proposition VI.7.7 and Proposition VI.4.2. Faithfulness of FG,S reduces
to conservativity and the Barr–Beck type assertion, so it remains to prove the Barr–Beck type assertion.
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For this, consider the kernel of f in the category of all perverse sheaves on HckG,S/DivdY
. We need to see

that this is still universally locally acyclic, and flat perverse. These properties can be checked after applying
hyperbolic localization, shift by deg, and pushforward to S (using various t-exactness properties), where
they follow from the assumption of being a direct summand. �

The Satake category also carries a Verdier duality functor. Again, it is not clear that this functor com-
mutes naturally with sw∗ (we will settle it later under stronger assumptions on S).

Proposition VI.7.12. The image of the fully faithful functor
Sat(HckG,S/DivdY

,Λ)→ Det(GrG,S/DivdY
,Λ)

is stable under Verdier duality DGr
G,S/DivdY

/S . The induced functor

D : Sat(HckG,S/DivdY
,Λ)op → Sat(HckG,S/DivdY

,Λ)

is an equivalence, with D2 = id. Moreover, it makes the diagram

Sat(HckG,S/DivdY
,Λ)op D //

FG,S

��

Sat(HckG,S/DivdY
,Λ)

FG,S

��
LocSys(S,Λ)op V 7→V ∗

// LocSys(S,Λ)

commute naturally.

Proof. The Verdier dualD(A) ∈ Det(GrG,S/DivdY
,Λ) can actually be defined already inDet(HckG,S/DivdY

,Λ)bd

by using Verdier duality along bounded subsets ofHckG → [∗/L+G]. It follows from Verdier duality that
it commutes with the passage to cohomology, i.e. the functor FG,S , and from this one can deduce that it is
flat perverse and hence lies in the Satake category. Biduality follows from Corollary IV.2.25. �

Moreover, the formation of the Satake category is compatible with constant term functors. We define
a locally constant function

degP : GrM,DivdY
→ Z

as the composite of the projection toX∗(M) considered before and the mapX∗(M)→ Z given by pairing
with 2ρG − 2ρM .

Proposition VI.7.13. Let P ⊂ G be a parabolic with Levi M . Let S → DivdY be any small v-stack.
Consider the diagram

GrG,S/DivdY
qS←− GrP,S/DivdY

pS−→ GrM,S/DivdY
.

Then the functor RpS!q∗S [degP ] defines a functor
CTP,S [degP ] : Sat(HckG,S/DivdY

,Λ)→ Sat(HckM,S/DivdY
,Λ).

These functors are compatible with composition, i.e. if P ′ ⊂ P is a further parabolic with image Q ⊂ M
and Levi M ′, then there is a natural equivalence

CTP ′,S [degP ′ ] ∼= CTQ,S [degQ] ◦ CTP,S [degP ] : Sat(HckG,S/DivdY
,Λ)→ Sat(HckM ′,S/DivdY

,Λ)

(and for triple compositions, the obvious diagram commutes).
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Proof. Let λ : Gm → G be a cocharacter such that P = Pλ. This induces in particular a Levi splitting
M ↪→ P as the centralizer of λ. We can then divide the diagram

GrG,S/DivdY
qS←− GrP,S/DivdY

pS−→ GrM,S/DivdY
.

by L+
DivdY

M to see that one can refine RpS!q∗S into a functor

Det(HckG,S/DivdY
,Λ)→ Det(HckM,S/DivdY

,Λ)

via first pulling back to L+
DivdY

M\GrG,S/DivdY
. It is clear that these functors are compatible with composi-

tion.
We want to see that the image is contained in the Satake category. First, by Proposition IV.6.14, we

see that the image is universally locally acyclic. Now the claim follows from Proposition VI.7.7 and the
compatibility with composition (used for the Borel B ⊂ P ), after passing to an étale cover to assume that
G is split. �

VI.8. Convolution

For any d and small v-stack S → DivdY , the category
Det(HckG,S/DivdY

,Λ)

is naturally a monoidal category. Indeed, with all loop groups taken over DivdY , there is a convolution
morphism

HckG,DivdY
×DivdY

HckG,DivdY
a←− L+G\LG×L+G LG/L+G

b−→ L+G\LG/L+G = HckG,DivdY

where the morphism a is an L+G-torsor, and the right morphism is ind-proper (its fibres are the fibres of
GrG,DivdY

→ DivdY ). If one denotes by aS and bS the pullbacks along S → DivdY , one can then define the
convolution product ? on

Det(HckS/DivdY
,Λ)bd

viaA1 ?A2 = RbS∗a
∗
S(A1�A2) forA1, A2 ∈ Det(HckS/DivdY

,Λ)bd. It is easy to see that this is associative
by writing out the corresponding convolution diagrams with multiple factors.

In fact, modulo the problem that [DivdY/L
+
DivdY

G] → [DivdY/LDivdY
G] is not representable in locally

spatial diamonds (only ind-representable), the category Det(HckS/DivdY
,Λ)bd is precisely the category of

endomorphisms of [DivdY/L
+
DivdY

G] ×DivdY
S in the 2-category CT defined in Subsection IV.2.3.3, for T =

[DivdY/LDivdY
G] ×DivdY

S. This problem is corrected by passing to bounded sheaves – one can extend the
formalism to the case of maps that are ind-representable in locally spatial diamonds, with closed immersions
in the ind-system, using categories of bounded sheaves as morphisms.

Convolution interacts nicely with the classes of sheaves we have previously singled out. In particular,
it preserves (flat) perverse sheaves; this observation goes back to Lusztig [Lus83].

Proposition VI.8.1. Let A1, A2 ∈ Det(HckS/DivdY
,Λ)bd.

(i) If A1 and A2 are universally locally acyclic, then A1 ? A2 is universally locally acyclic.
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(ii) If A1 and A2 lie in pD≤0, then A1 ? A2 ∈ pD≤0.
(iii) If A1, A2 ∈ Sat(HckG,S/DivdY

,Λ), then also A1 ? A2 ∈ Sat(HckG,S/DivdY
,Λ).

Proof. Part (i) follows from Proposition IV.2.11 and Proposition IV.2.26. For part (ii), we first make
some reductions. Namely, the claim can be checked if S = Spa(C,C+) is strictly local and G split. More-
over, by a dévissage one can assume that A1 and A2 are the !-extensions of the constant sheaves on open
Schubert cells; in particular, these are universally locally acyclic. By the Künneth formula one can then
reduce to the case d = 1. In that case, we can pass to the universal case S = Div1Y . Over (Div1Y)2, we can
consider the moduli space H̃ckG,(Div1Y )2 of G-bundles E0, E1, E2 over B+

(Div1Y )2
together with isomorphisms

between E0 and E1 over B+
(Div1Y )2

[ 1
I1 ] and between E1 and E2 over B+

(Div1Y )2
[ 1
I2 ], where I1, I2 ⊂ OYS are

the ideal sheaves parametrizing the two Cartier divisors. Away from the diagonal, this is isomorphic to
HckG,(Div1Y )26=/Div2Y

, while over the diagonal it is isomorphic to

L+
Div1Y

G\LDiv1Y
G×

L+

Div1Y
G
LDiv1Y

G/L+
Div1Y

G.

There are two natural projections

p1, p2 : H̃ckG,(Div1Y )2 → HckG,Div1Y

keeping track of E0 and E1 resp. E1 and E2, and a projection

m : H̃ckG,(Div1Y )2 → HckG,(Div1Y )2/Div2Y

keeping track of E0 and E2. One can the formB = Rm∗(p
∗
1A1⊗L

Λp
∗
2A2). Recall that we reduced to the case

that A1 and A2 are moreover universally locally acyclic. By Proposition IV.2.11 and Proposition IV.2.26,
one sees that also

B ∈ DULA
et (HckG,(Div1Y )2/Div2Y

,Λ).

Away from the diagonal, this is simply the exterior tensor product of A1 and A2 and in particular lies
in pD≤0. Looking at CTB(B)[deg], we get a universally locally acyclic sheaf on (a bounded subset of)
GrT,(Div1Y )2/Div2Y

whose restriction away from the diagonal lies in degrees≤ 0. This implies that the whole
sheaf lies in degrees ≤ 0: As any bounded subset of GrT,(Div1Y )2/Div2Y

is finite over (Div1Y)2, it suffices to
check this for the pushforward to (Div1Y)2. But this pushforward is locally constant with perfect fibres,
and the complement of the diagonal is dense.

Thus, using Proposition VI.7.4, the restriction ofB to the diagonal lies in pD≤0. But this restriction is
preciselyA1?A2, giving the desired result. Finally, part (iii) easily follows from (i), (ii), and the observation
that convolution commutes with Verdier duality. �

VI.8.1. Dualizability. Next, we observe that all objects are dualizable.

Proposition VI.8.2. All objects of the monoidal category Sat(HckG,S/DivdY
,Λ) are (left and right)

dualizable. The right dual of A ∈ Sat(HckG,S/DivdY
,Λ) is given by sw∗D(A) where sw : HckG,DivdY

∼=
HckG,DivdY

is the switching isomorphism (induced by inversion on LDivdY
G).

Remark VI.8.3. In the classical setting, this is asserted without indication of proof in [MV07, end of
Section 11].
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Proof. All objects of DULA(HckG,S/DivdY
,Λ) are left dualizable, with right dual given by sw∗D(A):

This follows from Proposition IV.2.24 (modulo the technical nuisance that everything is only ind-representable
here; everything adapts to that setting). Here, sw simply arises by swapping source and target. Also note
that the condition of being universally locally acyclic is invariant under sw∗ by Proposition VI.6.2, so also
using Proposition VI.7.12, the functor sw∗D(A) preserves the Satake category. �

Remark VI.8.4. Again, we stress that all results above also hold ifG is reductive overE , and we replace
DivdY with DivdY or DivdX . Indeed, the case of DivdY follows from the case of DivdY as it is an open subset,
at least if G admits a reductive model overOE . In general, this happens étale locally, making it possible to
reduce to this case. Then the case of DivdX follows from the case of DivdY as any map S → DivdX can locally
be lifted to a map S → DivdY in such a way that the corresponding pullbacks of the local Hecke stacks are
isomorphic.

VI.9. Fusion

Now let G be a reductive group over E. From now on, we fix the base field k = Fq and work on the
category Perfk. For brevity, we define for any finite set I with d = |I| the local Hecke stack

HckIG = HckG,DivdX
×DivdX

(Div1X)I

and correspondingly
GrIG = GrG,DivdX

×DivdX
(Div1X)I .

Definition VI.9.1. For any finite set I , the Satake category

SatIG(Λ)

is the category Sat(HckIG,Λ) of all
A ∈ Det(HckIG,Λ)

that are universally locally acylic and flat perverse over (Div1X)I .

By Proposition VI.7.10, we get a (not yet monoidal) fibre functor

F I : SatIG(Λ)→ LocSys((Div1X)I ,Λ).

The target category LocSys((Div1X)I ,Λ) is in fact very explicit.

Proposition VI.9.2. The category LocSys((Div1X)I ,Λ) is naturally equivalent to the category RepW I
E
(Λ)

of continuous representations of W I
E on finite projective Λ-modules.

Proof. This is a consequence of Proposition IV.7.3. �

For any map f : I → J of finite sets, there is a natural monoidal functor SatIG(Λ)→ SatJG(Λ). Indeed,
there is a natural closed immersion GrIG×(Div1X)I (Div1X)J ↪→ GrJG, so pull-push along

GrIG ← GrIG×(Div1X)I (Div1X)J → GrJG
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defines the desired functor (noting that this preserves the required equivariance condition).1 It is easy to see
that this functor is compatible with composition of maps of finite sets. Moreover, the functors SatIG(Λ)→
SatJG(Λ) make the diagram

SatIG(Λ) //

F I

��

SatJG(Λ)

FJ

��
RepW I

E
(Λ) // RepWJ

E
(Λ)

commute naturally, where the lower functor is pullback under W J
E →W I

E .

Actually, the functor I 7→ SatIG(Λ) has further functoriality, given by the fusion product. Namely, for
finite sets I1, . . . , Ik with disjoint union I = I1 t . . . t Ik , there is a natural monoidal functor

SatI1G (Λ)× . . .× SatIkG (Λ)→ SatIG(Λ),
functorial in I1, . . . , Ik and compatible with composition. To construct this, let

j : (Div1X)I;I1,...,Ik ⊂ (Div1X)I

be the open subset where xi 6= xi′ whenever i, i′ ∈ I = I1 t . . . t Ik lie in different Ij ’s, and let

SatI;I1,...,IkG (Λ) ⊂ DULA
et (HckIG×(Div1X)I (Div1X)I;I1,...,Ik ,Λ)

be defined similarly as SatIG(Λ).

Proposition VI.9.3. The restriction functor

j∗ : SatIG(Λ)→ SatI;I1,...,IkG (Λ)

is fully faithful. Similarly,

j∗ : LocSys((Div1X)I ,Λ)→ LocSys((Div1X)I;I1,...,Ik ,Λ)
is fully faithful.

Proof. For the first part, it suffices to prove that for all A ∈ SatIG(Λ), the natural map

A→ pH0(Rj∗j
∗A)

is an isomorphism. Let i : Z ↪→ (Div1X)I be the complementary closed. It suffices to see that i∗i!A ∈ pD≥2.
Working locally to reduce to the case G split, and applying the t-exact hyperbolic localization functor
RπT∗CTB[deg], taking values in local systems of finite projective Λ-modules on SatIG(Λ), this follows from
the observation that i∗i!Λ ∈ D≥2, which follows from the observation that Z admits a stratification (by
partial diagonals) with smooth strata of `-codimension ≥ 1 inside the smooth (Div1X)I .

This final argument in fact proves directly the second part. �

On the other hand, over (Div1X)I;I1,...,Ik , one has

HckIG×(Div1X)I (Div1X)I;I1,...,Ik ∼=
k∏
j=1

HckIjG ×∏
j(Div1X)Ij

(Div1X)I;I1,...,Ik ,

1We thank Tony Feng for pointing out that on Hecke stacks the map is not a closed immersion.
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so there is a natural monoidal functor

SatI1G (Λ)× . . .× SatIkG (Λ)→ SatI;I1,...,IkG (Λ)

given by exterior product. Actually, recall that when forming symmetric monoidal tensor products, there
are implicit sign rules when commuting factors. We change these here by hand. Namely, note that each

HckIG = (HckIG)even t (HckIG)odd

decomposes into open and closed subsets given by the even and the odd part; the even part contains those
Schubert varieties for which dµ• =

∑
i〈2ρ, µi〉 is even, while the odd part contains those for which dµ•

is odd. Note that the dominance order can only nontrivially compare elements with the same parity, so
these are really open and closed subsets. Also note that it follows from Proposition VI.7.4 that for sheaves
concentrated on the even (resp. odd) part, the functor F I is concentrated in even (resp. odd) degrees. Now
we impose that when forming the above exterior product, we introduce a minus sign whenever we commute
two sheaves concentrated on the odd parts. A different way to say it is that there is a natural commutative
diagram

SatI1G (Λ)× . . .× SatIkG (Λ) //

(F I1 ,...,F Ik )
��

SatI;I1,...,IkG (Λ)

F I;I1,...,Ik
��

LocSys((Div1X)I1 ,Λ)× . . .× LocSys((Div1X)Ik ,Λ)
� // LocSys((Div1X)I;I1,...,Ik ,Λ)

functorial in I1, . . . , Ik , and under permutations of the sets I1, . . . , Ik. Indeed, note that the functors F I
invoke a shift by deg, which exactly introduces this sign rule. This in fact pins down this choice of signs
by faithfulness of the functors.

Definition/Proposition VI.9.4. The image of

SatI1G (Λ)× . . .× SatIkG (Λ)→ SatI;I1,...,IkG (Λ)

lands in SatIG(Λ) ⊂ SatI;I1,...,IkG (Λ), defining the fusion product

∗ : SatI1G (Λ)× . . .× SatIkG (Λ)→ SatIG(Λ),

a functor of monoidal categories, functorial in I1, . . . , Ik. It makes the diagram

SatI1G (Λ)× . . .× SatIkG (Λ)
∗ //

(F I1 ,...,F Ik )
��

SatIG(Λ)

F I

��
LocSys((Div1X)I1 ,Λ)× . . .× LocSys((Div1X)Ik ,Λ)

� // LocSys((Div1X)I ,Λ)

commute functorially in I1, . . . , Ik and permutations of I1, . . . , Ik.

Proof. We can define a convolution local Hecke stack

HckI;I1,...,IkG → (Div1X)I

as follows. It parametrizes G-bundles E0, . . . , Ek over B+
(Div1X)I

together with isomorphisms of Ej−1 and
Ej after inverting Ii for all i ∈ Ij , for j = 1, . . . , k. Here Ii ⊂ OXS is the ideal defining the i-th Cartier
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divisor. There are natural projections

pj : HckI;I1,...,IkG → HckIjG , j = 1, . . . , k

remembering Ej−1 and Ej , and
m : HckI;I1,...,IkG → HckIG

remembering E0 and Ek. Given Aj ∈ SatIjG (Λ), one can then define

B = Rm∗(p
∗
1A1 ⊗L

Λ . . .⊗L
Λ p

∗
kAk) ∈ Det(HckIG,Λ).

This is still universally locally acyclic, by Proposition IV.2.11 and Proposition IV.2.26. After pullback to
(Div1X)I;I1,...,Ik , the map m is an isomorphism, and we simply get the exterior product of all Ai. More-
over, working locally to reduce to the case G is split, we see that RπT∗CTB(B)[deg] is a local system
of finite projective Λ-modules, as it is locally constant with perfect fibres, and over the dense open subset
(Div1X)I;I1,...,Ik , the perfect complex is a finite projective module in degree 0. This means thatB ∈ SatIG(Λ),
as desired. �

In particular, for any finite set I , this structure makes SatIG(Λ) into an E∞-monoid object in monoidal
categories, functorially in I , by using the composite

SatIG(Λ)× . . .× SatIG(Λ)→ SatIt...tIG (Λ)→ SatIG(Λ),
using the functor corresponding to the natural map I t . . .t I → I . Recall thatE∞-monoid structures on
monoidal categories are the same as symmetric monoidal category structures refining the given monoidal
category structure. Thus, each SatIG(Λ) has become naturally a symmetric monoidal category with the
fusion product, refining the monoidal convolution product; and everything is functorial in I . Moreover,
by the final part of Definition/Proposition VI.9.4, the functor

F I : SatIG(Λ)→ LocSys((Div1X)I ,Λ) ∼= RepW I
E
(Λ)

is a symmetric monoidal functor, functorially in I .
A consequence of these symmetric monoidal structures are the following natural isomorphisms.

Corollary VI.9.5. For A ∈ SatIG(Λ), there are natural isomorphisms

F I(sw∗A) ∼= F I(A), D(sw∗A) ∼= sw∗D(A).
Moreover, D is naturally a symmetric monoidal functor, and D ◦ F I ∼= (F I)∗ as symmetric monoidal
functors.

Proof. By Proposition VI.8.2, all A ∈ SatIG(Λ) are dualizable, with dual sw∗D(A). In a symmetric
monoidal category, this means that there are natural isomorphisms

sw∗Dsw∗D(A) ∼= A.

As both sw∗ and D are self-inverse, this amounts to the commutation of D and sw∗.
Also, as F I is symmetric monoidal, it follows that F I(sw∗D(A)) and F I(A) are naturally dual. But

by Proposition VI.7.12, the dual of F I(A) is also F I(D(A)). Replacing D(A) by A, we find a natural
isomorphism F I(sw∗A) ∼= F I(A).

Finally, it is easy to see that the whole construction of the fusion product is compatible with Verdier
duality, making Verdier duality a symmetric monoidal functor, compatibly with the fibre functor. �
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Moreover, the constant term functors are compatible with the fusion product. More precisely, given a
parabolic P ⊂ G with Levi M , we have the constant term functors

CTI
P [degP ] : SatIG(Λ)→ SatIM (Λ).

Proposition VI.9.6. For any finite set I decomposed into finite sets I = I1 t . . . t Ik , the diagram

SatI1G (Λ)× . . .× SatIkG (Λ) //

(CTI1P [degP ],...,CTIkP [degP ])��

SatIG(Λ)

CTIP [degP ]
��

SatI1M (Λ)× . . .× SatIkM (Λ) // SatIM (Λ)

commutes functorially in I and permutations of I1, . . . , Ik.

Proof. After passing to the open subset (Div1X)I;I1,...,Ik , this follows from the Künneth formula, so
Proposition VI.9.3 gives the result. �

In particular, the functor
CTI

P [degP ] : SatIG(Λ)→ SatIM (Λ)

is naturally symmetric monoidal with respect to the fusion product. Moreover, everything is compatible
with composition, for another parabolic P ′ ⊂ P .

VI.10. Tannakian reconstruction

Our next goal is to construct a group scheme whose category of representations recovers the sym-
metric monoidal category SatIG(Λ). More precisely, we want to use some relative Tannaka duality over
RepW I

E
(Λ). To achieve this, we need the following proposition. Given any finite and Galois-stable subsets

Wi ⊂ X∗(T )
+, i ∈ I , closed under the dominance order, we have a quasicompact closed substack

HckIG,(Wi)i
⊂ HckIG

and we get a corresponding full subcategory

SatIG,(Wi)i
(Λ) ⊂ SatIG(Λ).

Proposition VI.10.1. The functor
F I : SatIG,(Wi)i

(Λ)→ RepW I
E
(Λ)

admits a left adjoint LI(Wi)i
, satisfying the following properties.

(i) There is a natural isomorphism

LI(Wi)i
(V ) ∼= LI(Wi)i

(1)⊗ V, V ∈ RepW I
E
(Λ),

where 1 ∈ RepW I
E
(Λ) is the tensor unit, and we use that SatIG(Λ) is tensored over RepW I

E
(Λ).

(ii) There is a natural isomorphism
LI(Wi)i

(1) ∼= ∗i∈I L{i}
Wi

(1)

as the fusion of L{i}
Wi

(1) ∈ Sat{i}G,Wi
(Λ).
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(iii) If I = {i} has one element and W =Wi, then the left adjoint is the restriction of the left adjoint to

F ′ =
⊕
m

Hm(RπG∗) : Perv(Hck{i}
G,W ,Λ)→ModWE

(Λ).

Proof. It is enough to find the value LI(Wi)i
(1) satisfying (ii) and (iii). Indeed, then the formula in (i)

defines the left adjoint in general. Assume now that (iii) holds, and let us denote PWi = L
{i}
Wi

(1). Then for
part (ii) we first observe that

F ′I =
⊕
m

Hm(RπG∗) : Perv(HckIG,(Wi)i
,Λ)→ Shvet((Div1X)I ,Λ)

admits a left adjoint, and this left adjoint evaluated on the unit, P(Wi)i , is generically on (Div1X)I given by
an exterior tensor product of the corresponding left adjoints for I being a singleton. Indeed, note that there
is a natural map

P(Wi)i → ∗i∈I PWi

adjoint to the section of
F ′I(∗i∈I PWi)

∼=�i∈I F
′(PWi)

given by the exterior tensor product of the classes given by (iii). To check that this is an isomorphism
generically, we can by étale descent reduce to the case that G is split. In that case, one can make the left
adjoint explicit in terms of the left adjoint to hyperbolic localization. Writing hyperbolic localization as
a composite of !-pullback and ∗-pushforward, this left adjoint is then given in terms of ∗-pullback and !-
pushforward, and the perverse pH0. As generically, everything decomposes geometrically into a product,
it follows from the Künneth formula that the left adjoint commutes with exterior products. But as any
B ∈ SatIG,(Wi)i

(Λ) is equal to pH0(Rj∗j
∗B) as in the discussion of the fusion product, we see that

F ′I(B) ∼= Hom(P(Wi)i , B) ∼= Hom(P(Wi)i ,
pH0(Rj∗j

∗B))

∼= Hom(P(Wi)i , Rj∗j
∗B)

∼= Hom(j∗P(Wi)i , j
∗B)

∼= Hom(j∗ ∗i∈I PWi , j
∗B)

∼= Hom(∗i∈I PWi ,
pH0(Rj∗j

∗B)) ∼= Hom(∗i∈I PWi , B).

It remains to prove part (iii). We can assume that Λ = Z/`cZ, using base change. Note first that

F ′ =
⊕
m

Hm(RπG∗) : Perv(Hck{i}
G,W ,Λ)→ModWE

(Λ)

admits a left adjoint L′
W , by the adjoint functor theorem. We need to see that when evaluated at the unit,

PW := L′
W (1) is universally locally acyclic, and flat perverse. By the characterization of these properties,

it suffices to show thatF ′(PW ) ∈ModWE
(Λ) is a representation on a finite projective Λ-module. This does

not depend on the WE-action, so we can check these things after pullback along SpdC → Div1X , where C
is a completed algebraic closure of E. In particular, we can assume that G is split. For any open Schubert
cell

jµ : HckG,SpdC,µ ↪→ HckG,SpdC,W
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for µ ∈W , of dimension dµ = 〈2ρ, µ〉, we can compute

Hom(PW ,
pRjµ∗Λ[dµ]) = F ′(pRjµ∗Λ[dµ]).

By Proposition VI.7.9, this is a finite free Λ-module. Using adjunction, we thus see that

Hom(pj∗µPW ,Λ[dµ])

is a finite free Λ-module for all µ ∈W . Now pj∗µPW is concentrated on an open Schubert cellHckG,SpdC,µ,
which is covered by SpdC , and concentrated in degree −dµ. It is thus given by the constant sheaf M [dµ]
for some Λ-module M , and we know that Hom(M,Λ) is finite free over Λ. As we reduced to Λ = Z/`mZ,
this implies that M is free.

Now argue by induction on W , and take a maximal element µ ∈ W ; let W = W \ {µ}. We get an
exact sequence

0→ K → pjµ!j
∗
µPW → PW → Q→ 0

in Perv(HckG,SpdC ,Λ) supported on W . In fact, we necessarily have Q = PW (as they represent the same
functor), for which we know by induction that F ′(Q) is a finite free Λ-module. We claim that K = 0.
As K lies in the kernel of pjµ!j∗µPW → pRjµ∗j

∗
µPW , it follows from Proposition VI.7.5 that `aK = 0 for

some a independent of Λ. Using functoriality of the construction for Λ′ = Z/`a+cZ → Λ = Z/`cZ and
that pjµ!j∗µPW lies in the Satake category (so in particular it is flat over Λ), we see the image of K ′ in K is
equal to 0. On the other hand, as all constructions are compatible with base change, the map K ′ → K had
to be surjective. It follows thatK = 0, as desired. (Alternatively, we could have reduced to Z`-coefficients,
in which case pjµ!j∗µPW → pRjµ∗j

∗
µPW is injective (as the kernel is both `-torsion free and killed by `a),

implying K = 0 directly.) �

Now we use the following general Tannakian reconstruction result. This is essentially an axiomatiza-
tion of [MV07, Proposition 11.1]. Recall that a symmetric monoidal category is rigid if all of its objects are
dualizable.

Proposition VI.10.2. LetA be a rigid symmetric monoidal category, and let C be a symmetric monoidal
category with a tensor action ofA. Moreover, let

F : C → A

be a symmetric monoidal A-linear conservative functor, such that C admits and F reflects coequalizers of
F -split parallel pairs. Assume that C can be written as a filtered union of full subcategories Ci, stable under
coequalizers of F -split parallel pairs and theA-action, such that F |Ci is representable by some Xi ∈ C.

Then
H = lim−→

i

F (Xi)
∨ ∈ Ind(A)

admits a natural structure as a bialgebra (with commutative multiplication and associative comultiplica-
tion), and C is naturally equivalent to the symmetric monoidal category of representations ofH inA. If C
is rigid, thenH admits an inverse, i.e. is a Hopf algebra.

Here, the symmetric monoidal category of representations ofH is the category of comodules overH as
a coalgebra, endowed with the symmetric monoidal structure coming from the commutative multiplication
onH.
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Proof. Consider Fi = F |Ci : Ci → A. This admits the left adjoint A 7→ A⊗Xi, as

HomCi(A⊗Xi, Y ) ∼= HomCi(Xi, A
∨ ⊗ Y ) ∼= F (A∨ ⊗ Y ) ∼= A∨ ⊗ F (Y ) ∼= Hom(A,F (Y )).

By the Barr–Beck monadicity theorem, it follows that Ci is equivalent to the category of modules over the
monad

A 7→ F (A⊗Xi) ∼= A⊗ F (Xi).

Note that the monad structure here is equivalently turning F (Xi) into an associative algebra Ai ∈ A, and
its category of modules is the category of modules over Ai. Passing to duals, we note that F (Xi)

∨ is a
coalgebra, and its category of comodules is equivalent to the category of modules over Ai, i.e. to Ci. Now
we can take a colimit over i and see that

H = lim−→
i

F (Xi)
∨

is naturally a coalgebra whose category of comodules inA is equivalent to C. The functor is the following:
AnyX ∈ C defines the objectF (X) ∈ A and for any i large enough so thatX ∈ Ci a mapF (X)⊗Xi → X
(by adjunction), thus a map

F (X)⊗ F (Xi) ∼= F (F (X)⊗Xi)→ F (X),

and hence dually we get the map

F (X)→ F (X)⊗ F (Xi)
∨ → F (X)⊗H.

Moreover, for any i, j there is some k such that

Ci ⊗ Cj ⊂ Ck :
indeed, Ci (resp. Cj) is generated by Xi (resp. Xj) under tensors withA and coequalizers of F -split parallel
pairs, so Ci ⊗ Cj is generated by Xi ⊗Xj under these operations. Thus, for any k such that Xi ⊗Xj ∈ Ck ,
we actually have Ci ⊗ Cj ⊂ Ck. Let Xk ∈ Ck represent F |Ck ; then we have a natural map

Xk → Xi ⊗Xj .

Indeed, this is adjoint to a map 1→ F (Xi ⊗Xj) = F (Xi)⊗ F (Xj), for which we use the tensor product
of the unit maps 1→ F (Xi), 1→ F (Xj). This means that there is a natural map

H⊗H = lim−→
i,j

F (Xi)
∨ ⊗ F (Xj)

∨ ∼= lim−→
i,j

F (Xi ⊗Xj)
∨ → lim−→

k

F (Xk)
∨ = H,

which turns H into a commutative algebra, where the unit is induced by the maps Xi → 1 adjoint to
1 = F (1) ∈ A (inducing maps 1 = F (1)→ F (Xi)

∨).
It is a matter of unraveling definitions that this makesH into a Hopf algebra whose symmetric monoidal

category of representations in A is exactly C. If C is rigid, one also sees that A admits an inverse. Indeed,
one can write

F (Xi)
∨ ∼= F (X∨

i )
∼=Hom(Xi, X

∨
i )
∼=Hom(Xi ⊗Xi, 1)

and the switching of the two factors defines the desired involution on A. Here Hom ∈ A denotes the
internal Hom overA. �

We can apply Proposition VI.10.2 to SatIG(Λ) to get Hopf algebras

HIG(Λ) ∈ Ind(RepW I
E
(Λ)).
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Proposition VI.10.3. The exterior tensor product

�i∈I :
∏
i∈I

Sat{i}G (Λ)→ SatIG(Λ)

induces an isomorphism ⊗
i∈I
H{i}
G (Λ) ∼= HIG(Λ).

Proof. This is a consequence of the construction of the Hopf algebras together with Proposition VI.10.1 (ii),
noting that

F I(∗i∈I Ai) ∼=
⊗
i∈I

F (Ai). �

We see that all information about the categories SatIG(Λ) is in the Hopf algebra

HG(Λ) = H{∗}
G (Λ) ∈ Ind(RepWE

(Λ)).

Note also that the construction ofHG(Λ) is compatible with base change in Λ, so it is enough to consider
the case Λ = Z/nZ with n prime to p. In fact, note that we can formally take the inverse limit over n to
define

SatG(Ẑp) = lim←−
n

SatG(Z/nZ)

with a fibre functor into
Repcont

WE
(Ẑp) = lim←−

n

RepWE
(Z/nZ),

the category of continuous representations ofWE on finite free Ẑp = lim←−n Z/nZ-modules, yielding a Hopf
algebra

HG ∈ Ind(Repcont
WE

(Ẑp)).

This can equivalently be thought of as an affine group scheme G

∧

over Ẑp, with an action of WE that is in a
suitable sense continuous.

VI.11. Identification of the dual group

Our goal is to identify G

∧

with the Langlands dual group of G. Recall that the universal Cartan of G
defines a cocharacter group X∗ as an étale sheaf on Spec(E), i.e. equivalently a finite free abelian group
X∗ together with an action of the absolute Galois group of E , and in particular of WE . It comes with the
WE-stable set of coroots Φ∨ ⊂ X∗, and the subset of positive roots Φ∨

+. Dually, we have the cocharacters
X∗ and dominant Weyl chamber (X∗)+ ⊂ X∗, and the roots Φ ⊂ X∗, containing the positive roots
Φ+ ⊂ Φ. These data give rise to a pinned Chevalley group scheme Ĝ over Ẑp (or already over Z, but we
will only consider it over Ẑp) corresponding to the dual root data (X∗,Φ, X∗,Φ

∨). Being pinned, there are
distinguished torus and Borel T̂ ⊂ B̂ ⊂ Ĝ, isomorphisms X∗(T̂ ) ∼= X∗ under which the positive coroots
Φ∨
+ correspond to the weights of T̂ on Lie B̂/Lie T̂ , so

Lie B̂/Lie T̂ =
⊕
a∈Φ∨

+

Lie Ûa
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for root subgroups Ûa ⊂ B̂. Moreover, one has fixed pinnings

ψa : Lie Ûa ∼= Ẑp

for all simple roots a. We want to endow Ĝ with a WE-action. We already have the WE-action on
(X∗,Φ, X∗,Φ

∨), but we need to twist the action on the pinning. More precisely, let us write the pinning
instead with a Tate twist as

ψa : Lie Ûa ∼= Ẑp(1).
Then WE acts naturally on the pinning as well, and thereby induces an action of WE on Ĝ.

We aim to prove the following theorem. Recall that we write G

∧

for the Tannaka group arising from
the Satake category. Generally, we will denote by −∧various objects defined via the Satake category, while
by −̂ we will denote objects formally defined as Langlands duals.

Theorem VI.11.1. There is a canonical WE-equivariant isomorphism G

∧∼= Ĝ.

We note that the formulation of this theorem is slightly more precise than the formulation in [MV07],
where no canonical isomorphism is given. Also, we handle the case of non-split groups. Note that in
particular, G

∧

only depends on G up to inner automorphisms; this is not clear.
To prove the theorem, we can work over Z` for some ` 6= p: Indeed, the statement of the theorem is

equivalent to having isomorphisms over Z/nZ for all n prime to p (by the Tannakian perspective), so the
reduction follows from the Chinese remainder theorem.

We will now first prove the theorem when the group G is split; more precisely, if we have fixed a split
torus and Borel T ⊂ B ⊂ G and trivializations of all simple root groups Ua ⊂ B. Afterwards, we will
verify that the isomorphism does not depend on this pinning (essentially, as pinnings vary algebraically,
while automorphisms of Ĝ/Z` form an `-adic group), and finally use Galois descent to deduce the result in
general.

Note first that if G = T is a torus, then GrT,Div1X
∼= X∗(T ) × Div1X , and it is clear that SatT is just

the category of X∗(T )-graded objects in Repcont
WE

(Z`). This implies that T

∧∼= T̂ is the dual torus with
X∗(T̂ ) = X∗(T ).

We have the symmetric monoidal constant term functor

CTB[deg] : SatG → SatT ,

and it commutes with the fibre functors by the identity
⊕

iHi(RπG∗) ∼= H0(RπT∗CTB[deg]). This gives
rise to a WE-equivariant map T̂ = T

∧

→ G

∧

. Using the objects Aµ = pjµ!Z`[dµ], whose µ-weight space is
1-dimensional, we see that the map T

∧

→ G

∧

must be a closed immersion.

We have the following information about the generic fibre G

∧

Q` , following [MV07, Section 7]. First, it
follows from Proposition VI.7.5 that its category of representations SatG(Q`) is given by

SatG(Q`) ∼=
⊕
µ

Repcont
WE

(Q`)⊗Aµ.

(Here
SatG(Q`) = SatG(Z`)[1` ],
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where SatG(Z`) = lim←−m SatG(Z/`mZ).) The category of representations of G

∧

Q` as an abstract group
scheme is then given by

SatG(Q`)⊗Repcont
WE

(Q`) Vect(Q`) ∼=
⊕
µ

Vect(Q`)⊗Aµ,

and in particular is semisimple. As Aµ ∗ Aµ′ contains Aµ+µ′ as a direct summand and X+
∗ is finitely gen-

erated as a monoid, we see that SatG(Q`) has a finite number of tensor generators. This implies that G

∧

Q`
is of finite type by [DM82, Proposition 2.20]. Moreover, it is connected as SatG(Q`) does not have non-
trivial finite tensor subcategories (as for any Aµ with µ 6= 0, the tensor category generated by Aµ contains
all Anµ), cf. [DM82, Corollary 2.22]. As SatG(Q`) is semisimple, we even know that G

∧

Q` is reductive by
[DM82, Proposition 2.23]. For any simple objectAµ, the weights ofAµ on T̂Q` → G

∧

Q` are contained in the
set of all λ ∈ X∗ = X∗(T̂ ) such that the dominant representative of λ is bounded by µ in the dominance
order, and contains µ (with weight 1). This implies that T

∧

Q` → G

∧

Q` is a maximal torus of G

∧

Q` . We can
also define a subgroup B

∧

⊂ G

∧

as the stabilizer of the filtration associated to the cohomological grading of
F (stabilizing the filtration

⊕
m≤iR

mπG∗ on the fibre functor F =
⊕

mR
mπG∗); then B

∧

Q` ⊂ G

∧

Q` is a
Borel.

Now we analyze the case G = PGL2. In that case, we have the minuscule cocharacter µ : Gm → G
giving rise to the minuscule Schubert cell GrG,Div1X ,µ

∼= P1
Div1X

. Then

F (Aµ) = H0(P1)⊕H2(P1) = Z` ⊕ Z`(−1)

asWE-representation. This is a representation ofG

∧

, giving a natural mapG

∧

→ GL(Z`⊕Z`(−1)). We claim
that this is a closed immersion, with image given by SL(Z`⊕Z`(−1)). Note thatT

∧

acts onZ`⊕Z`(−1)with
weight ±1, and in particular lands inside SL(Z` ⊕ Z`(−1)). As G

∧

Q` is reductive of rank 1, it necessarily
follows that

G

∧

Q` → SL(Q` ⊕Q`(−1))

is an isomorphism, and integrally we get a map G

∧

→ SL(Z` ⊕ Z`(−1)). This gives a map G

∧

F` → SL(F` ⊕
F`(−1)). Let H ⊂ SL(F` ⊕ F`(−1)) be the closed subgroup that is the image of G

∧

F` . Note that the
irreducible representations ofG

∧

F` are in bijection with dominant cocharacters, corresponding to the simple
objects Bµ = jµ!∗F` on GrG,SpdC ; each Bµ has a highest weight vector given by weight µ. It follows that
H satisfies the hypothesis of the next lemma.

Lemma VI.11.2. Let H be a closed subgroup of SL2 /F` containing the diagonal torus such that its set
of irreducible representations injects into Z≥0 via consideration of highest weight vectors. ThenH = SL2.

Proof. Using a power of Frobenius, one can assume that H is reduced, and thus smooth. By [DM82,
Corollary 2.22] and consideration of highest weight vectors, one also sees that H must be connected. Then
H is either the torus, or a Borel, or SL2. The first cases lead to too many irreducible representations. �

Thus, the map G

∧

F` → SL(F` ⊕ F`(−1)) is surjective. Together with the isomorphism on the generic
fibre, this implies formally that G

∧

→ SL(Z` ⊕ Z`(−1)) is an isomorphism by the following lemma (used
on the level of the corresponding Hopf algebras).
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Lemma VI.11.3. Let f : M → N be a map of flat Z`-modules such that M/` → N/` is injective and
M [1` ]→ N [1` ] is an isomorphism. Then f is an isomorphism.

Proof. As M is flat, f : M → N is injective; moreover, for any x ∈ N there is some minimal k
such that `kn = f(m) lies in the image of M . But if k > 0, then m lies in the kernel of M/` → N/`, a
contradiction. �

The subgroup B

∧

⊂ G

∧

is then given by the Borel stabilizing the line Z` ⊂ Z` ⊕ Z`(−1). Its unipotent
radical is the space of maps Z`(−1) → Z`, which is canonically isomorphic to Z`(1). This finishes the
proof of the theorem for G = PGL2.

If now G is of rank 1, we get the map G → Gad ∼= PGL2, where the isomorphism Gad ∼= PGL2 is
uniquely determined by our choice of pinning. The map

GrG,Div1X
→ GrGad,Div1X

is an isomorphism when restricted to each connected component, inducing an isomorphism
GrG,Div1X

∼= π1(G)×π1(Gad) GrGad,Div1X
.

Here of course π1(Gad) ∼= Z/2Z. This implies that SatG can be equivalently described as the category
of A ∈ SatGad together with a refinement of the Z/2Z-grading to a π1(G)-grading. This implies that
G

∧

= Gad

∧

×µ2 Z

∧

where Z

∧

is the split torus with character group π1(G). Thus, one gets an isomorphism
G

∧∼= Ĝ also in this case, including the isomorphism ψa on the root group.
Coming back to a general split groupG, let a be any simple coroot. We now look at the corresponding

minimal Levi subgroups Ma ⊂ G properly containing T , with parabolic Pa ⊂ B. We have the symmetric
monoidal constant term functor

CTPa [degPa ] : SatG → SatMa ,

commuting with the functors to SatT . This induces a map Ma

∧

→ G

∧

, commuting with the inclusion of
T

∧

into both. In particular, passing to Lie algebras, we see that a ∈ X∗ = X∗(T

∧

) is a root of G

∧

, and
a∨ ∈ X∗ = X∗(T

∧

) is a coroot of G

∧

. Moreover, if sa ∈W is the corresponding simple reflection for G, we
also see that sa ∈ W

∧

, the Weyl group of the reductive group G

∧

Q` . Using this information for all a, we see
that W ⊂W

∧

, and that under X∗ = X∗(T

∧

) resp. X∗ = X∗(T

∧

), we have

Φ∨ ⊂ Φ(G

∧

Q`), Φ ⊂ Φ∨(G

∧

Q`).

Moreover, for any irreducible objectAµ ∈ SatG(Q`), the weights ofAµ are contained in the convex hull of
the W -orbit of µ. This implies that these inclusions must be isomorphisms — indeed, the directions of the
edges emanating from µ, for µ regular, correspond to Φ(G

∧

Q`). Together with the isomorphisms on simple
root groups, we get a unique isomorphism

G

∧

Q`
∼= ĜQ` .

Under this isomorphism, the map M̂a
∼= Ma

∧

→ G

∧

is compatible with the map M̂a → Ĝ induced by
Langlands duality. It follows that

G

∧

(Z̆`) ⊂ G

∧

(Q̆`) ∼= Ĝ(Q̆`)

is a subgroup containing all M̂a(Z̆`). But these generate Ĝ(Z̆`), so Ĝ(Z̆`) ⊂ G

∧

(Z̆`). Now pick a repre-
sentation G

∧

→ GLN (given by some object of SatG) that is a closed immersion over Q`. By the inclusion
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Ĝ(Z̆`) ⊂ G

∧

(Z̆`), we see that the map ĜQ`
∼= G

∧

Q` → GLN extends to a map Ĝ→ GLN . By Lemma VI.11.4,
this is necessarily a closed immersion, at least if ` 6= 2 or Ĝ is simply connected. We can always reduce to
the case that Ĝ is simply connected by arguing with the adjoint groupGad (whose dual group Ĝad is simply
connected) first, as in the discussion of rank-1-groups above. It then follows that G

∧

→ GLN factors over
Ĝ ↪→ GLN , giving a map G

∧

→ Ĝ that is an isomorphism in the generic fibre, and surjective in the special
fibre (as any F`-point of Ĝ lifts to Z̆`, and then to G

∧

(Z̆`)), and hence an isomorphism by Lemma VI.11.3.

Lemma VI.11.4 ([PY06, Corollary 5.2]). Let H be a reductive group over Z`, H ′ some affine group
scheme of finite type over Z`, and let ρ : H → H ′ be a homomorphism that is a closed immersion in the
generic fibre. Assume that ` 6= 2, or that no almost simple factor of the derived group ofHQ`

is isomorphic
to SO2n+1 (e.g., the derived group of H is simply connected). Then ρ is a closed immersion.

This finishes the proof of Theorem VI.11.1 when G is split, and endowed with a splitting. Now we
prove independence of the choice of splitting. For this, we note that in fact the cohomological grading
on F alone determines T

∧

⊂ G

∧

as its stabilizer, and B

∧

⊂ G

∧

as the stabilizer of the associated filtration. It
remains to check that the isomorphisms

ψa : Lie Ûa ∼= Z`(1)
are independent of the choices. For this, consider the flag variety F` over E , parametrizing Borels B ⊂ G.
Each such Borel comes with its torus T , which is the universal Cartan and thus descends toE. Equivalently,
note that tori overF` are equivalent to étale Z-local systems, and asF` is simply connected all of them come
via pullback from E; this then gives the so-called universal Cartan T over E , which is split as G is split.
Let a be a simple coroot of G. At each point of F`, we get the corresponding parabolic Pa ⊃ B, with Levi
Ma. Let F̃`a → F` parametrize pinnings of Ma, i.e. isomorphisms of Ua with the additive group; this is a
Gm-torsor. Over F̃`a, the universal group Ma is constant, with adjoint group Ma,ad ∼= PGL2. Consider

S = F̃`♦/ϕZ → SpdE/ϕZ = Div1X .

Applying the constant term functor for Pa over S gives a symmetric monoidal functor

Sat(HckG,Div1X
×Div1X

S,Z`)→ Sat(HckMa,Div1X
×Div1X

S,Z`);

here, being symmetric monoidal is verified by repeating the construction of the fusion product after the
smooth pullbackS → Div1X . Both sides admit fibre functors to LocSys(S,Z`); this contains LocSys(Div1X ,Z`) =
Repcont

WE
(Z`) fully faithfully, and we can consider the symmetric monoidal full subcategories on which the

fibre functors land in this subcategory. As the constant term functor is compatible with fibre functors, it
induces a symmetric monoidal functor on these full subcategories, which are then easily seen to be equiv-
alent to SatG and SatM (reconstructing both starting from Schubert cells). This shows that the constant
term functor SatG → SatMa is naturally independent of the choice of Borel, reducing us to the rank 1 case.
In the rank 1 case, we can then further reduce to PGL2, and we have the minuscule Schubert variety, which
is the flag variety F` ∼= P1 of G ∼= PGL2. There are canonical isomorphisms

H0(F`) = Z`, H2(F`) = Z`(−1),

and Ûa is canonically isomorphic to Hom(H2(F`),H0(F`)) ∼= Z`(1).

Thus, we have shown that if G is split, the isomorphism G

∧∼= Ĝ is canonical. Finally, the general case
follows by Galois descent from a finite Galois extension E′|E splitting G.
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VI.12. Chevalley involution

Any Chevalley group scheme Ĝ comes with the Chevalley involution, induced by the map on root data
which on X∗ is given by µ 7→ −w0(µ) where w0 is the longest Weyl group element. Under the geometric
Satake equivalence, this has a geometric interpretation: Namely, it essentially corresponds to the switching
equivalence sw∗. Note that one can upgrade

sw∗ : SatIG(Λ)→ SatIG(Λ)
to a symmetric monoidal functor by writing it as the composition of Verdier duality and the duality functor
sw∗D in SatIG(Λ); moreover, this symmetric monoidal functor commutes with the fibre functor F I (as
symmetric monoidal functors), cf. Corollary VI.9.5. Thus, sw∗ induces an automorphism of the Tannaka
group G

∧

, commuting with the WE-action.

Proposition VI.12.1. Under the isomorphism G

∧∼= Ĝ with the dual group, the isomorphism sw∗ is
given by the Chevalley involution, up to conjugation by ρ̂(−1) ∈ Ĝad(Z`).

Remark VI.12.2. There is a different construction of the commutativity constraint on SatG, not em-
ploying the fusion product, that relies on the Chevalley involution — this is essentially a categorical version
of the classical Gelfand trick to prove commutativity of the Satake algebra. For the Satake category, this
construction was first proposed by Ginzburg [Gin90], who however overlooked the sign ρ̂(−1). Zhu’s
proof [Zhu17] of the geometric Satake equivalence for GrWitt

G used this approach, taking careful control
of the signs; these are related to the work of Lusztig–Yun [LY13]. We remark that Zhu gives a different
construction of the commutation of sw∗ with the fibre functor, using instead that the two actions (on left
and right) of H∗([∗/L+G],Q`) on H∗(HckG, A) agree for A ∈ SatG(Q`).

Proof. We note that this is really a proposition: The statement only asks about the commutation of a
certain diagram, not some extra structure. For the statement, we can also forget about the WE-action. In
particular, enlarging E , we can assume that G is split. As in the proof of Theorem VI.11.1, one can reduce
to the case that G is adjoint, so Ĝ is semisimple and simply connected. We also fix a pinning of G.

Now, being pinned, G has its own Chevalley involution θ : G → G, and by the functoriality of
all constructions under isomorphisms, the induced automorphism of SatG corresponds to the Chevalley
involution of Ĝ. In other words, we need to see that the automorphism θ∗sw∗ : SatG → SatG (which is
symmetric monoidal, and commutes with the fibre functors) induces conjugation by ρ∧(−1) on G

∧

.
We claim that the natural cohomological grading on the fibre functor F : SatG(Λ) → RepWE

(Λ) is
compatible with sw∗. In other words, we need to see that in Corollary VI.9.5, the isomorphism F (A) ∼=
F (sw∗A) is compatible with the grading, which follows from its construction. In particular, it follows
that the automorphism of G

∧

restricts to the identity on the corresponding cocharacter 2ρ

∧

: Gm ⊂ G

∧

.
This implies already that it preserves T

∧

and the Borel B

∧

(as the centralizer and dynamical parabolic). Any
such automorphism of G

∧

is given by conjugation by some element s ∈ T

∧

ad ⊂ G

∧

ad. We need to see that
s = ρ

∧

(−1). Equivalently, the automorphism acts by negation on any simple root space U

∧

a of G

∧

.
We claim that the symmetric monoidal automorphism θ∗sw∗ : SatG → SatG (commuting with the

fibre functor) is compatible with the constant term functors CTP , for any standard parabolic P ⊃ B, and
the similar functor on Levi subgroups. Let θ′ be the composition of θ with conjugation byw0. We know, by
the proof of Theorem VI.11.1, that any inner automorphism ofG induces the identity onG

∧

. Thus, it suffices
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to prove the similar claim for θ′∗sw∗ : SatG → SatG. Let P− ⊂ G be the opposite parabolic of P ; then
θ′(P−) = P , and the induced automorphism of the Levi M is given by the corresponding automorphism
θ′M defined similarly as θ′. Now Proposition IV.6.13 and the fusion definition of the symmetric monoidal
structure (along with the definition of sw∗ as the composite of Verdier duality and internal duality) give
the claim.

These observations reduce us to the caseG = PGL2. We note that in this case the Chevalley involution
is the identity, so we can ignore θ. We have the minuscule Schubert variety iµ : GrG,µ = P1 ⊂ GrG and
the sheaf A = iµ∗Z`[1](12) ∈ SatG (assuming without loss of generality √q ∈ Λ to introduce a half-Tate
twist), and we know G

∧

= SL(F (A)), where
F (A) = F (A)1 ⊕ F (A)−1 = H0(P1)(12)⊕H

2(P1)(12).

The image of A under sw∗ is isomorphic to A itself; fix an isomorphism. Then on the one hand
F (A) ∼= F (sw∗A)

as the functor sw∗ : SatG → SatG commutes with the fibre functor F , while on the other hand
F (sw∗A) ∼= F (A)

as the two objects are isomorphic. We need to see that the composite isomorphism is given by the diagonal
action of (u,−u) for some u ∈ Z×

` (this claim is independent of the chosen isomorphism between A and
sw∗A). We already know that the isomorphism is graded, so it is given by diagonal multiplication by
(u1, u2) for some units u1, u2 ∈ Z×

` .
Recall that the first isomorphism is constructed as the composite of Verdier duality and internal duality

in SatG. Now the Verdier dual ofA isA itself (because of the half-Tate twist), and the Verdier duality pairing
F (A)⊗ F (A)→ Z`

is the tautological pairing; in particular, restricted to F (A)−1⊗F (A)1 and F (A)1⊗F (A)−1 it is the same
map, up to the natural commutativity constraint on Z`-modules. It follows that the internal dual A∨ of A
is also isomorphic to A, and picking such an identification we need to understand the induced pairing

F (A)⊗ F (A)→ F (1) = Z`,
and show that when restricted to F (A)−1⊗F (A)1 and F (A)1⊗F (A)−1, the two induced maps differ by
a sign (up to the natural commutativity constraint); this claim is again independent of the chosen isomor-
phism betweenA∨ andA. But this is a question purely internal to the symmetric monoidal category SatG ∼=
Rep(SL2) with its fibre functor. In there, we have the tautological representation V = Z2

` = Z`e1 ⊕ Z`e2,
and it has the determinant pairing V ⊗ V → Z` as SL2-representation, realizing the internal duality. The
determinant pairing is alternating, so takes opposite signs on (e1, e2) and (e2, e1), as desired. �





CHAPTER VII

D�(X)

In order to deal with smooth representations of G(E) on Q`-vector spaces (not Banach spaces), we
extend (a modified form of) the 6-functor formalism from [Sch17a] to the larger class of solid pro-étale
sheaves. The results in this chapter were obtained in discussions with Clausen, and Mann has obtained
analogues of some of these results in the case of schemes. (Strangely enough, in some respects the formalism
actually works better for diamonds than for schemes.)

More precisely, we want to find a “good” category of Q`-sheaves on [∗/G(E)] that corresponds to
smooth representations of G(E) with values in Q`-vector spaces, and extends to a category of Q`-sheaves
on BunG with a good formalism of six operations that allows us to extend the preceding results for étale
torsion coefficients. The first idea would be to take pro-systems of étale torsion sheaves as Z`-coefficients
and invert formally `; this formalism is easy to construct, see [Sch17a, Section 26]. This would give rise to
continuous representations of G(E) in Q`-Banach spaces, and we do not want that:

• supercuspidal representations of G(E) in Q`-vector spaces are defined over a finite degree extension of
Q`, and after twist admit an invariant lattice that allows us to complete them `-adically, but we do not want
to make such a choice.
• we want to construct semi-simple Langlands parameters using the Bernstein center and not some `-adic
completion of it.
• in usual discussions of the cohomology of the Lubin–Tate tower, or more general Rapoport–Zink spaces,
it is possible to use Q`-coefficients while talking about usual smooth representations. We want to be able
to achieve the same on the level of BunG.

We could take Q`-pro-étale sheaves. This would give rise to representations of G(E) (seen as a con-
densed group) with values in condensed Q`-vector spaces. This category is too big; there is no hope to
obtain a formalism of six operations in this too general context. We need to ask for some “completeness”
of the sheaves, for which we take inspiration from the theory of solid abelian groups developed in [CS].

The idea is the following. We define a category of solid pro-étale Q`-sheaves on BunG with a good
formalism of (a modified form of) six operations. More precisely, for any small v-stack, we define a full
subcategory

D�(X,Z`) ⊂ D(Xv,Z`),

compatible with pullback, and equipped with a symmetric monoidal tensor product (for which pullback
is symmetric monoidal). A complex is solid if and only if each cohomology sheaf is solid, and this can be
checked v-locally. The subcategory D�(X,Z`) is stable under all (derived) limits and colimits, and the
inclusion intoD(Xv,Z`) admits a left adjoint. IfX is a diamond, thenD�(X,Z`) is also a full subcategory
of D(Xqproet,Z`). If X is a spatial diamond, then on the abelian level, the category of solid Z`-sheaves is

235
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the Ind-category of the Pro-category of constructible étale sheaves killed by some power of `. In this way,
one can bootstrap many results from the usual étale case.

For any map f : Y → X of small v-stacks, the pullback functor f∗ admits a right adjoint Rf∗ :
D�(Y,Z`) → D�(X,Z`) that in fact commutes with any base change, see Proposition VII.2.4. Similarly,
the formation of RHom commutes with any base change. Both of these operations can a priori be taken
in all v-sheaves, but turn out to preserve solid sheaves. This already gives us four operations.

Unfortunately, Rf! does not have the same good properties as usual. In particular, if f is proper (and
finite-dimensional), Rf∗ does not in general satisfy a projection formula. As a remedy, it turns out that for
all f , the functor f∗ admits a left adjoint

f\ : D�(Y,Z`)→ D�(X,Z`),

given by “relative homology”. This is a completely novel feature, and already for closed immersions this
takes usual étale sheaves to complicated solid sheaves. Again f\ commutes with any base change, and also
satisfies the projection formula (which is just a condition here, as there is automatically a natural map).

When f is “proper and smooth”, one can moreover relate relative f\ (“homology”) and Rf∗ (“coho-
mology”) in the expected way. One also gets a formula for the dualizing complex of f in terms of such
functors. These results even extend to universally locally acyclic complexes. This solid 5-functor formal-
ism thus has some excellent formal properties. We are somewhat confused about exactly how expressive it
is, and whether it is preferable over the standard 6-functor formalism.1 One advantage is certainly that f\
is more canonical, and even defined much more generally, than Rf! (whose construction for stacky maps
requires the resolution of subtle homotopy coherence issues, and also can only be defined for certain (finite-
dimensional) maps). The main problem with the solid formalism is that a stratification of a stack does not
lead to a semi-orthogonal decomposition on the level of D�.

On the other hand, for our concerns here, D�(BunG,Z`) is much too large. On [∗/G(E)] this gives
rise to representations of G(E) (as a condensed group) with values in solid Z`-modules. The category of
discrete Q`-vector spaces injects into the category of solid Z`-modules. In fact, Q`-vector spaces are the
same as Ind-finite dimensional vector spaces. Any finite dimensional Q`-vector space is complete and thus
“solid”. This means that if V is a Q`-vector space then it gives rise to the solid condensed sheaf V ⊗Qdisc`

Q`

whose value on the profinite set S is

lim−→
W⊂V

finite dim.

Cont(S,W ).

The category of smooth representations of G(E) with values in discrete Q`-vector spaces injects in
the category of solid Q`-pro-étale shaves on [∗/G(E)]. In fact, since ` 6= p and G(E) is locally pro-p,
representations of the condensed group G(E) on the condensed Q`-vector space V ⊗Qdisc`

Q` are the same
as smooth representations of G(E) on V .

We then cut out a subcategoryDlis(BunG,Q`) ofD�(BunG,Z`) that gives back the category of smooth
representations of G(E) in Q`-vector spaces when we look at [∗/G(E)]. (Of course, we can also stick with
Z`-coefficients.)

1One can also treat this 5-functor formalism as a 6-functor formalism in which f ! = f∗ for all maps f , i.e. “all maps are étale”.



VII.1. SOLID SHEAVES 237

VII.1. Solid sheaves

In the following, Ẑ always denotes the pro-étale sheaf Ẑ = lim←−n Z/nZ where n runs over nonzero
integers. We will quickly restrict attention to Ẑp = lim←−(n,p)=1

Z/nZ, allowing only n prime to p.

Let X be a spatial diamond. We have the associated quasi-pro-étale site Xqproet. Not all of its objects
are cofiltered limits of étale maps, but one has a fully faithful functor

Pro(Xqcqs
et )→ X

qcqs
qproet

on the level of quasicompact and quasiseparated objects; this follows from [Sch17a, Proposition 11.23 (ii)].
Moreover, [Sch17a, Proposition 11.24] ensures that this full subcategory is a basis for the quasi-pro-étale
topology. In the following constructions we will often work in this subcategory.

For any quasi-pro-étale j : U → X that can be written as a cofiltered inverse limit of qcqs étale
ji : Ui → X , we let

j\Ẑ = lim←−
i

ji!Ẑ;

as the pro-system of theUi is unique, this is well-defined. Note that there is a tautological section of j\Ẑ over
U . Equivalently, if one writes Ẑ[U ] for the free pro-étale sheaf of Ẑ-modules generated by U (noting that
j∗ admits a left adjoint on pro-étale sheaves, being a slice), there is a natural map Ẑ[U ]→ lim←−i Ẑ[Ui] = j\Ẑ.

When X = Spa(C), j\Ẑ is the sheaf denoted Ẑ[U ]� in [CS], and the same notation will be appropriate
here in general.

Definition VII.1.1. LetF be a pro-étale sheaf of Ẑ-modules onX . ThenF is solid if for all j : U → X
as above, the map

Hom(j\Ẑ,F)→ F(U)

is an isomorphism.

Let us begin with the following basic example. We note ν : Xqproet → Xet the projection to the étale
site.

Proposition VII.1.2. For any étale sheaf F of Z/nZ-modules on Xet, ν∗F is solid.

Proof. This is a consequence of [Sch17a, Proposition 14.9]. �

The notion of solid sheaf is well-behaved:

Theorem VII.1.3. The category of solid Ẑ-sheaves on X is an abelian subcategory of all pro-étale Ẑ-
sheaves on X , stable under all limits, colimits, and extensions. It is generated by the finitely presented
objects j\Ẑ for quasi-pro-étale j : U → X as above, and the inclusion admits a left adjoint F 7→ F� that
commutes with all colimits.

Let F be a pro-étale Ẑ-sheaf on X . The following conditions are equivalent.

(1) The Ẑ-sheaf F is finitely presented in the category of all pro-étale Ẑ-sheaves, and is solid.
(2) The Ẑ-sheaf F is solid, and finitely presented in the category of solid Ẑ-sheaves.
(3) The Ẑ-sheaf F can be written as a cofiltered inverse limit of torsion constructible étale sheaves.
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For any such F , the underlying pro-étale sheaf is representable by a spatial diamond. The category of F
satisfying (1) – (3) is stable under kernels, cokernels, and extensions, in particular an abelian category, and
is equivalent to the Pro-category of torsion constructible étale sheaves.

Moreover, the category of all solid Ẑ-sheaves onX is equivalent to the Ind-category of the Pro-category
of torsion constructible étale sheaves.

Question VII.1.4. IfF is a pro-étale Ẑ-sheaf onX whose underlying pro-étale sheaf is representable by
a spatial diamond, or even is just qcqs, isF necessarily solid? If so, these conditions would also be equivalent
to (1) – (3).

Let us remark the following lemma.

Lemma VII.1.5. Any torsion constructible étale sheaf on the spatial diamond X is represented by a
spatial diamond.

Proof. Let F → X be such a sheaf. We can find a surjection of étale sheaves F ′ =
⊕

i ji!Z/niZ→ F
for some quasicompact separated étale maps ji : Ui → X and nonzero integers ni (where the direct sum
is finite). Then F ′ is quasicompact separated étale over X , and thus a spatial diamond; and the surjective
map F ′ → F is also quasicompact separated étale, in particular universally open, and so also F is a spatial
diamond. �

Before starting the proof, we record a key proposition. Its proof is a rare instance that requires w-
contractible objects — in most proofs, strictly totally disconnected objects suffice.

Proposition VII.1.6. Let X be a spatial diamond and let Fi, i ∈ I , be a cofiltered system of torsion
constructible étale sheaves. Then for all j > 0 the higher inverse limit

Rj lim←−
i

Fi = 0,

taken in the category of pro-étale sheaves on X , vanishes.

Proof. The pro-étale site of X has a basis given by the w-contractible Y → X , that is strictly totally
disconnected perfectoid spaces Y such that the closed points in |Y | are a closed subset and π0Y is an ex-
tremally disconnected profinite set; equivalently, any pro-étale cover Ỹ → Y splits, cf. [BS15, Section 2.4]
for a discussion of w-contractibility. Thus, it suffices to check sections on Y . In other words, we may assume
that X is w-contractible, and prove that

Rj lim←−
i

Fi(X) = 0

for all j > 0. As X is strictly totally disconnected, sheaves on Xet are equivalent to sheaves on |X|.
Moreover, we have the closed immersion f : π0X → |X| given by the closed points, and pullback along
this map induces isomorphisms Fi(X) ∼= (f∗Fi)(π0X). Let S = π0X be the extremally disconnected
profinite set.

Then any torsion constructible sheaf on S is locally constant with finite fibres. In particular, f∗Fi
maps isomorphically toHom(Hom(f∗Fi, S1), S1) where S1 = R/Z is the sheaf of continuous maps to
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the circle. (We could for the moment also use Q/Z, but it will become critical that S1 is compact.) It
follows that

Rj lim←−
i

Fi(X) = ExtjS(lim−→
i

Hom(f∗Fi, S1), S1).

Thus, the result follows from the injectivity of S1 as stated in the next lemma. �

Lemma VII.1.7. Let S be an extremally disconnected profinite set. Then the abelian sheaf R/Z on S
is injective.

Proof. First, we note that R/Z is flasque in a strong sense. Namely, if U ⊂ S is any open subset with
closure U ⊂ S , then U is the Stone-Čech compactification of U (as U ⊂ S is open by one definition of
extremally disconnected spaces, and then βU t (S \ U) → S admits a splitting, which in particular gives
a splitting of the surjection βU → U that is the identity on U , thus implying that βU ∼= U ) and hence
any section of R/Z over U extends uniquely to U as R/Z is compact Hausdorff. Also, all sections over U
extend to S , as U is open and closed in S.

Let F ↪→ G be an injection of sheaves on S with a map F → R/Z. Using Zorn’s lemma, choose a
maximal subsheaf of G containing F with an extension of the map to R/Z. Replacing F by this maximal
subsheaf, we can assume that F is maximal already. If F → G is not an isomorphism, then it is not an
isomorphism on global sections (any local section not in the image can be extended by zero to form a global
section not in the image), so we can find a map Z → G such that F ′ = F ×G Z ⊂ Z is a proper subsheaf,
and we can replace G by Z and assume that F is a proper subsheaf of Z.

For each integer n, we can look at the open subset jn : Un ⊂ S where n ∈ Z lies in F . On this open
subset, we have a map nZ→ R/Z, and by the above this extends uniquely to jn : Un ↪→ S. The extension
jn!Z → R/Z necessarily agrees with the restriction of the given map F → R/Z on the intersection
jn!Z ∩ F ⊂ jn!Z, as this contains the dense subset jn!Z and R/Z is separated.

Thus, by maximality ofF , we see that necessarily allUn are open and closed, hence so are all Vn = Un \⋃
m<n Um. Thus V1, V2, . . . ⊂ S are pairwise disjoint open and closed subsets such that F =

⊕
n nZ|Vn .

But one can then extend to
⊕

n Z|Vn as the continuous maps from Vn to R/Z form a divisible group. By
maximality of F , this means that Vn is empty for all n > 1, and hence F = Z|V1 is a direct summand of Z,
in which case the possibility of extension is clear. �

Now we can give the proof of Theorem VII.1.3.

Proof of Theorem VII.1.3. The Pro-category of torsion constructible étale sheaves is an abelian cat-
egory, and by Proposition VII.1.6 the functor to pro-étale Ẑ-sheaves is exact. It is also fully faithful: For
this, it suffices to see that ifFi, i ∈ I , is a cofiltered inverse system of torsion constructible étale sheaves and
G is any étale sheaf, then

lim−→
i

Hom(Fi,G)→ Hom(lim←−
i

Fi,G)

is an isomorphism. But the underlying pro-étale sheaf of eachFi is a spatial diamond overX , so by [Sch17a,
Proposition 14.9] (applied with j = 0) we see that the similar result holds true when then taking homomor-
phisms of pro-étale sheaves (without the abelian group structure). Enforcing compatibility with addition
amounts to a similar diagram for lim←−iFi × lim←−iFi to which the same argument applies.
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We see that the Pro-category of torsion constructible étale sheaves is a full subcategory C of all pro-étale
Ẑ-modules on X , stable under the formation of kernels and cokernels. All of these sheaves are solid: As
the condition of being solid is stable under all limits, it suffices to see that any étale sheaf is solid; this is
Proposition VII.1.2.

Also, by [Sch17a, Lemma 11.22] and Lemma VII.1.5 all objects of C have as underlying pro-étale sheaf a
spatial diamond. Using Proposition VII.1.12 below (whose proof is direct), one also checks that C is stable
under extensions.

Next, we prove that (3) implies (1), so let F be in C; in particular, the underlying pro-étale sheaf is a
spatial diamond. Then for any pro-étale Ẑ-module G , one can describe Hom(F ,G) as the maps F → G
of pro-étale sheaves satisfying additivity and Ẑ-linearity, i.e. certain maps F × F → G resp. F × Ẑ → G
agree. This description commutes with filtered colimits (as for spatial diamonds Y , the functor G 7→ G(Y )
commutes with filtered colimits).

Now we can describe the full category of solid Ẑ-sheaves. Indeed, using that j\Ẑ is finitely presented in
all pro-étale Ẑ-modules by the previous paragraph, we see from the definition that the category of solid Ẑ-
sheaves is stable under all filtered colimits. In particular, we get an exact functor from the Ind-category of
C to solid Ẑ-sheaves. This is also fully faithful, as all objects of C are finitely presented. Moreover, Ind(C) is
an abelian category for formal reasons. We see that Ind(C) is a full subcategory of the category of pro-étale
Ẑ-sheaves stable under kernels and cokernels, and all of its objects are solid. Conversely, any solid Ẑ-sheaf
admits a surjection from a direct sum of objects of the form j\Ẑ ∈ C , and the kernel of any such surjection
is still solid, so we may write any solid Ẑ-sheaf as the cokernel of a map in Ind(C). As Ind(C) is stable under
cokernels, we see that Ind(C) is exactly the category of solid Ẑ-sheaves.

As filtered colimits of solid sheaves stay solid, it is now formal that (1) implies (2), and (2) implies (3) as
C ⊂ Ind(C) are the finitely presented objects (as C is idempotent-complete). This finishes the proof of the
equivalences.

The identification with Ind(C) shows that the category of solid Ẑ-sheaves is stable under kernels, cok-
ernels, and filtered colimits. The latter two imply stability under all colimits, and stability under all limits
is clear from the definition. One also easily checks stability under extensions by reduction to C (again,
cf. proof of Proposition VII.1.12). For the existence of the left adjoint, note that it exists on the free pro-
étale Ẑ-modules generated by U , with value j\Ẑ, i.e.

Ẑ[U ]� = j\Ẑ.

As these generate all pro-étale Ẑ-modules, one finds that the left adjointF 7→ F� exists in general: one can
write any F as a colimit lim−→α

Ẑ[Uα] and (lim−→α
Ẑ[Uα])� = lim−→α

Ẑ[Uα]�. �

We have the following proposition on the functorial behaviour of the notion of solid Ẑ-sheaves.

Proposition VII.1.8. Let f : Y → X be a map of spatial diamonds. Then pullbacks of solid Ẑ-sheaves
are solid, and the functor f∗ commutes with solidification. Moreover, if f is surjective, and F is a pro-étale
Ẑ-sheaf on X such that f∗F is solid, then F is solid.

Proof. Recall that f∗ commutes with all limits (and of course colimits) by [Sch17a, Lemma 14.4]. To
check that f∗ commutes with solidification, it suffices to check on the pro-étale Ẑ-modules Ẑ[U ] generated
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by some quasi-pro-étale j : U → X that is a cofiltered inverse limit of qcqs étale maps Ui → X , and in that
case the claim follows from f∗ commuting with all limits,

f∗(Ẑ[U ]�) = f∗(lim←−
i

Ẑ[Ui]) = lim←−
i

f∗Ẑ[Ui] = lim←−
i

Ẑ[f∗Ui] = Ẑ[f∗U ]�.

In particular, applied to solid Ẑ-sheaves on X , this implies that their pullback to Y is already solid.

Now assume that f is surjective and F is a pro-étale Ẑ-sheaf on X such that f∗F is solid. Let j : U =
lim←−i Ui → X be a quasi-pro-étale map. We first check that

Hom(j\Ẑ,F)→ F(U)

is injective. Indeed, assume that g : j\Ẑ→ F lies in the kernel. Then after pullback to Y , this map vanishes
since f∗Ẑ[U ]� = Ẑ[f∗U ]�. But for any quasi-pro-étale V → X , the map F(V ) → (f∗F)(V ×X Y ) is
injective (using [Sch17a, Proposition 14.7] one has f∗F(V ×X Y ) = (λ∗XF)(V ×X Y ) and we conclude
since V ×X Y → V is a v-cover), so it follows that f = 0.

We see that an element of F(U) determines at most one map j\Ẑ → F , and this assertion stays true
after any pullback. By [Sch17a, Proposition 14.7], it suffices to construct the map v-locally; but it exists
after pullback to Y → X , thus proving existence. �

In particular, it makes sense to make the following definition.

Definition VII.1.9. Let Y be a small v-stack and let F be a v-sheaf of Ẑ-modules on Y . Then F is
solid if for all maps f : X → Y from a spatial diamond X , the pullback f∗F comes via pullback from a
solid Ẑ-sheaf on Xqproet.

Regarding passage to the derived category, we make the following definition.

Definition VII.1.10. Let X be a small v-stack. Let D�(X, Ẑ) ⊂ D(Xv, Ẑ) be the full subcategory of
all A such that each cohomology sheafHi(A) is solid.

As being solid is stable under kernels, cokernels, and extensions, this defines a triangulated subcategory.

If X is a diamond, one could alternatively define a full subcategory of D(Xqproet, Ẑ) by the same con-
dition, and pullback from the quasi-pro-étale to the v-site defines a functor. This functor is an equivalence,
by repleteness (to handle Postnikov towers, cf. [BS15, Section 3]) and the following proposition that is an
amelioration of [Sch17a, Proposition 14.7] for solid sheaves.

Proposition VII.1.11. Let X be a diamond and let F be a sheaf of Ẑ-modules on Xqproet that is solid.
Let λ : Xv → Xqproet be the map of sites. Then F → Rλ∗λ

∗F is an isomorphism.

Proof. We may assume thatX is spatial (or strictly totally disconnected). ThenF is a filtered colimit
of finitely presented solid Ẑ-sheaves, and the functorRλ∗ commutes with filtered colimits inD≥0. We may
thus assume that F is finitely presented; in that case F is a cofiltered limit of torsion constructible étale
sheaves, and λ∗ commutes with all limits by [Sch17a, Lemma 14.4]. Thus, we can assume that F is an étale
sheaf, where the claim is [Sch17a, Proposition 14.7]. �

Moreover, solid objects in the derived category satisfy a derived and internal version of Definition VII.1.1.
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Proposition VII.1.12. Let X be a spatial diamond. For all A ∈ D�(X, Ẑ), the map

RHom(j\Ẑ, A)→ Rj∗A|U
is an isomorphism for all quasi-pro-étale j : U → X .

Proof. By taking a Postnikov limit, we can assume that A ∈ D+
� (X, Ẑ), and then one reduces to

the case that A = F [0] is concentrated in degree 0. Now by a resolution of Breen [Bre78, Section 3]
(appropriately sheafified), there is a resolution of any Ẑ-sheaf G where all terms are finite direct sums of
sheaves of the form Ẑ[Gi × Ẑj ]. If G is a spatial diamond, then all Gi × Ẑj are spatial diamonds, hence

RHom(Ẑ[Gi × Ẑj ],F)

commutes with all filtered colimits. Applied toG = j\Ẑ, Breen’s resolution then implies thatRHom(G,−)
commutes with all filtered colimits.

We may thus assume thatF is finitely presented. But then Theorem VII.1.3 implies thatF is a limit of
constructible étale sheaves, so one can reduce to the case thatF is an étale sheaf. But then Breen’s resolution
shows that

RHom(j\Ẑ,F) = lim−→
i

RHom(ji!Ẑ,F) = lim−→
i

Rji∗F|Ui

and [Sch17a, Proposition 14.9] shows that this identifies with Rj∗F|U . �

Proposition VII.1.13. Let X be a spatial diamond. The inclusion

D�(X, Ẑ) ⊂ D(Xqproet, Ẑ)

admits a left adjoint
A 7→ A� : D(Xqproet, Ẑ)→ D�(X, Ẑ).

Moreover, D�(X, Ẑ) identifies with the derived category of solid Ẑ-sheaves on X , and A 7→ A� with the
left derived functor of F 7→ F�. The formation of A 7→ A�, for A ∈ D(Xqproet, Ẑ), commutes with any
base change X ′ → X of spatial diamonds.

Proof. This follows easily from Proposition VII.1.12. �

Proposition VII.1.14. Let X be a spatial diamond. The kernel of A 7→ A� is a tensor ideal. In par-
ticular, there is a unique symmetric monoidal structure −

�

⊗L− on D�(X, Ẑ) making A 7→ A� symmetric
monoidal. It is the left derived functor of the induced symmetric monoidal structure on solid Ẑ-sheaves.
This symmetric monoidal structure commutes with all colimits (in each variable) and any pullback.

Proof. To check that the kernel is a tensor ideal, take any quasi-pro-étale j : U → X written as a
cofiltered inverse limit of separated étale ji : Ui → X , and any further quasi-pro-étale j′ : U ′ → X . Then
for any solid A ∈ D�(X, Ẑ), we know by Proposition VII.1.12 that the map

RHom(j\Ẑ, A)→ Rj∗A|U
is an isomorphism. Taking sections over U ′ → X , this translates into

RHom(j\Ẑ⊗L
Ẑ Ẑ[U ′], A)→ RHom(Ẑ[U ×X U ′], A)
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being an isomorphism. In other words, taking the tensor product of Ẑ[U ]→ j\Ẑ with Ẑ[U ′] still lies in the
kernel, but these generate the tensor ideal generated by the kernel.

It is now formal that there is a unique symmetric monoidal structure−
�

⊗L− onD�(X, Ẑ)makingA 7→
A� symmetric monoidal (given by the solidification of the tensor product in all solid pro-étale sheaves).
As solidification commutes with all colimits, so does this tensor product. On generators j : U → X ,
j′ : U ′ → X as above, it is given by j\Ẑ

�

⊗Lj′\Ẑ = (j×X j′)\Ẑ, which still sits in degree 0; this implies that
the functor is a left derived functor. Moreover, this description commutes with any base change. �

Moreover, the inclusion into all v-sheaves also admits a left adjoint, if X is a diamond. We will later
improve on this proposition when working with Ẑp-coefficients.

Proposition VII.1.15. For any diamond X , the fully faithful embedding

D�(X, Ẑ) ⊂ D(Xv, Ẑ)

admits a left adjoint A 7→ A�. The formation of A� commutes with quasi-pro-étale base change X ′ → X .

Proof. Assume first thatX is strictly totally disconnected. It suffices to construct the left adjoint on a
set of generators, such as the pro-étale sheaves of Ẑ-modules generated by some strictly totally disconnected
Y → X . By [Sch17a, Lemma 14.5], there is a strictly totally disconnected affinoid pro-étale j : Y ′ → X
such that Y → X factors over a map Y → Y ′ that is surjective and induces a bijection of connected
components. Then for any B ∈ D�(Y

′, Ẑ), the map

RΓ(Y ′, B)→ RΓ(Y,B)

is an isomorphism. Indeed, by Postnikov limits this easily reduces to B = F [0] for a solid sheaf of Ẑ-
modules, and then to a finitely presented solid sheaf, and finally to a constructible étale sheaf, for which the
result is proved at the end of the proof of [Sch17a, Lemma 14.4]. This means that the left adjoint A 7→ A�

when evaluated on Ẑ[Y ] exists and is given by j\Ẑ.
The formation of Y ′ → X from Y → X commutes with any quasi-pro-étale base change of strictly

totally disconnected X ′ → X . This implies that A 7→ A� commutes with such base changes. By de-
scent, this implies the existence of the left adjoint in general, and its commutation with quasi-pro-étale base
change. �

As usual, we also want to have a theory with coefficients in a ring Λ. As before, we assume that Λ is
constant in the sense that it comes via pullback from the point. In our case, this means that it comes via
pullback from the pro-étale site of a point, i.e. is a condensed ring [CS], and we need to assume that it is
solid over Ẑ; in other words, we allow as coefficients any solid Ẑ-algebra Λ. Via pullback, this gives rise to
a v-sheaf of Ẑ-algebras on any small v-stack X , and we can consider D(Xv,Λ).

Example VII.1.16. We may consider Λ = Z` as the solid condensed ring lim−→L|Q` finiteOL.

Definition VII.1.17. Let D�(X,Λ) ⊂ D(Xv,Λ) be the full subcategory of all A ∈ D(Xv,Λ) such
that the image of A in D(Xv, Ẑ) is solid.
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On the level of∞-categorical enrichments, we thus see thatD�(X,Λ) is the category of Λ-modules in
D�(X, Ẑ). It is then formal that the inclusion D�(X,Λ) ⊂ D(Xv,Λ) admits a symmetric monoidal left
adjoint A 7→ A�, compatible with forgetting the Λ-structure.

Remark VII.1.18. Let us briefly compare the present theory with the one developed in [CS]. Over a
geometric point X = SpaC , D�(X, Ẑ) is the derived category of solid Ẑ-modules in the sense of [CS].
For general Λ, we are now simply considering Λ-modules in D�(X, Ẑ). This is in general different from
the theory of Λ�-modules, which would ask for a stronger completeness notion relative to Λ. Our present
theory corresponds to the analytic ring structure on Λ induced from Ẑ�.

One might wonder whether for any analytic ring A in the sense of [CS] one can define a category
D(X,A) of “A-complete” pro-étale sheaves on any spatial diamond X . This does not seem to be the case;
it is certainly not formal. In fact, already for A = Z�, problems occur and there is certainly no abelian
category; it is still possible to define a nice derived category, though. For generalA, definingD(X,A) also
seems to require extra data beyond the analytic ring structure onA.

VII.2. Four functors

Now we discuss some functors on solid sheaves. For this, we assume from now on that we work with
coefficients Λ given by a solid Ẑp-algebra (so we stay away from p-adic coefficients). For any map f : Y →
X of small v-stacks, we have the pullback functor f∗ : D�(X,Λ) ⊂ D�(Y,Λ). This admits a right adjoint
Rf∗; in fact, one can simply import Rf∗ from the full D(Y,Λ):

Proposition VII.2.1. Let f : Y → X be a map of small v-stacks and let A ∈ D�(Y,Λ) ⊂ D(Y,Λ).
Then Rfv∗A ∈ D(Xv,Λ) lies in D�(X,Λ). In particular, Rfv∗ : D(Yv,Λ) → D(Xv,Λ) restricts to a
functor Rf∗ : D�(Y,Λ)→ D�(X,Λ) that is right adjoint to f∗.

Proof. We can formally reduce to the case Λ = Ẑp. The formation of Rfv∗ commutes with any
pullback (as everything is a slice in the v-site), so using Proposition VII.1.8 we can assume that X is a
spatial diamond. Moreover, taking a simplicial resolution of Y by disjoint unions of spatial diamonds, and
using that D�(X, Ẑp) ⊂ D(Xv, Ẑp) is stable under all derived limits (as it is stable under all products), we
can also assume that Y is a spatial diamond.

We may assume A ∈ D+
� (Y, Ẑp) by a Postnikov limit, then that A = F [0] is concentrated in degree 0,

then thatF is finitely presented by writing it as a filtered colimit, and finally thatF is a constructible étale
sheaf by writing it as a cofiltered limit. Now the result follows from [Sch17a, Proposition 17.6]. �

Proposition VII.2.2. For any small v-stack X , the inclusion

D�(X,Λ) ⊂ D(Xv,Λ)

admits a left adjoint
A 7→ A� : D(Xv,Λ)→ D�(X,Λ).

The functor A 7→ A� commutes with any base change.
The kernel of A 7→ A� is a tensor ideal. In particular, there is a unique symmetric monoidal structure

−
�

⊗L
Λ− on D�(X,Λ) making A 7→ A� a symmetric monoidal functor. The functor −

�

⊗L
Λ− commutes

with all colimits (in each variable) and with all pullbacks f : Y → X .
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We note that in the case of overlap with previous definitions of A 7→ A� and −
�

⊗L
Λ−, the definitions

agree, by uniqueness of the previous definitions.

Proof. Again, one can formally reduce to the case Λ = Ẑp. By descent, we can reduce to the case that
X is strictly totally disconnected. (Note that Y 7→ D�(Y, Ẑp) is a v-sheaf of∞-categories — this is clear
for D(Yv, Ẑp), and follows for D� as being solid can be checked v-locally by Proposition VII.1.8. Thus, if
the left adjoints exist v-locally and commute with base change, they assemble into the desired left adjoint,
cf. [Lur16, Proposition 4.7.4.19].) In this case, we already know existence of the left adjoint A 7→ A� by
Proposition VII.1.15.

We check that the left adjointA 7→ A� commutes with any base change f : Y → X . We already know
that pullbacks of solid objects stay solid, so we have to see that ifA ∈ D(Xv, Ẑp) satisfiesA� = 0, then also
(f∗vA)

� = 0. But this statement is adjoint to the statement thatRfv∗ preservesD�, i.e. Proposition VII.2.1.

We need to see that the class of allA ∈ D(Xv, Ẑp) withA� = 0 is a⊗-ideal. But we have seen that for
all f : Y → X , also f∗vA lies in the corresponding class forY , and then so does fv\f∗vA (as pullback preserves
D�), where we write fv\ for the left adjoint of f∗v (which exists as it is a slice). But fv\f∗vA = A⊗L

Ẑp
fv\Ẑp

by the projection formula for slices, so this gives the desired claim. �

It turns out that for Λ = Ẑp, the functor −
�

⊗L− is actually almost exact. If one would work with
Λ = F`-coefficients, it would even be exact.

Proposition VII.2.3. Let X be a small v-stack and A,B ∈ D�(X, Ẑp) be concentrated in degree 0.
Then A

�

⊗LB sits in cohomological degrees −1 and 0.

If X is a spatial diamond and F = lim←−iFi and G = lim←−j Gj are finitely presented solid Ẑp-sheaves
written as cofiltered limits of constructible étale sheaves killed by some integer prime to p, then the natural
map

F
�

⊗LG → R lim←−
i,j

Fi ⊗L Gj

is an isomorphism.

Proof. It suffices to prove the final assertion, as the statement onA
�

⊗LB can be checked after pullback
to spatial diamonds, and then A and B can be written as filtered colimits of finitely presented solid Ẑp-
sheaves (and Fi ⊗L Gj sits in degrees −1 and 0 as Ẑp has global dimension 1). Resolving F and G , we can
reduce to the caseF = j\Ẑp, G = j′\Ẑp. But their solid tensor product is indeed given by (j×X j′)\Ẑp. �

At this point, we have defined D�(X,Λ) ⊂ D(Xv,Λ) for any small v-stack X , and this subcategory is
preserved by pullback and pushforward, and in particular this gives such functors forD�(X,Λ). Moreover,
D�(X,Λ) has a natural symmetric monoidal structure−

�

⊗L
Λ−, commuting with colimits in both variables,

and with pullbacks. Moreover, we have a functor

RHomΛ(−,−) : D�(X,Λ)
op ×D�(X,Λ)→ D�(X,Λ),
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a partial right adjoint to −
�

⊗L
Λ− as usual. Again, it can be obtained from the corresponding functor on

D(Xv,Λ) via restriction. In fact, for all A ∈ D(Xv,Λ) and B ∈ D�(X,Λ), one has RHomΛ(A,B) ∈
D�(X,Λ). This can be reduced to Λ = Ẑp and the case A = f\Ẑp for some f : Y → X , and then it
amounts to Rfv∗f∗vB ∈ D�(X, Ẑp), which follows from Proposition VII.2.1.

There is the following general base change result. We stress the absence of any conditions.

Proposition VII.2.4. Let

Y ′ g′ //

f ′

��

Y

f
��

X ′ g // X

be a cartesian diagram of small v-stacks. For all A ∈ D�(Y,Λ), the base change map
g∗Rf∗A→ Rf ′∗g

′∗A

in D�(X
′,Λ) is an isomorphism.

Similarly, for any map f : Y → X of small v-stacks and all A,B ∈ D�(X,Λ), the map
f∗RHom(A,B)→ RHom(f∗A, f∗B)

in D�(Y,Λ) is an isomorphism.

Proof. The base change is a direct consequence of Proposition VII.2.1, noting that in the v-site, every-
thing is a slice (and hence satisfies base change). The statement about RHom follows similarly from the
compatibility with the RHom as formed on the v-site, as was noted above. �

The projection formula, however, fails to hold.

Warning VII.2.5. If f : Y → X is a proper map of small v-stacks that is representable in spatial
diamonds with dim. trg f <∞, the map

A
�

⊗LRf∗B → Rf∗(f
∗A

�

⊗LB)

may fail to be an isomorphism for A ∈ D�(X, Ẑp) and B ∈ D�(Y, Ẑp). In fact, already if X = BC is
a perfectoid ball and f = j : Y = SpaC → X is the inclusion of a point (which is quasi-pro-étale),
then this fails for A = j\Ẑp and B = Ẑp. In fact, the map becomes j\Ẑp → Rj∗Ẑp, which is far from an
isomorphism: For example, on global sections the left-hand side becomes Ẑp[−2], while the right-hand side
becomes Ẑp.

There is the following result on change of algebraically closed base field, an analogue of [Sch17a, The-
orem 19.5].

Proposition VII.2.6. Let X be a small v-stack.

(i) Assume that X lives over k, where k is a discrete algebraically closed field of characteristic p, and k′/k is
an extension of discrete algebraically closed base fields, X ′ = X ×k k′. Then the pullback functor

D�(X,Λ)→ D�(X
′,Λ)

is fully faithful.



VII.2. FOUR FUNCTORS 247

(ii) Assume that X lives over k, where k is a discrete algebraically closed field of characteristic p. Let C/k
be an algebraically closed complete nonarchimedean field, and X ′ = X ×k Spa(C,C+) for some open and
bounded valuation subring C+ ⊂ C containing k. Then the pullback functor

D�(X,Λ)→ D�(X
′,Λ)

is fully faithful.
(iii) Assume that X lives over Spa(C,C+), where C is an algebraically closed complete nonarchimedean
field with an open and bounded valuation subring C+ ⊂ C , C ′/C is an extension of algebraically closed
complete nonarchimedean fields, and C ′+ ⊂ C ′ an open and bounded valuation subring containing C+,
such that Spa(C ′, C ′+) → Spa(C,C+) is surjective. Then for X ′ = X ×Spa(C,C+) Spa(C ′, C ′+), the
pullback functor

D�(X,Λ)→ D�(X
′,Λ)

is fully faithful.

Proof. We can assumeΛ = Ẑp. As in [Sch17a, Theorem 19.5], it suffices to prove (iii) and the restricted
case of (ii) where C is the completed algebraic closure of k((t)) (and hence C+ = OC).

Let f : X ′ → X be the map. We have to see that for all A ∈ D�(X, Ẑp), the map
A→ Rf∗f

∗A

is an equivalence. This can be checked locally in the v-topology, so we can assume thatX = Spa(R,R+) is
an affinoid perfectoid space. By Postnikov limits, we can also assume thatA ∈ D+

� (X, Ẑp), and then thatA
is concentrated in degree 0. In case (iii), we can now conclude by writing A as a filtered colimit of finitely
presented solid Ẑp-modules, and these as cofiltered limits of constructible étale sheaves, noting that both
operations commute withRf∗ and f∗ (as f is qcqs in case (iii)), and hence reducing us to [Sch17a, Theorem
19.5].

It remains to handle case (ii) when C is the completed algebraic closure of k((t)). In that case X ′ lives
over a punctured open unit disc D∗

X over X , and fixing a pseudouniformizer $ ∈ R, this can be written
as the increasing union of quasicompact open subspaces X ′

n = {|t|n ≤ |$| ≤ |t|1/n} ⊂ X ′, with maps
fn : X ′

n → X . It suffices to prove that for all n, the map
A→ Rfn∗f

∗
nA

is an isomorphism. These functors commute again with filtered colimits of sheaves, and hence the previous
reductions apply and reduce the assertion to the étale case, which was handled in the proof of [Sch17a,
Theorem 19.5]. �

As an application, let us record the following versions of Proposition IV.7.1 and Corollary IV.7.2, where
we fix an algebraically closed field k|Fq and work on Perfk.

Corollary VII.2.7. For any small v-stack X , the functor

ψ∗
X : D�(X × [∗/WE ],Λ)→ D�(X ×Div1,Λ)

is fully faithful. If the natural pullback functor

D�(X,Λ)→ D�(X × Spd Ê,Λ)
is an equivalence, then ψ∗

X is also an equivalence.
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Proof. By descent along X → X × [∗/WE ] this reduces to Proposition VII.2.6. �

Corollary VII.2.8. For any small v-stack X and finite set I , pullback along X × (Div1)I → X ×
[∗/W I

E ] induces a fully faithful functor

D�(X × [∗/W I
E ],Λ)→ D�(X × (Div1)I ,Λ).

Proof. This follows inductively from Corollary VII.2.7. �

We also need a solid analogue of Theorem IV.5.3; we only prove a restricted variant, however. As there,
work over Perfk , and let X be a spatial diamond such that X → ∗ is proper, of finite dim. trg, and take
any spatial diamond S. As before, one can introduce the doubly-indexed ind-system {Ua,b}(a,b) ⊂ X × S ,
well-defined up to ind-isomorphism; and then Ua =

⋃
b<∞ Ua,b and Ub =

⋃
a>0 Ua,b.

Definition VII.2.9. The functors

Rβ!+, Rβ!− : D�(X × S,Λ)→ D�(S,Λ)

are defined by
Rβ!+C := lim−→

a

Rβ∗(ja!C|Ua),

Rβ!−C := lim−→
b

Rβ∗(jb!C|Ub)

for C ∈ D�(X × S,Λ).

Here ja! and jb! denote the left adjoints to j∗a and j∗b . Let α : X × S → X be the projection.

Theorem VII.2.10. Assume thatC = α∗A forA ∈ D�(X,Λ), and assume that eitherA ∈ D+
� (X,Λ),

or that X → ∗ is cohomologically smooth. Then

Rβ!+C = 0 = Rβ!−C.

Proof. We can assume Λ = Ẑp. All operations commute with any base change; we can thus assume
that S = SpaK where K is the complete algebraic closure of k((t)). We observe that if X → ∗ is coho-
mologically smooth, then Rβ∗ : D�(X × S,Λ) → D�(S,Λ) has finite cohomological dimension; this is
a statement about sheaves concentrated in degree 0. Any such B can be written as the countable limit of
Rja,b,∗j

∗
a,bB for the open immersions ja,b : Ua,b ⊂ X × S; it is thus enough to show that pushforward

alongUa,b → S has finite cohomological dimension on solid sheaves. AsUa,b → S is qcqs, we can reduce to
finitely presented sheaves; these are cofiltered limits of constructible sheaves. For constructible sheaves, the
cohomological dimension is bounded, and each cohomology group (recall that S = SpaK is a geometric
point) is finite by [Sch17a, Theorem 25.1]. Thus, the cofiltered limit stays in the same range of degrees.

It follows that we can assume thatA ∈ D+
� (X, Ẑp). Arguing as in the proof of Theorem IV.5.3, we can

then reduce to the case that X = Spa(R,R+) is an affinoid perfectoid space with no nonsplit finite étale
covers, and then to X = SpaK where K is still the completed algebraic closure of k((t)). In that case, as
in the proof of Theorem IV.5.3, one can make a more precise assertion on actual annuli; this statement is
compatible with passage to filtered colimits, reducing us to the case thatA is a finitely presented solid sheaf.
For A ∈ D�(SpaK, Ẑp), this means that A is a cofiltered limit of finite abelian groups killed by integers
prime to p. We can also pull this cofiltered limit through, reducing us to Theorem IV.5.3. �
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VII.3. Relative homology

A unique feature of the formalism of solid sheaves is the existence of a general left adjoint to pullback,
with excellent properties. We continue to work with coefficients in a solid Ẑp-algebra Λ.

Proposition VII.3.1. Let f : Y → X be any map of small v-stacks.

(i) The functor f∗ : D�(X,Λ)→ D�(Y,Λ) admits a left adjoint

f\ : D�(Y,Λ)→ D�(X,Λ).

The natural map

f\(A
�

⊗L
Λf

∗B)→ f\A
�

⊗L
ΛB

is an isomorphism for all A ∈ D�(Y,Λ) and B ∈ D�(X,Λ). Similarly, the map

RHom(f\A,B)→ Rf∗RHom(A, f∗B)

is an isomorphism.
(ii) The formation of f\ commutes with restriction of coefficients along a map Λ′ → Λ.
(iii) For any cartesian diagram

Y ′ g′ //

f ′

��

Y

f
��

X ′ g // X

of small v-stacks, the natural map
f ′\g

′∗A→ g∗f\A

is an isomorphism for all A ∈ D�(Y,Λ).

Proof. As f is a slice in the v-site, it is tautological that f∗v : D(Xv,Λ) → D(Yv,Λ) admits a left
adjoint fv\ : D(Yv,Λ) → D(Xv,Λ). One can then define f\ as the solidification of fv\. By general
properties of slices, the map

fv\(A⊗L
Λ f

∗B)→ fv\A⊗L
Λ B

is an isomorphism. Passing to solidifications, using that that this is symmetric monoidal, then gives that

f\(A
�

⊗L
Λf

∗B)→ f\A
�

⊗L
ΛB

is an isomorphism. The isomorphism

RHom(f\A,B) ∼= Rf∗RHom(A, f∗B)

then follows by adjointness.

For part (ii), we can assume Λ′ = Ẑp, and check on generators. These are given by j\Ẑp ⊗L
Ẑp

Λ for
j : Y ′ → Y . The claim then follows from the projection formula.

Part (iii) is obtained by passing to left adjoints in Proposition VII.2.4. �
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Now if f is “proper and smooth”, we want to relate the left adjoint f\ (“homology”) and the right adjoint
Rf∗ (“cohomology”). Thus, assume that f : Y → X is a proper map of small v-stacks that is representable
in spatial diamonds with dim. trg f <∞, and cohomologically smooth, i.e. `-cohomologically smooth for
all ` 6= p (or just all ` relevant for Λ). In this case, we want to express Rf∗ in terms of f\. As a first step, we
show that Rf∗ has bounded cohomological dimension.

Proposition VII.3.2. Let f : Y → X be a proper map of small v-stacks that is representable in spatial
diamonds with dim. trg f < ∞, and cohomologically smooth. Then Rf∗ : D�(Y,Λ) → D�(X,Λ) has
bounded cohomological dimension and commutes with arbitrary direct sums. If X is a spatial diamond
(thus Y is) and F is a finitely presented solid Ẑp-sheaf on Y , thenRf∗F is a bounded complex all of whose
cohomology sheaves are finitely presented solid Ẑp-sheaves on X .

Proof. We can assume Λ = Ẑp. The commutation with arbitrary direct sums follows from bounded
cohomological dimension, as one can then reduce to the case of complexes concentrated in degree 0, where
Rf∗ commutes with all direct sums as f is qcqs. For the claim about bounded cohomological dimension,
we can argue v-locally, and hence assume that X is a spatial diamond. It suffices to prove that for all solid
Ẑp-sheaves F on Y , the complex Rf∗F is bounded; this reduces to the case of finitely presented solid Ẑp-
sheaves as Rf∗ commutes with filtered colimits of sheaves. Now if F is finitely presented, it is a cofiltered
limit of constructible étale sheaves killed by some integer prime to p. As Rf∗ commutes with this limit,
it is now enough to see that Rf∗ preserves constructible complexes and has bounded amplitude. But this
follows from cohomological smoothness, cf. [Sch17a, Proposition 23.12 (ii)]. �

Next, we prove a projection formula for Rf∗.

Proposition VII.3.3. Let f : Y → X be a proper map of small v-stacks that is representable in
spatial diamonds with dim. trg f < ∞, and cohomologically smooth. Then for all A ∈ D�(Y,Λ) and
B ∈ D�(X,Λ), the projection map

Rf∗A
�

⊗LB → Rf∗(A
�

⊗Lf∗B)

is an isomorphism.

Proof. We can assume Λ = Ẑp. We note that Rf∗ and
�

⊗L both have bounded cohomological dimen-
sion, so one easily reduces to the case that A and B are concentrated in degree 0. We can also assume that
X is a spatial diamond (thus Y is, too). Then we can writeA andB as filtered colimits of finitely presented
solid Ẑp-sheaves, and reduce to the case that A and B are cofiltered limits of constructible étale sheaves
killed by some integer prime to p. In that case, it follows from Proposition VII.2.3 and Proposition VII.3.2
that all operations commute with these cofiltered limits, and one reduces to the case that A and B are
constructible étale sheaves killed by some integer prime to p. Now it follows from [Sch17a, Proposition
22.11]. �

Moreover, the functor Rf∗ interacts well with g\ for maps g : X ′ → X .
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Proposition VII.3.4. Let

Y ′ g′ //

f ′

��

Y

f
��

X ′ g // X

be a cartesian diagram of small v-stacks, where f : Y → X is proper, representable in spatial diamonds,
with dim. trg f <∞ and cohomologically smooth. Then the natural transformation

g\Rf
′
∗A→ Rf∗g

′
\A

is an isomorphism for all A ∈ D�(Y
′,Λ).

Proof. We can assume Λ = Ẑp. By Proposition VII.3.2 both sides commute with Postnikov limits, so
we can assume A ∈ D+, and then reduce to the case that A is concentrated in degree 0. We may assume
that X is a spatial diamond, and one can also reduce to the case X ′ is a spatial diamond, by writing A as
the geometric realization of h′•\h

′∗
• A for some simplicial hypercover h• : X ′

• → X ′ by disjoint unions of
spatial diamonds, and its pullback h′• : Y ′

• → Y ′ (and using Proposition VII.3.2 to commute the geometric
realization with pushforward). Under these circumstances, one can write A as a filtered colimit of finitely
presented solid Ẑp-modules, and hence reduce to the case that A is a cofiltered limit of constructible étale
sheaves killed by some integer prime to p. By Proposition VII.3.2 the complex Rf ′∗A is then bounded
with all cohomology sheaves finitely presented solid Ẑp-modules. As g\ preserves pseudocoherent objects,
it follows that the map g\Rf ′∗A → Rf∗g

′
\A is a map of bounded to the right complexes in D�(X, Ẑp) all

of whose cohomology sheaves are finitely presented solid Ẑp-modules. If the cone of this map is nonzero,
then by looking at its first nonzero cohomology sheaf, we find some nonzero map to a constructible étale
sheaf B on X , killed by some integer prime to p. Note that, using the usual étale Rf ! functor, there is a
natural adjunction

RHom(Rf∗g
′
\A,B) ∼= RHom(g′\A,Rf

!B) :

Indeed, it suffices to check this when g′\A is replaced by a finitely presented solid Ẑp-module, by a Postnikov
tower (and as all cohomology sheaves of g′\A are of this form). Writing this as a cofiltered limit of con-
structible étale sheaves killed by some integer prime to p, both sides turn this cofiltered limit into a filtered
colimit, so the claim reduces to the usual étale adjunction.

Applying RHom(−, B) to the map g\Rf ′∗A → Rf∗g
′
\A will thus produce RHom(A,−) applied to

the base change map
Rf ′!g∗B ← g′∗Rf !B,

which is an isomorphism by [Sch17a, Proposition 23.12 (iii)]. �

Now we can describe the functor Rf∗. Indeed, consider the diagram

Y
∆f // Y ×X Y

π2 //

π1
��

Y

f
��

Y
f // X.
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Then, under our assumption that f : Y → X is a proper map of small v-stacks that is representable in
spatial diamonds with dim. trg f <∞ and cohomologically smooth, we have

Rf∗A ∼= Rf∗π2\∆f\A
∼= f\Rπ1∗∆f\A

∼= f\Rπ1∗∆f\∆
∗
fπ

∗
1A

∼= f\Rπ1∗(∆f\Λ
�

⊗L
Λπ

∗
1A)

∼= f\(Rπ1∗∆f\Λ
�

⊗L
ΛA).

We combine this with the following observation.

Proposition VII.3.5. Let f : Y → X be a proper map of small v-stacks that is representable in spatial
diamonds with dim. trg f <∞ and cohomologically smooth. Then

Rπ1∗∆f\Λ ∈ D�(Y,Λ)

is invertible, and its inverse is canonically isomorphic to

Rf !Λ := lim←−
n

Rf !Z/nZ⊗L
Ẑp Λ.

Thus, there is a canonical isomorphism

f\A ∼= Rf∗(A
�

⊗L
ΛRf

!Λ) : D�(Y,Λ)→ D�(X,Λ).

Thus, we get a somewhat unusual formula for the dualizing complex. We remark that the fibres of
Rπ1∗∆f\Ẑp are given by the limit of RΓc(U, Ẑp) over all étale neighborhoods U of the given geometric
point.

Remark VII.3.6. We see here that an important instance of Rf ! admits an alternative description in
terms of g\ functors. We are a bit confused about exactly how expressive the present 5-functor formalism is.
So far, we were always able to translate any argument in terms of a 6-functor formalism into this 5-functor
formalism, although it is often a nontrivial matter and there seems to be no completely general recipe.

Proof. We can assume Λ = Ẑp. By the isomorphism Rf∗ ∼= f\(Rπ1∗∆f\Ẑp
�

⊗LA), it follows that
Rf∗ : D�(Y, Ẑp)→ D�(X, Ẑp) admits a right adjoint, given by

A 7→ RHom(Rπ1∗∆f\Ẑp, f∗A).

We claim that this right adjoint maps Det(X,Z/nZ) into Det(Y,Z/nZ) for any n prime to p, and thus
agrees with the right adjoint Rf ! in that setting. Here, we use the embedding Det ⊂ D�, cf. Section
VII.4.1 below. This claim can be checked v-locally, so we can assume that X is a spatial diamond. Then
Rπ1∗∆f\Ẑp ∈ D�(Y, Ẑp) is a bounded complex all of whose cohomology sheaves are finitely presented
solid, by Proposition VII.3.2 and as ∆f is quasi-pro-étale (so ∆f\Ẑp is finitely presented solid). This implies
that RHom(Rπ1∗∆f\Ẑp,−) preserves Det(Y,Z/nZ).

Thus, for any A ∈ Det(X,Z/nZ), there is a natural isomorphism

Rf !A ∼= RHom(Rπ1∗∆f\Ẑp, f∗A).
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Applied with A = Z/nZ, this gives isomorphisms

Rf !Z/nZ ∼= RHom(Rπ1∗∆f\Ẑp,Z/nZ).

It remains to see that Rπ1∗∆f\Ẑp is invertible; more precisely, we already get a natural map

Rπ1∗∆f\Ẑp → (Rf !Ẑp)−1

that we want to prove is an isomorphism. This can again be checked v-locally, so we can assume that X is
a spatial diamond. Then Rπ1∗∆f\Ẑp is a bounded complex all of whose cohomology sheaves are finitely
presented solid; so as in the proof of Proposition VII.3.4, it is enough to check that one gets isomorphisms
after applying RHom(−, B) for any B ∈ Det(Y,Z/nZ). But

RHom(Rπ1∗∆f\Ẑp, B) ∼= Rπ1∗RHom(∆f\Ẑp, Rπ!1B)

∼= ∆∗
fRπ

!
1B

∼= B ⊗L
Z/nZ Rf

!Z/nZ,

giving the result.
The final statement follows formally from the identification of Rπ1∗∆f\Λ and the discussion leading

up to the proposition. �

VII.4. Relation to Det

Assume now that Λ is discrete. In particular, also being a Ẑp-algebra, we have nΛ = 0 for some n prime
to p. We wish to understand the relation between Det(X,Λ) and D�(X,Λ), and the functors defined on
them.

VII.4.1. Naive embedding. For any small v-stack X , we have a fully faithful embedding

Det(X,Λ) ↪→ D�(X,Λ)

as full subcategories of D(Xv,Λ). As usual, the adjoint functor theorem implies that this admits a right
adjointRXet : D�(X,Λ)→ Det(X,Λ). The full inclusionDet(X,Λ) ⊂ D�(X,Λ) is symmetric monoidal,
and compatible with pullback. Moreover, by [Sch17a, Proposition 17.6], it also commutes with Rf∗ if
f : Y → X is qcqs and one restricts to D+; or in general f is qcqs and of finite cohomological dimension.
Moreover, one always has

RXetRf∗ ∼= Rf∗RY et.

Similarly, passing to right adjoints in the commutation with tensor products, we also have

RXetRHomD�(X,Λ)(A,B) ∼= RHomDet(X,Λ)(A,RXetB)

if A ∈ Det(X,Λ) and B ∈ D�(X,Λ). If A is perfect-constructible, then for all B ∈ Det(X,Λ), one
actually has

RHomDet(X,Λ)(A,B) ∼= RHomD�(X,Λ)(A,B) :

by descent, it suffices to check this when X is spatial diamond, and then one reduces to A = j!Λ for some
quasicompact separated étale map j : U → X . In that case, it follows from Rj∗ commuting with the
embedding Det(X,Λ)→ D�(X,Λ), as it is qcqs and has cohomological dimension 0.
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VII.4.2. Dual embedding. For a small v-stack X , let D†
et(X,Λ) ⊂ Det(X,Λ) be the full subcate-

gory of overconvergent objects. Recall that A ∈ Det(X,Λ) is overconvergent if for any strictly local
Spa(C,C+)→ X , the map

RΓ(Spa(C,C+), A)→ RΓ(Spa(C,OC), A)

is an isomorphism.

Proposition VII.4.1. Assume that Λ = Z/nZ with n prime to p. For any overconvergent A ∈
D†

et(X,Λ), let
A∨ = RHomD�(X,Λ)(A,Λ) ∈ D�(X,Λ).

Then the functor
D†

et(X,Λ)
op → D�(X,Λ) : A 7→ A∨

is fully faithful, t-exact (for the standard t-structure), compatible with pullback, and the map

A→ RHomD�(X,Λ)(A
∨,Λ)

is an isomorphism.

Proof. As the formation ofRHom in the solid context commutes with any base change, all assertions
can be proved by v-descent, so we can assume that X is strictly totally disconnected. Then D†

et(X,Λ)
∼=

D(π0X,Λ). The heart of the standard t-structure is then an abelian category with compact projective
generators i∗Λ for open and closed subsets i : S ⊂ π0X , and the whole category is the Ind-category of
the constructible complexes of Λ-modules on π0X (which are locally constant with finite fibres). Passage
to the naive dual is an autoequivalence on constructible complexes (as Λ is selfinjective), and thus embeds
the whole Ind-category fully faithfully into the Pro-category of constructible complexes of Λ-modules on
π0X , which sits fully faithfully inside the category of finitely presented solid sheaves on X . This already
establishes that the functor is fully faithful and t-exact, and we already observed at the beginning that it
commutes with any pullback.

It remains to prove that
A→ RHomD�(X,Λ)(A

∨,Λ)

is an isomorphism. Again, we can assume Λ = F` so that all operations are t-exact. Again, the statement
is clear if A is constructible, and in general it follows from Breen’s resolution that the Pro-structure on A∨

dualizes to a filtered colimit on applying RHomD�(X,Λ)(−, B). �

The functorA 7→ A∨ is also close to being symmetric monoidal. Note that it is lax-symmetric monoidal,
i.e. there is a natural functorial map

A∨ �

⊗L
ΛB

∨ → (A⊗L
Λ B)∨.

Proposition VII.4.2. Assume that A ∈ D†
et(X,Λ) has finite Tor-amplitude over Λ = Z/nZ, i.e. for

all quotients Λ → F`, the complex A ⊗L
Λ F` ∈ D†

et(X,F`) is bounded. Then for all B ∈ D†
et(X,Λ), the

maps

A∨ �

⊗L
ΛB

∨ → (A⊗L
Λ B)∨ , A⊗L

Λ B → RHomD�(X,Λ)(A
∨, B)

are isomorphisms.
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Proof. The second follows from the first: Using Proposition VII.4.1,

RHomD�(X,Λ)(A
∨, B) ∼= RHomD�(X,Λ)(A

∨, RHomD�(X,Λ)(B
∨,Λ)) ∼= RHomD�(X,Λ)(A

∨ �

⊗L
ΛB

∨,Λ),

which one can further rewrite to A⊗L
Λ B assuming the first isomorphism.

We can assume Λ = F`, and that A is concentrated in degree 0. Now as functors of B, all operations
are t-exact, so we can reduce to the case that also B is concentrated in degree 0. We can assume that X
is strictly totally disconnected, and then D†

et(X,F`) ∼= D(π0X,F`). Then A and B are filtered colimits
of constructible sheaves on π0X , and RHom(−,F`) is a contravariant autoequivalence on constructible
F`-sheaves on π0X . Then the result follows by observing thatA 7→ A∨ simply exchanges the Ind-category
of constructible F`-sheaves on π0X with its Pro-category. �

As noted above, the functor A 7→ A∨ is compatible with pullback. Regarding pushforward, we have
the following result.

Proposition VII.4.3. Let f : Y → X be a proper map of small v-stacks that is representable in spatial
diamonds with dim. trg f < ∞. Let A ∈ D†

et(Y,Λ) with dual A∨ ∈ D�(Y,Λ). Then there is a natural
isomorphism

(Rf∗A)
∨ ∼= f\A

∨.

Note that Rf∗A is again overconvergent, by proper base change.

Proof. One has

RHomD�(X,Λ)(f\A
∨,Λ) ∼= Rf∗RHomD�(Y,Λ)(A

∨,Λ) ∼= Rf∗A,

so by biduality one gets a natural map
f\A

∨ → (Rf∗A)
∨;

we claim that this is an isomorphism. This can be checked v-locally on X , so we can assume that X is
w-contractible. One can assumeA is bounded above (i.e.A ∈ D−) as both functors take very coconnective
objects to very connective objects; by shifting, we can assume A ∈ D≤0. Now using a Postnikov limit and
the assumption dim. trg f <∞, we can also assume that A ∈ D+, and hence reduce to A sitting in degree
0. Now we can choose a hypercover of Y by perfectoid spaces Yi that are the canonical compactifications
(relative to X) of w-contractible spaces. One can then replace Y by one of the Yi, so assume that Y is
the canonical compactification of a w-contractible space. In particular, D†

et(Y,Λ)
∼= D(π0Y,Λ), and all

operations can be computed on the level of π0f : π0Y → π0X instead. Here, the result amounts again to
the duality between Ind- and Pro-objects in the category of constructible sheaves on profinite sets. �

VII.5. Dualizability

It turns out that most of the results above on Poincaré duality hold verbatim if the assumption that f is
cohomologically smooth is relaxed to the assumption that F` is f -universally locally acyclic for all ` 6= p.
In fact, even more generally, one can obtain certain results comparing twisted forms of f\ and Rf∗ for any
f -universally locally acyclic complex A.

Assume that Λ is a quotient of Ẑp of the form lim←−n Z/nZ where n now runs only over some integers
prime to p. If f : X → S is a compactifiable map of small v-stacks that is representable in locally spatial
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diamonds with locally dim. trg f < ∞, we want to define the category DULA(X/S,Λ) of f -universally
locally acyclic complexes with coefficients Λ as the limit of the full subcategories

DULA(X/S,Z/nZ) ⊂ Det(X,Z/nZ)

of f -universally locally acyclic objects in Det(X,Z/nZ), for n running over the same set of integers prime
to p. As usual, the limit should be taken on the level of∞-categorical enhancements. One way to phrase
it without enhancements is to say that DULA(X/S,Λ) is the category of all A ∈ D�(X,Λ) such that
An = A⊗L

Λ Z/nZ lies inDet(X,Z/nZ) for all such n, is f -universally locally acyclic, andA is the derived
limit of the An.

Given such an A, in particular all An are overconvergent, and the functor

A 7→ A∨ = RHomD�(X,Λ)(A,Λ) = R lim←−
n

A∨
n ∈ D�(X,Λ)

defines another fully faithful (contravariant) embedding

DULA(X/S,Λ)op ↪→ D�(X,Λ)

of f -universally locally acyclic complexes into D�(X,Λ). We can also precompose with Verdier duality
DX/S to obtain a covariant fully faithful embedding

DULA(X/S,Λ) ↪→ D�(X,Λ) : A 7→ DX/S(A)
∨.

Example VII.5.1. Assume that S = SpaC is a geometric point, and X is the analytification of an
algebraic variety Xalg/ SpecC. Then any constructible complex on Xalg is universally locally acyclic over
S , yielding a fully faithful embedding

Db
c(X

alg,Z`) ↪→ DULA(X/S,Z`) ↪→ D�(X,Z`),

embedding the usual bounded derived category of constructible Z`-sheaves on Xalg into D�(X,Z`). The
image lands in bounded complexes with finitely presented solid cohomology sheaves; in fact, in compact
objects. Thus, this fully faithful embedding extends to a fully faithful embedding

IndDb
c(X

alg,Z`) ↪→ D�(X,Z`).

The category on the left is the one customarily associated to Xalg. This functor takes the sheaf i∗Z`, for a
point i : SpecC → Xalg, to the solid sheaf i\Z`.

In many papers in geometric Langlands and related fields, one often finds the following construction.
If Y is a stack on the category of schemes over SpecC , let

D(Y,Z`) := lim←−
Xalg→Y

IndDbc(Xalg,Z`)

whereXalg runs over schemes of finite type over SpecC , and the transition functors are given byRf !. This,
in fact, embeds naturally intoD�(Y

♦,Z`) via the previous embedding, noting that it intertwinesRf ! with
the usual pullback f∗ on solid sheaves. In fact,

DX′/S(Rf
!A)∨ ∼= (f∗DX/S(A))

∨ ∼= f∗DX/S(A)
∨

for a map f : X ′alg → Xalg of algebraic varieties over SpecC.
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Now for A ∈ DULA(X/S,Λ), we analyze the functor

f\(DX/S(A)
∨ �

⊗L
Λ−) : D�(X,Λ)→ D�(S,Λ).

We note that from the definition one sees that this functor commutes with all colimits, the formation of
this functor commutes with any base change, and it satisfies the projection formula. In fact, this functor
extends the functor Rf!(A⊗L

Λ −).

Proposition VII.5.2. Assume that A ∈ DULA(X/S,Λ) has bounded Tor-amplitude. Let Z/nZ be a
discrete quotient of Λ. For B ∈ Det(X,Z/nZ), there is a natural equivalence

f\(DX/S(A)
∨ �

⊗L
ΛB) ∼= Rf!(An ⊗L

Z/nZ B) ∈ Det(S,Z/nZ).

Proof. We can assume Λ = Z/nZ. Note that for any C ∈ Det(S,Λ), one has

RHomΛ(f\(DX/S(A)
∨ �

⊗L
ΛB), C) ∼= RHomΛ(DX/S(A)

∨ �

⊗L
ΛB, f

∗C)

∼= RHomΛ(B,RHomD�(X,Λ)(DX/S(A)
∨, f∗C))

∼= RHomΛ(B,DX/S(A)⊗L
Λ f

∗C)

∼= RHomΛ(B,RHomDet(X,Λ)(A,Rf
!C))

∼= RHomΛ(A⊗L
Λ B,Rf

!C)

∼= RHomΛ(Rf!(A⊗L
Λ B), C).

Here, we use Proposition VII.4.1 and Proposition IV.2.19. In particular, there is a natural map

f\(DX/S(A)
∨ �

⊗L
ΛB)→ Rf!(A⊗L

Λ B).

We claim that this is an isomorphism. This can be checked v-locally, so we can assume that S is strictly
totally disconnected. We can assume thatX is a spatial diamond by localization. As the functor commutes
with all colimits in B, we can also assume thatB = j!Λ for some quasicompact separated étale j : V → X .
Replacing X by V , we can then even assume B = Λ.

Now DX/S(A) lies in D+ and then again DX/S(A)
∨ in D−. It follows that DX/S(A)

∨ is a complex
that is bounded above, and finitely presented solid in each degree. Thus f\DX/S(A)

∨ is of the same form,
and so is the cone Q of f\DX/S(A)

∨ → Rf!A. If Q is nonzero, we can look at the largest i such that
Hi(Q) is nonzero. This is finitely presented solid, so a cofiltered limit of constructible étale sheaves. But
RHom(Q,C) = 0 for all C ∈ Det(S,Λ), so it follows that indeed Q = 0. �

If f is moreover proper, one can also prove the following version of A-twisted Poincaré duality.

Proposition VII.5.3. Assume that f : X → S is a proper map of small v-stacks that is representable
in spatial diamonds with dim. trg f < ∞. Let A ∈ DULA(X/S,Λ) with bounded Tor-amplitude. Then
there is a natural equivalence

f\(DX/S(A)
∨ �

⊗L
Λ−) ∼= Rf∗RHomD�(X,Λ)(A

∨,−)

of functors D�(X,Λ)→ D�(S,Λ).
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Proof. First, we construct the natural transformation. Let π1, π2 : X ×S X → X be the two projec-
tions. Giving a map

f\(DX/S(A)
∨ �

⊗L
ΛB)→ Rf∗RHomD�(X,Λ)(A

∨, B)

is equivalent to giving a map

f∗f\(DX/S(A)
∨ �

⊗L
ΛB)

�

⊗L
ΛA

∨ → B.

But
f∗f\(DX/S(A)

∨ �

⊗L
ΛB)

�

⊗L
ΛA

∨ ∼= π1\π
∗
2(DX/S(A)

∨ �

⊗L
ΛB)

�

⊗L
ΛA

∨

∼= π1\(π
∗
2DX/S(A)

∨ �

⊗L
Λπ

∗
2B

�

⊗L
Λπ

∗
1A

∨).

Thus, it suffices to construct a functorial map

π∗2DX/S(A)
∨ �

⊗L
Λπ

∗
1A

∨ �

⊗L
Λπ

∗
2B → π∗1B.

For this in turn it suffices to construct a natural map

π∗2DX/S(A)
∨ �

⊗L
Λπ

∗
1A

∨ → ∆\Λ

where∆ : X ↪→ X×SX is the diagonal. Here∆\Λ ∼= (∆∗Λ)
∨ by Proposition VII.4.3 and π∗2DX/S(A)

∨ �

⊗
L
Λπ

∗
1A

∨ ∼= (π∗2DX/S(A)⊗L
Λ π

∗
1A)

∨ by Proposition VII.4.2. Thus, we have to find a map

∆∗Λ→ π∗2DX/S(A)⊗L
Λ π

∗
1A

or equivalently a section ofR∆!(π∗2DX/S(A)⊗L
Λ π

∗
1A). But π∗2DX/S(A)⊗L

Λ π
∗
1A
∼= RHom(π∗2A,Rπ

!
1A)

as A is f -universally locally acyclic, and then

R∆!(π∗2DX/S(A)⊗L
Λ π

∗
1A)
∼= R∆!RHom(π∗2A,Rπ

!
1A)
∼= RHom(A,A),

where we find the identity section.
To show that the map is an isomorphism, we can now localize on S , and in particular assume that S is

strictly totally disconnected. By the bounded assumption on A and finite cohomological dimension of f ,
the functorRf∗RHomΛ(A

∨,−) commutes with all direct sums, and hence we can assume thatB is finitely
presented solid (concentrated in degree 0). Then we can write B as a cofiltered limit of constructible étale
sheaves, and the left-hand side commutes with such limits; so we can reduce toB being a constructible étale
sheaf, where the result follows from Proposition VII.5.2 and Proposition VII.4.1. �

From the perspective of using sheaves as kernels of induced functors, we have the following picture.
We can introduce a variant of the category CS introduced above. Namely, for any small v-stack S , let us
consider the 2-category CS,� whose objects are relatively 0-truncated small v-stacks X over S , and whose
categories of morphisms

FunCS,�(X,Y ) = D�(X ×S Y,Λ)
are given by solid complexes. Again, to anyX ∈ CS,�, we can associate the triangulated categoryD�(X,Λ)
and to any A ∈ D�(X ×S Y,Λ) the functor

p2\(A
�

⊗L
Λp

∗
1) : D�(X,Λ)→ D�(Y,Λ)

with kernel A. The composition in CS,� is defined by the convolution

D�(X ×S Y,Λ)×D�(Y ×S Z,Λ)→ D�(X ×S Z,Λ) : (A,B) 7→ A ? B = p13\(p
∗
12A

�

⊗L
Λp

∗
23B).
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We wish to compare CS and CS,�. Note that the naive embeddingDet(X ×S Y,Λ) ↪→ D�(X ×S Y,Λ)
is not compatible with the convolution (as one employsRπ13! while the other employs π13\). On the other
hand, we can restrict to the sub-2-category C†S ⊂ CS whose objects are only the proper X/S representable
in spatial diamonds of finite dim. trg, and with

FunC†
S
(X,Y ) = D†

et,ftor(X ×S Y,Λ),

where the subscript ftor stands for finite Tor-dimension over Λ. Then there is a fully faithful embed-
ding C†S ↪→ Cco

S,� where the superscript co means that we change the direction of the arrows within each
FunCS,�(X,Y ). Indeed, for any X,Y ∈ C†S , the functor A 7→ A∨ defines a fully faithful embedding

FunC†
S
(X,Y ) = D†

et,ftor(X ×S Y,Λ) ↪→ D�(X ×S Y,Λ)op = FunCco
S,�

(X,Y ).

This is compatible with composition by Proposition VII.4.2 and Proposition VII.4.3. This discussion leads
to another proof of Proposition VII.5.3:

Corollary VII.5.4. Let f : X → S be a proper map of small v-stacks that is representable in spatial
diamonds with dim. trg f < ∞. Let A ∈ Det(X,Λ) be f -universally locally acyclic and of finite Tor-
dimension over Λ. Then A∨ ∈ D�(X,Λ) = FunCS,�(X,S) is right adjoint to

DX/S(A)
∨ ∈ D�(X,Λ) = FunCS,�(S,X).

In particular, the functor

f\(A
∨ �

⊗L
Λ−) : D�(X,Λ)→ D�(S,Λ)

is right adjoint to the functor

DX/S(A)
∨ �

⊗L
Λf

∗− : D�(S,Λ)→ D�(X,Λ),

so

f\(A
∨ �

⊗L
Λ−) ∼= Rf∗RHomΛ(DX/S(A)

∨,−) : D�(X,Λ)→ D�(S,Λ).

Moreover, when applied to the Satake category, we get a fully faithful embedding

(SatIG)op ↪→ D�(HckIG, Ẑp) : A 7→ A∨

compatible with the monoidal structure (and functorially in I), where the right-hand side is given by

FunCS,�([(Div1)IX/L
+
(Div1X)I

G], [(Div1)IX/L
+
(Div1X)I

G])

for S = [(Div1X)I/L(Div1X)IG]. Precomposing with Verdier duality, we get a covariant fully faithful em-
bedding

SatIG ↪→ D�(HckIG, Ẑp) : A 7→ DX/S(A)
∨.

By Proposition VII.5.2, when one uses objects in the Satake category as kernels to define Hecke operators,
this fully faithful embedding makes it possible to extend Hecke operators from Det to D�.
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VII.6. Lisse-étale sheaves

The category D�(X,Λ) is huge: Already if X is a point and Λ = F`, it is the derived category of solid
F`-vector spaces, which is much larger than the category of usual discrete F`-vector spaces. When applied
to BunG, we would however really like to study smooth representations on discrete Λ-modules.

As coefficients, we will from now on choose a discrete Z`-algebra Λ for some ` 6= p, or rather the
corresponding condensed ring Λ := Z` ⊗Z`,disc Λdisc. (For a technical reason, we have to restrict attention
to a particular prime `.)

It turns out that whenX is an Artin v-stack, one can define a full subcategoryDlis(X,Λ) ⊂ D�(X,Λ)
that when specialized to X = BunG has the desired properties. Here the subscript “lis” is an abbreviation
of “lisse” (french smooth), and is not meant to evoke lisse sheaves in the sense of locally constant sheaves,
but lisse-étale sheaves in the sense of Artin stacks [LMB00].

Definition VII.6.1. Let X be an Artin v-stack. The full subcategory Dlis(X,Λ) ⊂ D�(X,Λ) is the
smallest triangulated subcategory stable under all direct sums that contains f\Λ for all maps f : Y → X
that are separated, representable in locally spatial diamonds, and `-cohomologically smooth.

In principle, one could give this definition even when X is any small v-stack, but in that case there
might be very few objects.

Proposition VII.6.2. LetX be an Artin v-stack. The full subcategoryDlis(X,Λ) ⊂ D�(X,Λ) is stable
under −

�

⊗L
Λ−. Moreover, if f : Y → X is a map of Artin v-stacks, then f∗ maps Dlis(X,Λ) ⊂ D�(X,Λ)

into Dlis(Y,Λ) ⊂ D�(Y,Λ).

Proof. As tensor products and pullbacks commute with all direct sums, it suffices to check the claim
on the generators g\Λ for maps g : Z → X that are separated, representable in locally spatial diamonds,
and `-cohomologically smooth. Now the result follows as pullbacks and products of such maps are of the
same form. �

Proposition VII.6.3. LetX be an Artin v-stack. The inclusionDlis(X,Λ) ⊂ D�(X,Λ) admits a right
adjoint

A 7→ Alis : D�(X,Λ)→ Dlis(X,Λ).

The kernel of A 7→ Alis is the class of all A ∈ D�(X,Λ) such that A(Y ) = 0 for all f : Y → X that are
separated, representable in locally spatial diamonds, and `-cohomologically smooth.

Proof. The existence of the right adjoint is formal. We note that the∞-categoryD�(X,Λ) is not itself
presentable, but rather is the large filtered colimit of presentable∞-categoriesD�(Xκ,Λ) for uncountable
strong limit cardinals κ (restricting the v-site to κ-small perfectoid spaces). Also note that Dlis(X,Λ) is
contained inD�(Xκ,Λ) for someκ: This can be checked whenX is a spatial diamond and for the generators
f\Λ ∼= f\Z` ⊗L

Z` Λ when f : Y → X is in addition quasicompact, in which case f\Z` is the limit of
f\Z/`mZ all of which lie in Det(X,Z/`mZ), so we conclude by [Sch17a, Remark 17.4]. It follows that the
right adjoints to Dlis(X,Λ)→ D�(Xκ,Λ) for all large enough κ glue to the desired right adjoint.

The description of the kernel is formal. �
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Using Proposition VII.6.3, we can then also defineRHomlis(A,B) ∈ Dlis(X,Λ) forA,B ∈ Dlis(X,Λ)
andRflis∗ : Dlis(Y,Λ)→ Dlis(X,Λ) for a map f : Y → X of Artin v-stacks, satisfying the usual adjunction
to the tensor product and pullback.

The goal of passing to Dlis is to make sheaves “discrete” again. Recall the following result.

Proposition VII.6.4. For any condensed ringAwith underlying ringA(∗), the functorM 7→M⊗A(∗)
A induces a fully faithful functor

D(A(∗)) ↪→ D(A)

from the derived category of usual A(∗)-modules to the derived category of condensed modules over the
condensed ring A.

Proof. We need to see that for any M,N ∈ D(A(∗)), the map
RHomA(∗)(M,N)→ RHomA(M ⊗A(∗) A,N ⊗A(∗) A)

is an isomorphism. The class of all M for which this happens is triangulated and stable under all direct
sums, so it suffices to consider M = A(∗). Then it amounts to

N(∗)→ (N ⊗A(∗) A)(∗)
being an isomorphism, which follows from evaluation at ∗ being symmetric monoidal. �

In particular, we have the following result for a geometric point.

Proposition VII.6.5. LetX = SpaC for some complete algebraically closed nonarchimedean fieldC.
Then Dlis(X,Λ) ∼= D(Λ), the derived category of (relatively) discrete Λ-modules.

Proof. We need to see that for all separated `-cohomologically smooth maps f : Y → X of spatial
diamonds, one has f\Λ ∈ D(Λ). This reduces to Λ = Z`. In that case, f\Z` = lim←−m f\Z/`

mZ, where by
Proposition VII.5.2 each

f\Z/`mZ ∼= Rf!Rf
!Z/`mZ,

which is a perfect complex of Z/`mZ-modules, in particular discrete. Taking the limit over m, we get a
perfect complex of Z`-modules, which is in particular (relatively) discrete over Z`. �

When working with torsion coefficients, one recovers Det.

Proposition VII.6.6. Let X be an Artin v-stack, and assume that Λ is killed by a power of `. Then
Dlis(X,Λ) ⊂ D�(X,Λ) is contained in the image of the naive embedding Det(X,Λ) ↪→ D�(X,Λ). If
there is a separated `-cohomologically smooth surjection U → X from a locally spatial diamond U , such
that Uet has a basis with bounded `-cohomological dimension, then it induces an equivalence Dlis(X,Λ) ∼=
Det(X,Λ).

Proof. If f : Y → X is separated, representable in locally spatial diamonds, and `-cohomologically
smooth, then f\Λ = Rf!Rf

!Λ lies inDet(X,Λ), henceDlis(X,Λ) ⊂ Det(X,Λ). To check equality, we can
work on an atlas, so by the assumption we can reduce to the case that X is a locally spatial diamond for
which Xet has a basis with bounded `-cohomological dimension. In that case Det(X,Λ) ∼= D(Xet,Λ) by
[Sch17a, Proposition 20.17] (the proof only needs a basis with bounded cohomological dimension), which is
generated by j\Λ for j : U → X quasicompact separated étale, which is thus also contained in Dlis(X,Λ).

�



262 VII. D�(X)

The most severe problem with the general formalism of solid sheaves is that stratifications of a space
do not lead to corresponding decompositions of sheaves into pieces on the individual strata. This problem
is somewhat salvaged by Dlis(X,Λ): We expect that it holds true if X and its stratification are sufficiently
nice. Here is a simple instance that will be sufficient for our purposes.

Proposition VII.6.7. Let X be a locally spatial diamond with a closed point x ∈ X , giving a cor-
responding closed subdiamond i : Z ⊂ X with complement j : U ⊂ X . Assume that Z = SpaC is
representable, with C an algebraically closed nonarchimedean field. Moreover, assume that Z can be writ-
ten as a cofiltered intersection of qcqs open neighborhoods V ⊂ X such that RΓ(V,F`) ∼= F`.

Then one has a semi-orthogonal decomposition of Dlis(X,Λ) into Dlis(U,Λ) and Dlis(Z,Λ) ∼= D(Λ).

Proof. We may assume thatX is spatial. We analyze the quotient ofDlis(X,Λ) by j\Dlis(U,Λ). This
is equivalently the subcategory of all A ∈ Dlis(X,Λ) with j∗A = 0, as this is the right orthogonal of
j\Dlis(U,Λ); the composite

Dlis(X,Λ)→ Dlis(X,Λ)/j\Dlis(U,Λ)→ Dlis(X,Λ)

is given by A 7→ cone(j\j∗A → A). This quotient is generated by the images of f\Λ for f : Y → X
cohomologically smooth separated map of spatial diamonds; under the embedding of the quotient category
back into Dlis(X,Λ), this corresponds to the cone of j\j∗f\Λ → f\Λ. Let M = i∗f\Λ ∈ Dlis(Z,Λ) ∼=
D(Λ), which in fact is a perfect complex of Λ-modules (by the proof of Proposition VII.6.5). Then we
claim that there is an isomorphism

cone(j\j∗f\Λ→ f\Λ) ∼= cone(j\M →M).

To see this, it suffices to prove that there is some open neighborhood V of Z such that f\Λ|V ∼= M , the
constant sheaf associated with M . We can reduce to Λ = Z`. As f\F` is constructible, we can find some
such V for which f\F`|V ∼=M/`. Picking such an isomorphism reducing to the identity at x, and choosing
V with the propertyRΓ(V,F`) ∼= F`, we see that in fact the isomorphism lifts uniquely to Z/`mZ for each
m, and thus by taking the limit over m to the desired isomorphism f\Λ|V ∼=M .

Thus, the quotient of Dlis(X,Λ) by j\Dlis(U,Λ) is generated by the constant sheaf Λ. Moreover, the
endomorphisms of Λ in the quotient category are given by the cone of

RΓ(X, j\Λ)→ RΓ(X,Λ).

This is equivalently the filtered colimit of RΓ(V,Λ) over all qcqs open neighborhoods V of Z ; we can
restrict to those for which RΓ(V,F`) ∼= F`. This implies formally that RΓ(V,Z`) ∼= Z` by passing to
limits and then RΓ(V,Λ) ∼= Λ by passing to filtered colimits. Thus, we get the desired semi-orthogonal
decomposition. �

VII.7. Dlis(BunG)

Our goal now is to extend the results of Chapter V to the case of Dlis(BunG,Λ). This will notably
include the case Λ = Q`.

Thus, let again beE any nonarchimedean local field with residue field Fq andG a reductive group over
E. We work with Perfk where k = Fq , and fix a complete algebraically closed nonarchimedean field C/k.
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Proposition VII.7.1. Let b ∈ B(G). The pullback functors

Dlis(BunbG,Λ)→ Dlis([∗/Gb(E)],Λ)→ Dlis([SpaC/Gb(E)],Λ),

Dlis(BunbG,Λ)→ Dlis(BunbG× SpaC,Λ)→ Dlis([SpaC/Gb(E)],Λ)

are equivalences, and all categories are naturally equivalent (as symmetric monoidal categories) to the de-
rived category D(Gb(E),Λ) of smooth representations of Gb(E) on discrete Λ-modules.

Proof. Recall that the map s : [∗/Gb(E)]→ BunbG is cohomologically smooth and surjective; in fact,
its fibres are successive extensions of positive Banach–Colmez spaces. This implies that s\Λ ∼= Λ. This, in
turn, implies by the projection formula for s\ that s\s∗A ∼= A for all A ∈ D�(BunbG,Λ), thus giving fully
faithfulness. The same applies after base change to SpaC. Moreover, using pullback under the projection
BunbG → [∗/Gb(E)], we see that s∗ is also necessarily essentially surjective.

It remains to show that the pullback Dlis([∗/Gb(E)],Λ) → Dlis([SpaC/Gb(E)],Λ) is an equiva-
lence, and identify this symmetric monoidal category with D(Gb(E),Λ). By Proposition VII.2.6, the
functor Dlis([∗/Gb(E)],Λ) → Dlis([SpaC/Gb(E)],Λ) is fully faithful. One can easily build a functor
D(Gb(E),Λ)→ Dlis([∗/Gb(E)],Λ), and it is enough to see that the composite functor

D(Gb(E),Λ)→ Dlis([∗/Gb(E)],Λ)→ Dlis([SpaC/Gb(E)],Λ)

is an equivalence. Using that D(Gb(E),Λ) is generated by c-IndGb(E)
K Λ for K ⊂ Gb(E) open pro-p, one

easily sees that the functor is fully faithful, so it remains to prove essential surjectivity. Using descent along
SpaC → [SpaC/Gb(E)] and the equivalence Dlis(SpaC,Λ) ∼= D(Λ), any cohomology sheaf of an object
inDlis([SpecC/Gb(E)],Λ) gives a representation of the condensed groupGb(E) on a condensed Λ-module
of the form M ⊗Z`,disc Z` for some (abstract) Λ-module M . (Indeed, any cohomology sheaf of an object of
D�([SpaC/Gb(E)],Λ) is a representation of the condensed groupGb(E) on a solid Λ-module, but here we
must get objects whose underlying solid module lies inDlis(SpaC,Λ) ∼= D(Λ).) AsGb(E) is locally pro-p,
any such action in fact comes from a smooth action on M : For K ⊂ Gb(E) pro-p, the K-orbit of any
m ∈ M lies in some compact submodule, thus in M ⊗Z`,disc Z` for some finitely generated Z`-submodule
M ′ ⊂M . The action ofK onm then gives a continuous mapK → GL(M ′). As the target is locally pro-`,
this map has finite image, so that the action of K on m is locally constant. �

Recall that for any b ∈ B(G), we have the cohomologically smooth chart πb : Mb → BunG near
BunbG. This comes with a projection qb : Mb → [∗/Gb(E)] which has a natural section, given by the
preimage of BunbG ⊂ BunG inMb. OverMb, we have theGb(E)-torsor M̃b →Mb, and for any complete
algebraically closed field C over k = Fq , the base change

M̃b,C = M̃b ×Spd k SpaC

is representable by a locally spatial diamond, endowed with a distinguished point i : SpaC ↪→ M̃b,C . Recall
that M̃b,C is a successive extension of negative Banach–Colmez spaces. Iteratively restricting to small
quasicompact balls inside these negative Banach–Colmez spaces, we see that the closed subset i : SpaC ↪→
M̃b,C can be written as cofiltered intersection of quasicompact open subsets V for which RΓ(V,F`) ∼=
F`. (To see that one can choose small balls in negative Banach–Colmez spaces with this property, one
can present BCC(O(−n)[1]) as a quotient of a product of n different (A1

C]i
)♦ by E (via taking a generic
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embedding of OXC (−n) into OXC , whose cokernel is a sum of n skyscraper sheaves at different untilts
C]i /E of C), and take balls in BCC(O(−n)[1]) that are similar products of balls, quotiented by a lattice in
E.)

Proposition VII.7.2. For any b ∈ B(G) with locally closed immersion ib : BunbG → BunG, the
functor

ib∗ : Dlis(BunG,Λ)→ Dlis(BunbG,Λ) ∼= Dlis([∗/Gb(E)],Λ)

admits a left adjoint, given by
πb\q

∗
b : Dlis([∗/Gb(E)],Λ)→ Dlis(BunG,Λ).

The unit of the adjunction is given by the equivalence id ∼= ib∗πb\q
∗
b arising from base change, and the

identification of the pullback of ib along πb with [∗/Gb(E)] ⊂Mb.

Proof. As D([∗/Gb(E)],Λ) ∼= D(Gb(E),Λ) is generated by c-IndGb(E)
K Λ for open pro-p subgroups

K ⊂ Gb(E), and as we already determined the unit of the adjunction, it suffices to verify the adjunction
on these objects. LetMb,K = M̃b/K →Mb. This comes with a closed immersion iK : [∗/K] →Mb,K .
It suffices to see that for all A ∈ Dlis(Mb,K ,Λ), the map

RΓ(Mb,K , A)→ RΓ([∗/K], A)

is an isomorphism, where we continue to denote by A any of its pullbacks. Assume first that A = j\A0

for some A0 ∈ Dlis(M◦
b,K ,Λ). Then the result follows from Theorem VII.2.10. In general we can then

replace A by the cone of j\A → A in the displayed formula. For this statement, we can even base change
to SpaC for some complete algebraically closed nonarchimedean field C|k, and allow more generally any
A ∈ Dlis(Mb,K,C ,Λ). We can then assume that A = f\Z` for some `-cohomologically smooth separated
qcqs map f : Y →Mb,K,C . Then as in the proof of Proposition VII.6.7, A is constant in a neighborhood
of [SpaC/K], which implies the result (as SpaC ⊂ M̃b,C is a cofiltered intersection of quasicompact open
V ’s with trivial cohomology). �

Proposition VII.7.3. For any quasicompact open substackU ⊂ BunG, the Harder–Narasimhan strati-
fication induces a semi-orthogonal decomposition ofDlis(U,Λ) into the categoriesDlis(BunbG,Λ) ∼= D(Gb(E),Λ)
for b ∈ |U | ⊂ B(G). Moreover, for any not necessarily quasicompact U , the functor

Dlis(U,Λ)→ Dlis(U ×Spd k SpaC,Λ)
is an equivalence.

Proof. We argue by induction on |U |, so take some closed element b ∈ |U | ⊂ B(G) and let i :

BunbG → U and j : V → U be the closed and complementary open substacks. We know thatDlis(U,Λ)→
Dlis(U×Spd kSpaC,Λ) is fully faithful by Proposition VII.2.6, and by inductionDlis(V,Λ)→ Dlis(V ×Spd k
SpaC,Λ) is an equivalence.

Now by the previous proposition, ib∗ admits the left adjoint
πb\q

∗
b : Dlis([∗/Gb(E)],Λ)→ Dlis(U,Λ),

and in fact the proof of that proposition shows (using our standing induction assumption) that, composed
with the embedding into Dlis(U ×Spd k SpaC,Λ), it continues to be a left adjoint to ib∗ : Dlis(U ×Spd k
SpaC,Λ)→ D([SpaC/Gb(E)],Λ) ∼= D([∗/Gb(E)],Λ).
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The unit id → ib∗πb\q
∗
b of the adjunction is an equivalence. We see that Dlis(U ×Spd k SpaC,Λ) has

full subcategories given by j\Dlis(V,Λ) and the essential image of πb\q∗b (both of which lie in Dlis(U,Λ)).
To see that one has a semi-orthogonal decomposition, it suffices to see that if A ∈ Dlis(U ×Spd k SpaC,Λ)
with i∗A = j∗A = 0, then A = 0. This can be checked after pullback to M̃b,C , where it follows from
Proposition VII.6.7. This also shows that Dlis(U,Λ)→ Dlis(U ×Spd k SpaC,Λ) is an equivalence. �

Now we also want to analyze the compact objects as well as the universally locally acyclic objects, and
various dualities. We start with the compact objects.

Proposition VII.7.4. The categoryDlis(BunG,Λ) is compactly generated. An objectA ∈ Dlis(BunG,Λ)
is compact if and only if it has finite support and ib∗A ∈ Dlis(BunbG,Λ) ∼= D(Gb(E),Λ) is compact for all
b ∈ B(G), i.e. lies in the thick triangulated subcategory generated by c-IndGb(E)

K Λ for open pro-p subgroups
K ⊂ Gb(E).

Moreover, for each b and K ⊂ Gb(E) pro-p, letting

fK :Mb,K → BunG

be the natural map, the object AbK = fK\Λ ∈ Dlis(BunG,Λ) is compact, and these generate Dlis(BunG,Λ).

Proof. By Proposition VII.7.3, the left adjoints πb\q∗b to ib∗ generate Dlis(BunG,Λ); as ib∗ commutes
with colimits, these left adjoints also preserve compact objects. As each D(Gb(E),Λ) is compactly gener-
ated, it follows that Dlis(BunG,Λ) is compactly generated, with compact generators AbK .

To see that the given property characterizes compact objects, we argue by induction over quasicompact
open substacks U ⊂ BunG. Pick any closed b ∈ |U | ⊂ B(G), and assume the result for the complementary
open j : V ⊂ U . We first show that all of the given compact generators (coming from b′ ∈ |U | ⊂ B(G))
have the property that all of their stalks are compact. This is clear by induction if b′ ∈ |V |, so we can assume
b′ = b. Then we need to see that j∗πb\q∗b preserves compact objects. But this follows from Lemma VII.7.5
below. Using the semi-orthogonal decomposition structure, it now follows that conversely, all A with
compact stalks are compact. �

Lemma VII.7.5. For K ⊂ Gb(E) an open pro-p subgroup, the functor

RΓ(M◦
b,K ,−) : D�(M◦

b,K ,Λ)→ D(Λ)

has finite cohomological dimension and commutes with all direct sums.

Proof. AsM◦
b,K = M̃◦

b/K where M̃◦
b is a spatial diamond, it suffices to prove that the functor has

finite cohomological dimension. It suffices to prove this for M̃◦
b (as taking K-invariants is exact). One

can formally reduce to Λ = Z` and then to finitely presented solid Z`-sheaves F on M̃◦
b . Now these can

be written as cofiltered inverse limits of constructible Fi. The RΓ(M̃◦
b ,Fi) are uniformly bounded; to

see that their derived limit is also bounded, it is then sufficient to see that each Hj(M̃◦
b ,Fi) is finite. By

Theorem IV.5.3, this is isomorphic to Hj+1
c (M̃◦

b ,Fi). But RΓc(M̃◦
b ,−) preserves compact objects as its

right adjoint commutes with all colimits (as M̃◦
b is cohomologically smooth over Spd k, being open in a

successive extension of negative Banach–Colmez spaces). �
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Next, we study Bernstein–Zelevinsky duality. Denoting π : BunG → ∗ the projection, the pullback π∗
has a left adjoint

π\ : Dlis(BunG,Λ)→ Dlis(∗,Λ) ∼= D(Λ).

This induces a pairing

Dlis(BunG,Λ)×Dlis(BunG,Λ)→ D(Λ) : (A,B) 7→ π\(A
�

⊗L
ΛB).

Proposition VII.7.6. For any compact object A ∈ Dlis(BunG,Λ), there is a unique compact object
DBZ(A) ∈ Dlis(BunG,Λ) with a functorial identification

RHom(DBZ(A), B) ∼= π\(A
�

⊗L
ΛB)

for B ∈ Dlis(BunG,Λ). Moreover, the functor DBZ is a contravariant autoequivalence of Dlis(BunG,Λ)ω ,
and D2

BZ is naturally isomorphic to the identity.
If U ⊂ BunG is an open substack and A is concentrated on U , then so is DBZ(A). In particular, DBZ

restricts to an autoequivalence of the compact objects in Dlis(BunbG,Λ) ∼= D(Gb(E),Λ) for b ∈ B(G)
basic, and in that setting it is the usual Bernstein–Zelevinsky involution.

Proof. The existence of DBZ follows as in Theorem V.5.1, using the left adjoint given by Proposi-
tion VII.7.2; this construction also shows that DBZ preservesDlis(U,Λ), and for basic b it recovers the usual
Bernstein–Zelevinsky involution by the same argument as in Theorem V.5.1.

We also formally get a morphism D2
BZ(A) → A by adjunctions. We need to see that this is an iso-

morphism. It suffices to check on generators, such as the Bernstein–Zelevinsky dual of AbK (which is
up to twist and shift ib! c-IndGb(E)

K Λ). As in the proof of Theorem V.5.1, one easily checks that the map
D2

BZ(A)→ A is an isomorphism over BunbG. To see that it is an isomorphism everywhere, one needs to see
that if B = Rj∗B

′, B′ ∈ Dlis(U,Λ) for some open substack j : U ⊂ BunG not containing BunbG, then

π\(A
b
K

�

⊗L
ΛB) = 0.

Twisting a few things away and using the definition of AbK = fK\Λ, this follows from the assertion that
for all A′ ∈ Dlis(M◦

b,K ,Λ), with jK :M◦
b,K ↪→Mb,K the open immersion, one has

RΓc(Mb,K , RjK∗A
′) = 0.

Using the trace map for M̃b →Mb,K , this follows from Theorem VII.2.10. �

As in Theorem V.6.1, this has the following consequence for Verdier duality.

Proposition VII.7.7. Let j : V ↪→ U be an open immersion of open substacks of BunG. For any
A ∈ Dlis(V,Λ), the natural map

j\RHomlis(A,Λ)→ RHomlis(Rjlis∗A,Λ)

is an isomorphism in Dlis(U,Λ).

Proof. The proof is identical to the proof of Theorem V.6.1. �
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Using this, one can characterize the reflexive objects as in Theorem V.6.2; we omit it here.
Finally, one can also characterize the universally locally acyclicA ∈ Dlis(BunG,Λ). Note that we have

not defined a notion of universal local acyclicity for lisse-étale sheaves, but in our present situation we can
simply import the characterization from Proposition IV.2.32 and make the following definition.

Definition VII.7.8. A complex A ∈ Dlis(BunG,Λ) is universally locally acyclic (with respect to
BunG → ∗) if the natural map

p∗1RHomlis(A,Λ)
�

⊗L
Λp

∗
2A→ RHomlis(p

∗
1A, p

∗
2A)

is an isomorphism, where p1, p2 : BunG×BunG → BunG are the two projections.

We get the following version of Theorem V.7.1.

Proposition VII.7.9. Let A ∈ Dlis(BunG,Λ). Then A is universally locally acyclic if and only if for
all b ∈ B(G), the pullback ib∗A to ib : BunbG ↪→ BunG corresponds under Dlis(BunbG,Λ) ∼= D(Gb(E),Λ)
to a complex Mb of smooth Gb(E)-representations for which MK is a perfect complex of Λ-modules for
all open pro-p subgroups K ⊂ Gb(E).

The proof is identical to the proof of Theorem V.7.1, and proceeds by proving first the following propo-
sition.

Proposition VII.7.10. LetG1 andG2 be two reductive groups overE , and letG = G1×G2. Consider
the exterior tensor product

−�− : Dlis(BunG1 ,Λ)×Dlis(BunG2 ,Λ)→ Dlis(BunG,Λ).

For all compact objects Ai ∈ Dlis(BunGi ,Λ), i = 1, 2, the exterior tensor product A1 � A2 ∈
Det(BunG,Λ) is compact, these objects form a class of compact generators, and for all further objects
Bi ∈ Dlis(BunGi ,Λ), i = 1, 2, the natural map

RHom(A1, B1)⊗L
Λ RHom(A2, B2)→ RHom(A1 �A2, B1 �B2)

is an isomorphism.

Proof. The proof is identical to the proof of Proposition V.7.2. �





CHAPTER VIII

L-parameter

It is time to understand the other side of the correspondence: In this chapter, we define, and study basic
properties of, the stack ofL-parameters. These results have recently been obtained by Dat–Helm–Kurinczuk–Moss
[DHKM20], and also Zhu [Zhu20]; previous work in a related direction includes [Hel16], [HH20], [BG19],
[BP19], [LTX+22, Appendix E].

In this chapter, we fix again a nonarchimedean local field E with residue field Fq of characteristic p,
and a reductive group G over E , as well as a prime ` 6= p. We get the dual group Ĝ/Z`, which we endow
with its usual “algebraic” action by WE ; the action thus factors over a finite quotient Q of WE , and we
fix such a quotient Q of WE . (The difference to the cyclotomically twisted WE-action disappears after
base change to Z`[

√
q], and we could thus obtain analogues of all results below for this other action by a

simple descent along Z`[
√
q]/Z`.) We define a scheme whose Λ-valued points, for a Z`-algebra Λ, are the

condensed 1-cocycles
ϕ :WE → Ĝ(Λ),

where Λ = Λdisc ⊗Z`,disc Z` is regarded as a relatively discrete condensed Z`-module.

Theorem VIII.0.1 (Theorem VIII.1.3). There is a scheme Z1(WE , Ĝ) over Z` whose Λ-valued points,
for a Z`-algebra Λ, are the condensed 1-cocycles

ϕ :WE → Ĝ(Λ).

The scheme Z1(WE , Ĝ) is a union of open and closed affine subschemes Z1(WE/P, Ĝ) as P runs through
open subgroups of the wild inertia subgroup of WE , and each Z1(WE/P, Ĝ) is a flat local complete inter-
section over Z` of dimension dimG.

To prove the theorem, following [DHKM20] and [Zhu20] we define discrete dense subgroups W ⊂
WE/P by discretizing the tame inertia, and the restrictionZ1(WE/P, Ĝ)→ Z1(W, Ĝ) is an isomorphism,
where the latter is clearly an affine scheme.

We can also prove further results about the Ĝ-action onZ1(WE , Ĝ), or more precisely eachZ1(WE/P, Ĝ).

Theorem VIII.0.2 (Theorem VIII.5.1). Assume that ` does not divide the order of π1(Ĝ)tor. Then
H i(Ĝ,O(Z1(WE/P, Ĝ))) = 0 for i > 0 and the formation of the invariants O(Z1(WE/P, Ĝ))

Ĝ com-
mutes with any base change. The algebra O(Z1(WE/P, Ĝ))

Ĝ admits an explicit presentation in terms of
excursion operators,

O(Z1(WE/P, Ĝ))
Ĝ = colim(n,Fn→W )O(Z1(Fn, Ĝ))

Ĝ

where the colimit runs over all maps from a free group Fn to W ⊂WE/P , and Z1(Fn, Ĝ) ∼= Ĝn with the
simultaneous twisted Ĝ-conjugation.

269
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Moreover, the∞-category Perf(Z1(WE/P, Ĝ)/Ĝ) is generated under cones, shifts and retracts by the
image of Rep(Ĝ)→ Perf(Z1(WE/P, Ĝ)/Ĝ), and Ind Perf(Z1(WE/P, Ĝ)) is equivalent to the∞-category
of modules overO(Z1(WE/P, Ĝ)) in Ind Perf(BĜ).

All of these results also hold with Q`-coefficients, without the assumption on `.

WithQ`-coefficients, these results are simple, as the representation theory of Ĝ is semisimple. However,
with Z`-coefficients, these results are quite subtle, and we need to dive into modular representation theory
of reductive groups. We prove in particular the following result. The last part of this generalizes results
of Brundan [Bru98] and van der Kallen [vdK01] that treat the case P = Z/2Z of involutions. While their
argument is case-by-case, we are able to give a conceptual argument.

Theorem VIII.0.3 (Section VIII.5.3). Let G be a reductive group over an algebraically closed field L
of characteristic `. Let P be a finite group of order prime to ` acting on G. Then H = GP is a smooth
linear algebraic group whose connected component H◦ is reductive, and with π0H of order prime to `.
If P is solvable, the image of Perf(∗/G) → Perf(∗/H) generates the whole category under cones and
retracts. Moreover, still under the assumption that P is solvable, H◦ ⊂ G is a Donkin subgroup, i.e. for
any representation V of G that admits a good G-filtration, also V |H◦ has a good H◦-filtration.

VIII.1. The stack of L-parameters

VIII.1.1. Definition and representability. Recall that for a reductive group G over a nonarchimedean
local field E , we have the (pinned) dual group Ĝ over Z`, equipped with an action of the Weil group WE .
In this chapter, we use the standard action (compatible with the pinning).

Now letΛ be anyZ`-algebra. As in the last chapter, we regard it as a condensedZ`-algebra, asΛdisc⊗Z`,disc

Z`. Its value on a profinite set S is the ring of maps S → Λ that take values in a sub-Z`-module of finite
type and are continuous. For example, if Λ = Q` then Λ(S) = lim−→L⊂Q`

Cont(S,L) with L|Q` finite.

Definition VIII.1.1. An L-parameter for G, with coefficients in Λ, is a section

ϕ :WE → Ĝ(Λ)oWE

of the natural map of condensed groups

Ĝ(Λ)oWE →WE .

Equivalently, an L-parameter for G with coefficients in Λ is a (condensed) 1-cocycle

ϕ :WE → Ĝ(Λ)

for the given WE-action on Ĝ.

More concretely, an L-parameter with values in Λ is a 1-cocycle ϕ : WE → Ĝ(Λ) such that if Ĝ ↪→
GLN , the associated map WE → GLN (Λ) is continuous. The preceding means the matrix coefficients of
its restriction to IE are maps IE → Λ that take values in finite type Z`-modules and are continuous.

Remark VIII.1.2. The standard action of WE factors over a finite quotient Q. This means that L-
parameters are also equivalent to maps WE → Ĝ(Λ)oQ lifting WE → Q.

The first main result is the following.
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Theorem VIII.1.3. There is a scheme Z1(WE , Ĝ) over Z` parametrizing L-parameters for G, which
is a disjoint union of affine schemes of finite type over Z`. It is flat and a relative complete intersection of
dimension dimG = dim Ĝ.

Proof. Any condensed 1-cocycle ϕ : WE → Ĝ(Λ) is trivial on an open subgroup of the wild inertia
subgroup PE ; note also that PE acts on Ĝ through a finite quotient. Moreover, for any γ ∈ PE acting
trivially on Ĝ, the locus where ϕ(γ) = 1 is open and closed: Taking a closed embedding Ĝ ↪→ GLN , this
follows from A = 1 being a connected component of the locus of all A ∈ GLN such that Apr = 1, as
can be checked by observing that the tangent space at A = 1 is trivial. It follows that the moduli space of
L-parameters decomposes as a disjoint union of open and closed subspaces according to the kernel of ϕ on
PE .

Thus, fix now some quotient WE →W ′
E by an open subgroup of PE such that the action of WE on Ĝ

factors over W ′
E . We are interested in the moduli space of condensed 1-cocycles W ′

E → Ĝ(Λ). Inside W ′
E ,

we look at the discrete dense subgroup W ⊂ W ′
E generated by the image of PE , a choice of generator of

the tame inertia τ , and a choice of Frobenius σ. Thus, W sits in an exact sequence

0→ I →W → σZ → 0

where I in turn sits in an exact sequence

0→ P → I → τ
Z[ 1p ] → 0

whereP is a finite p-group. Moreover, inW/P , the elements τ and σ satisfy the commutation σ−1τσ = τ q.

Now observe that any condensed 1-cocycle W ′
E → Ĝ(Λ) is already determined by its restriction to

the discrete group W , as Ĝ(Λ) is quasiseparated and W ⊂ W ′
E is dense. Conversely, we claim that any

1-cocycle W → Ĝ(Λ) extends uniquely to a condensed 1-cocycle W ′
E → Ĝ(Λ). To check this, we may

replace E by a finite extension; we can thus pass to a setting where the action of W ′
E on Ĝ is trivial, and

where P = 1. Taking a closed immersion Ĝ ↪→ GLN , it then suffices to see that any representation of

τ
Z[ 1p ]oσZ on a finite free Λ-module extends uniquely to a representation of the condensed group ẐpoσZ.

For this, in turn, it suffices to see that for any A ∈ GLN (Λ) such that A is conjugate to Aq , the map

Z→ GLN (Λ) : n 7→ An

extends uniquely to Ẑp. The assumption on A implies that all eigenvalues of A at all geometric points of
SpecΛ are roots of unity of order prime to p; replacing A by a prime-to-p-power (as we may) we can thus
reduce to the case that A is unipotent, i.e. A − 1 is nilpotent. But then n 7→ An extends to a continuous
map

n 7→ An = (1 + (A− 1))n =
∑
i≥0

(
n

i

)
(A− 1)i,

defining a map Z` → GLN (Λ) (and hence Ẑp → Z` → GLN (Λ)).

Thus, we need to see that the spaceX = Z1(W, Ĝ) of all 1-cocycles ϕ :W → Ĝ(Λ) is an affine scheme
of finite type over Z` that is flat and a relative complete intersection of dimension dim Ĝ. It is clear that it
is an affine scheme of finite type over Z` as W is discrete and finitely generated.
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To prove the geometric properties, we find it slightly more convenient to argue with the Artin stack
[X/Ĝ], which we aim to prove is flat and a relative complete intersection of dimension 0 over Z`.

We can understand the deformation theory of [X/Ĝ]: If Λ is a field, then the obstruction group is
H2(W, ĝ⊗Z`Λ) (where ĝ is the Lie algebra of Ĝ), the tangent space isH1(W, ĝ⊗Z`Λ), and the infinitesimal
automorphisms are H0(W, ĝ ⊗Z` Λ), where in all cases the action of W is twisted by the local 1-cocycle
ϕ. Now note that by direct computation the prime-to-p cohomological dimension of W is 2, and the Euler
characteristic of any representation is equal to 0. Thus, this analysis shows that we only have to prove that
all fibres of [X/Ĝ]→ SpecZ` are of dimension at most 0.

Note that X is actually naturally defined over Z[1p ] (as Ĝ is, and the discretization W of W ′
E is inde-

pendent of `). It follows that it suffices to bound the dimension of the fibre over F` (as if we can do this
for all closed points of SpecZ[1p ], it follows over the generic fibre by constructibility of the dimension of
fibers). To do this, we switch back to the picture of condensed 1-cocycles on WE . From now on, we work
over F`.

The stack [Z1(WE , Ĝ)F`/Ĝ] maps to the similar stack parametrizing 1-cocycles ϕI` : I` → ĜF` of the
prime-to-` inertia subgroup I`, up to conjugation. By deformation theory, that stack is smooth and each
connected component is a quotient of SpecF` by the centralizer group C

ϕI`
⊂ ĜF` , which is a smooth

group, whose identity component is reductive by [PY02, Theorem 2.1]. We may thus fix ϕI` : I` →
Ĝ(F`) and consider the closed subscheme X

ϕI`
⊂ Z1(WE , Ĝ)F` of all 1-cocycles ϕ : WE → Ĝ(Λ) whose

restriction to I` is equal to ϕI` . Our goal is to show that X
ϕI`

is of dimension at most dimC
ϕI`

.

Consider the normalizer C̃ of ϕI`(I`) inside ĜF` oQ. Then X
ϕI`

maps with finite fibres to the space
of maps

f :WE/I
` ∼= Z` o σZ −→ C̃/ϕI

`
(I`).

Note that, by representability ofX
ϕI
` , the universal map f factors over a quotient of the form Z/`mZoσZ.

Finally, we have reduced to Lemma VIII.1.4 below. �

Lemma VIII.1.4. Let H be a smooth group scheme over F` whose identity component is reductive.
Then the affine scheme parametrizing maps of groups

Z/`mZ o σZ → H,

where σ acts on Z/`mZ via multiplication by q, is of dimension at most dimH .

Proof. The image of the generator of Z/`mZ is a unipotent element ofH . By finiteness of the number
of unipotent conjugacy classes, cf. [Lus76], [FG12, Corollary 2.6], we can stratify the scheme according to
the conjugacy class of the image of τ . But for each fixed conjugacy class, one has to choose the image of σ
so as to conjugate τ into τ q: This bounds the dimension of each stratum by the dimension of the conjugacy
class of τ (giving the choices for τ ) plus the codimension of the conjugacy class of τ (giving the choices for
σ, for any given τ ), which is the dimension of H . �

VIII.2. The singularities of the moduli space

The following proposition was already implicitly noted in the proof of Theorem VIII.1.3.
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Proposition VIII.2.1. For any parameter ϕ : WE → Ĝ(Λ) o Q corresponding to x : Spec(Λ) →
[Z1(WE , Ĝ)/Ĝ],

x∗L∨
Z1(WE ,Ĝ)/Ĝ

= RΓ(WE , (ĝ⊗Z` Λ)ϕ)[1]

where (ĝ⊗Z` Λ)ϕ is ĝ⊗Z` Λ equipped with the twisted action of WE deduced from ϕ.

Proof. This would be clear if we defined the moduli problem on all animated Z`-algebras, by deforma-
tion theory. Then the cohomological dimension ofWE would imply that this moduli problem is a derived
local complete intersection, of expected dimension 0. However, we proved that Z1(WE , Ĝ)/Ĝ is a local
complete intersection Artin stack of dimension 0, hence it represents the correct moduli problem even on
all animated Z`-algebras, thus giving the result. �

Proposition VIII.2.2. Let M be a free Λ-module of finite rank equipped with a condensed action of
WE . Then RΓ(WE ,M) is a perfect complex of Λ-modules and there is a canonical isomorphism

RΓ(WE ,M)∗ ∼= RΓ(WE ,M
∗(1))[2].

Proof. This follows from Poincaré duality applied to Div1 → ∗, using Proposition VII.3.5 and the dis-
cussion before. It can also be proved by hand, by comparing theWE-cohomology with theW -cohomology,
for a discretization W of WE/P as before. �

Corollary VIII.2.3. For any parameter ϕ : WE → Ĝ(Λ) oWE corresponding to x : Spec(Λ) →
[Z1(WE , Ĝ)/Ĝ],

x∗LZ1(WE ,Ĝ)/Ĝ = RΓ(WE , (ĝ
∗ ⊗Z` Λ)ϕ(1))[1]

where (ĝ∗ ⊗Z` Λ)ϕ is ĝ∗ ⊗Z` Λ equipped with the twisted action of WE deduced from ϕ.

VIII.2.1. The characteristic zero case. Fix an isomorphism IE/PE ∼= Ẑp. There is a ĜQ`-equivariant
“unipotent monodromy” morphism

M : Z1(WE , Ĝ)Q` −→ NĜQ`

whereNĜQ`
is the nilpotent cone inside ĝ⊗Q`.

In fact, one can lift the inclusion Z` ↪→ Ẑp ∼= IE/PE to a morphism Z` → IE . Now, if ϕ : WE →
Ĝ(Λ), with Λ a Q`-algebra, is a parameter, then ϕ|Z` : Z` → Ĝ(Λ) is such that for n � 0, ϕ|`nZ` is a
morphism of condensed groups satisfying

ϕ(σm)ϕ|`nZ`ϕ(σ
m)−1 = ϕq

m

|`nZ`

for m � 0. One deduces, using an embedding of Ĝ in GLN , that there is a unique N ∈ NĜ(Λ) such that
for n� 0 and x ∈ `nZ`,

ϕ(x) = exp(xN).

Using these observations, we get a comparison to Weil–Deligne L-parameters.

Definition VIII.2.4. For Λ a Q`-algebra one defines ParWD
Ĝ

(Λ) to be the set of pairs (ϕ0, N) where

(i) ϕ0 :WE → Ĝ(Λ) is a 1-cocycle that is continuous for the discrete topology on Ĝ(Λ) (i.e., trivial on an
open subgroup of IE),
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(ii) N ∈ NĜ ⊗ Λ satisfies Ad(ϕ0(σ)).σN = q|σ|N for all σ ∈WE .

Then we have the following result, which is essentially Grothendieck’s quasi-unipotence theorem.

Proposition VIII.2.5 ([Zhu20, Lemma 3.1.8]). There is a Ĝ-equivariant isomorphism

Z1(WE , Ĝ)⊗Q`
∼−→ ParWD

Ĝ
.

However, we warn the reader that this isomorphism depends on some auxiliary choices, such as that of
a Frobenius element.

VIII.2.2. The singular support.
VIII.2.2.1. General construction. Recall the following construction, see for example [AG15]. LetA→

B be a flat map of commutative rings. One has the Hochschild cohomology

HH•(B/A) = Ext•B⊗AB(B,B).

Note that any M ∈ D(B ⊗A B) induces a functor D(B) → D(B), via N 7→ M ⊗L
B N (with the “left”

B-module structure). Here, M = B ∈ D(B ⊗A B), via the multiplication B ⊗A B → B, induces the
identity functor. It follows that there is a natural map

HH i(B/A) = ExtiB⊗AB(B,B)→ ExtiB(N,N)

for anyN ∈ D(B). Moreover, Hochschild cohomology is naturally a graded algebra, and this map is a map
of algebras

HH•(B/A)→ Ext•B(N,N).

There is an identification ([ML95, Theorem X.3.1])

HH2(B/A) = Ext1B(LB/A, B)

which itself is nothing else than ExalcomA(B,B) ([Gro64, Chap.0, Sec. 18.4]). We thus have an identifi-
cation

HH2(B/A) = H1(L∨
B/A).

Suppose now that A → B is syntomic, i.e. flat and a local complete intersection. Let X = SpecB → S =
SpecA be the associated map of affine schemes.

Definition VIII.2.6. The scheme
SingX/S −→ X

represents the functor T/X 7→ H−1(LX/S ⊗L
OX OT ).

In fact, locally onX , LX/S is isomorphic to a complex of vector bundles [E−1 → E0] and then SingX/S

is the kernel of V(E−1)→ V(E0). Explicitly, SingX/S is the affine scheme with

O(SingX/S) = Sym•
BH

1(L∨
B/A).

This is anX-group scheme equipped with an action of Gm. The image of SingX/S \ {0} → X is the closed
subset complementary of the smooth locus of X → S.
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Consider now any
N ∈ Db

coh(X),

and the graded B-algebra Ext•B(N,N). Using the map

H1(L∨
B/A) = HH2(B/A)→ Ext2B(N,N),

this is in fact naturally a (graded)O(SingX/S)-algebra. This defines a Gm-equivariant quasi-coherent sheaf

µEnd(N)

on SingX/S .

Suppose now moreover that S is regular.

Theorem VIII.2.7 ([Gul74, Theorem 3.1],[AG15, Appendix D]). ForN ∈ Db
coh(X), the quasi-coherent

sheaf µEnd(N) on SingX/S is coherent.

Definition VIII.2.8. The singular support ofN , SingSupp(N), is the support of µEnd(N) as a closed
conical subset of SingX/S .

Of course, the image of SingSupp(N)→ X is contained in Supp(N).

Theorem VIII.2.9 ([AG15, Theorem 4.2.6]). The following are equivalent:

(i) N is a perfect complex,
(ii) SingSupp(N) is contained in the zero section of SingX/S .

Proof. We have to prove that if ExtiB(N,N) = 0 for i � 0 then N is a perfect complex. This is
for example a consequence of [Jor08]. Since S is regular X is Gorenstein. According to [Jor08], if N is a
B-module of finite type that satisfies ExtiB(N,N) = 0 for i > n, then pdBN ≤ n. In general, up to taking
a shift ofN , we can find a mapN → N ′, whereN ′ is a finitely generatedB-module concentrated in degree
0, such that the cone C of N → N ′ is perfect. Suppose that ExtiB(N,N) = 0 for i� 0. In the long exact
sequence

· · · −→ ExtiB(C,N) −→ ExtiB(N ′, N) −→ ExtiB(N,N) −→ · · ·
one has ExtiB(C,N) = 0 for i � 0 since C is perfect and ExtiB(N,N) = 0 for i � 0 by hypothesis. We
deduce that ExtiB(N ′, N) = 0 for i� 0. In the long exact sequence

· · · −→ ExtiB(N ′, N) −→ ExtiB(N ′, N ′) −→ ExtiB(N ′, C) −→ · · ·

we have ExtiB(N ′, C) = 0 for i� 0 sinceC is perfect andB has finite injective dimension over itself since
it is Gorenstein. Thus, for i � 0, ExtiB(N ′, N ′)

∼−→ ExtiB(N ′, N) and this vanishes. We can thus apply
Jorgensen’s theorem to N ′ to conclude that N ′, and hence N , is perfect. �

Let us note the following corollary.

Corollary VIII.2.10. The image of SingSupp(N) \ {0} → X is the complementary of the biggest
open subset of X on which N is a perfect complex.
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VIII.2.2.2. The case of Z1(WE , Ĝ). Now we apply the preceding theory in the case A = Z` and
X = Z1(WE , Ĝ) (which is only a union of affine schemes, but this is not a problem). We can also pass
to the quotient stack Z1(WE , Ĝ)/Ĝ as the formation of Sing commutes with smooth maps. According to
Corollary VIII.2.3, there is an embedding

Sing[Z1(WE ,Ĝ)/Ĝ]/Z` [ĝ∗/Ĝ]×∗/Ĝ [Z1(WE , Ĝ)/Ĝ]

[Z1(WE , Ĝ)/Ĝ]

where ĝ = Lie Ĝ and [ĝ∗/Ĝ] is seen here as a vector bundle on ∗/Ĝ = [SpecZ`/Ĝ]. Let N ∗
Ĝ
⊂ ĝ∗ be the

nilpotent cone; by this we mean the closed subset of all Ĝ-orbits whose closure contains the origin. (If there
is a Ĝ-equivariant isomorphism between ĝ∗ and ĝ, this would identify with the usual nilpotent cone.) Since
this is stable under the adjoint action this defines a Zariski closed substack

[N ∗
Ĝ
/Ĝ]×∗/Ĝ [Z1(WE , Ĝ)/Ĝ] [ĝ∗/Ĝ]×∗/Ĝ [Z1(WE , Ĝ)/Ĝ]

[Z1(WE , Ĝ)/Ĝ].

Proposition VIII.2.11. For a Z`-field L and a point x : Spec(L)→ [Z1(WE , Ĝ)/Ĝ] we have

x∗Sing[Z1(WE ,Ĝ)/Ĝ]/Z` ⊂ N
∗
Ĝ
⊗Z` L

in the following two cases:

(i) L|Q`,

(ii) If n = fE′/E with WE′ = ker(WE → Out(Ĝ)), then qen − 1 is not divisible by ` for any exponent e
of Ĝ.

Proof. Assumption (ii) implies that ` is a very good prime for Ĝ and in particular the Chevalley
isomorphism ĝ � Ĝ = t̂ �W holds, and there is an isomorphism ĝ∗ ∼= ĝ.

If x corresponds to the parameter ϕ then x∗Sing[Z1(WE ,Ĝ)/Ĝ]/Z` = H0(WE , ĝ
∗ ⊗Z` L(1)) where the

WE action on ĝ∗ ⊗Z` L(1) is twisted by ϕ. For an element v ∈ ĝ ∼= ĝ∗ in this subspace we thus have that
σ.v and qv are in the same orbits under the adjoint action of Ĝ(L) (here σ.v is given by the action of WE

on ĝ∗ defining the L-group). We thus obtain that v is conjugated under the adjoint action to qnv. There is
a morphism

ĝ −→ ĝ � Ĝ = t̂ �W ∼= AmZ`
given by m homogeneous polynomials of degrees the exponents of the root system. This implies that the
image of v in Am(L) is zero and thus v lies in the nilpotent cone. �
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The supremum of the exponents of Ĝ is the Coxeter numberh ofG. The preceding condition is satisfied
if for example ` > qhn − 1. We refer to [DHKM20, Section 5.3] for finer definitions and results about Ĝ-
banal primes; we have not tried to optimize the condition above, and it is likely that with their results one
can obtain a much better condition on `.

Remark VIII.2.12. In the non-banal case things become more complicated and the Arinkin–Gaitsgory
condition of nilpotent singular support becomes important. This is also the case when interesting congru-
ences between smooth irreducible representations of G(E) occur, cf. [DHKM20, Section 1.5].

Remark VIII.2.13. The appearance of ĝ∗ here is another indication that the assumption that ` does
not divide the order of π1(Ĝ)tor may be important: Indeed, this assumption determines the isomorphism
class of ĝ∗ as a representation of the adjoint group, within the isogeny class of G. However, when ` is a bad
prime, then the nilpotent cone is not well-behaved (for example, there may be infinitely many nilpotent
orbits), and we are not sure whether the resulting notion of nilpotent singular support is in fact the correct
notion.

VIII.3. The coarse moduli space

Let us now describe the corresponding coarse moduli space, i.e. we consider the quotient

Z1(WE , Ĝ) � Ĝ

taken in the category of schemes. Concretely, for every connected component SpecA ⊂ Z1(WE , Ĝ), we
get a corresponding connected component SpecAĜ ⊂ Z1(WE , Ĝ) � Ĝ.

VIII.3.1. Geometric points. For any algebraically closed fieldL overZ`, theL-valued points ofZ1(WE , Ĝ)L�
Ĝ are in bijection with the closed Ĝ-orbits in Z1(WE , Ĝ)L.

We want to describe L-valued points with closed Ĝ-orbit as the “semisimple” parameters. For this,
recall (cf. [Bor79]) that parabolic subgroups of ĜL oWE surjecting onto WE are up to Ĝ(L)-conjugation
given by P̂LoWE for a standard parabolic P ⊂ G∗ of the quasisplit inner formG∗ ofG. A Levi subgroup
is given by M̂L o WE where M ⊂ P is the standard Levi. We now call them the parabolic subgroups
of Ĝ oWE i.e. we always suppose they surject to WE . If ∆̂ are the simple roots of Ĝ then the standard
parabolic subgroups are in bijection with the finite WE-stable subsets of ∆̂.

Definition VIII.3.1. Let L be an algebraically closed field over Z`. An L-parameter ϕ : WE →
Ĝ(L)oWE is semisimple if whenever the image of ϕ is contained in a parabolic subgroup of ĜoWE then
it is contained in a Levi subgroup of this parabolic subgroup.

In terms of the standard parabolic subgroups this means that if some Ĝ(L)-conjugate ϕ′ of ϕ factorizes
through P̂ (L)oWE , then there exists g ∈ P̂ (L) such that

gϕ′g−1 = iLMprLM ◦ ϕ
′,

where prLM : P̂ (L) oWE → M̂(L) oWE is the projection onto the standard Levi subgroup, and iLM :

M̂(L)oWE → Ĝ(L)oWE the inclusion.
Proposition VIII.3.2 ([DHKM20, Proposition 4.13]). Let L be an algebraically closed field over Z`

and ϕ :WE → Ĝ(L)oWE a parameter. The following are equivalent:
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(i) The Ĝ-orbit of ϕ in Z1(WE , Ĝ)L is closed.
(ii) For any conjugate ϕ′ of ϕ such that ϕ′ :WE → P̂ (L)oWE factors over a standard parabolic subgroup,
ϕ is Ĝ(L)-conjugate to iLMprLM ◦ ϕ′.
(iii) ϕ is semi-simple.

Proof. We use the Hilbert–Mumford–Kempf theorem, cf. [Kem78, Corollary 3.5]. Recall that this
criterion says that an orbit is closed if and only if any degeneration along a 1-parameter family induced
by a Gm has limit inside the same orbit. Thus take any λ : Gm → ĜL. Up to conjugation (which one
can move into a conjugation of the parameter) we can assume λ ∈ X∗(T̂ )

+. For each τ ∈ WE there is a
morphism evτ : Z1(WE , Ĝ)L → Ĝ given by evaluating a parameter on τ . Thus, if limt→0 λ(t) · ϕ exists,
i.e. the associated morphism Gm,L → Z1(WE , Ĝ)L extends to A1

L, for each τ ∈ WE one has λτ = λ and
ϕ(τ) ∈ Qλ(L)o τ , cf. Lemma VIII.3.3. One thus has Qλ = P̂ for P a standard parabolic subgroup of G∗,
and ϕ :WE → P̂ oWE .

For g ∈ P̂ , limt→0 λ(t)gλ(t)
−1 is the projection onto the standard Levi subgroup M̂ . Thus, using the

evaluation morphism evτ for each τ we deduce that limt→0 λ(t) · ϕ, if it exists, is given by the composite
WE

ϕ−→ P̂ (L) o WE
proj−−→ M̂(L) o WE . Reciprocally, since the morphism Gm × P̂ → P̂ , given by

(t, g) 7→ λ(t)gλ(t)−1 extends to A1 × P̂ with fiber over 0 ∈ A1 given by the projection to M̂ , for any
ϕ :WE → P̂ oWE , limt→0 λ(t) · ϕ exists.

From this analysis we deduce the equivalence between (i) and (ii). It is clear that (iii) implies (ii).
For the proof of (ii) implies (iii) we use the results of [BMR05] and [Ric88]. For this we see parameters as
morphismsW → Ĝ(Λ)oQwhereW is discrete finitely generated as in the proof of Theorem VIII.1.3, and
Q is a finite quotient ofW . Let ϕ :W → Ĝ(L)oQ satisfying (ii). LetH ⊂ ĜLoQ be the Zariski closure
of the image of ϕ. Then if (x1, . . . , xn) ∈ (Ĝ(L)×Q)n are the images of a set of generators ofW , applying
the Hilbert–Mumford–Kempf criterion we see that the ĜL-orbit of (x1, . . . , xn) via the diagonal action is
closed, cf. the proof of [BMR05, Lemma 2.17]. We can then apply [Ric88], cf. [BMR05, Proposition 2.16],
to deduce that H is strongly reductive in ĜL o Q and thus ĜL-completely reducible. Strictly speaking,
since we are working in a non-connected situation, we use in fact [BMR05, Section 6]. �

Lemma VIII.3.3. For λ ∈ X∗(T )
+ and g o τ ∈ Ĝ(L) oWE , the limit limt→0 λ(t)gλ(t)

−τ exists if
and only if g ∈ Qλ(L), the parabolic subgroup attached to λ, and λτ = λ.

Proof. The subgroups Qλ and Qλτ are standard parabolic subgroups of Ĝ. Let us write g = g′
.
wg′′

with g′ ∈ Qλ(L), g′′ ∈ Qλτ (L) and w ∈ Ŵ . Then, writing

λ(t)gλ(t)−τ = (λ(t)g′λ(t)−1)(λ(t)
.
wλ(t)−τ )(λ(t)τg′′λ(t)−τ ),

one deduces that limt→0 λ(t)
.
wλ(t)−τ exists. Thus, limt→0(λ(λ

−τ )w)(t) exists and thus λ = (λτ )w. Since
λτ ∈ X∗(T̂ )

+ we deduce λ = λτ and λw = λ. �

The proof shows that up to replacing Ĝ(L)oWE by Ĝ(L)oQ for some finite quotientQ ofWE (as we
can), semisimplicity of ϕ is equivalent to the Zariski closure of the image of ϕ being completely reducible
in the terminology of [BMR05, Section 6].
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VIII.3.2. A presentation of O(Z1(WE , Ĝ)). It will be useful to have a presentation of the algebra
O(Z1(WE , Ĝ)), or rather of the finite type Z`-algebras O(Z1(WE/P, Ĝ)) for open subgroups P of the
wild inertia (with the property that the action of WE on Ĝ factors over WE/P ). Pick a discrete dense
subgroupW ⊂WE/P as above, so that Z1(WE/P, Ĝ) = Z1(W, Ĝ). For any n ≥ 0 with a map Fn →W ,
we get a Ĝ-equivariant map

O(Z1(Fn, Ĝ))→ O(Z1(W, Ĝ)),

where the source is isomorphic toO(Ĝn)with appropriately twisted diagonal Ĝ-conjugation. Consider the
category {(n, Fn →W )} consisting of maps from finite free groups toW , with maps given by commutative
diagrams Fn → Fm →W ; this is a sifted index category (as it admits coproducts). The map

colim(n,Fn→W )O(Z1(Fn, Ĝ))→ O(Z1(W, Ĝ))

is an isomorphism of algebras with Ĝ-action (as 1-cocycles fromW to Ĝ are uniquely specified by compat-
ible collections of 1-cocycles Fn → Ĝ for all Fn → W ). By Haboush’s theorem on geometric reductivity
[Hab75] it follows that the map

colim(n,Fn→W )O(Z1(Fn, Ĝ))
Ĝ → O(Z1(W, Ĝ))Ĝ

on Ĝ-invariants is a universal homeomorphism of finite type Z`-algebras, and an isomorphism after invert-
ing `.

Definition VIII.3.4. The algebra of excursion operators (for Z1(W, Ĝ)) is

Exc(W, Ĝ) = colim(n,Fn→W )O(Z1(Fn, Ĝ))
Ĝ.

We see in particular that the geometric points of Exc(W, Ĝ) and Z1(W, Ĝ) agree.
Actually, the following higher-categorical variant is true.

Proposition VIII.3.5. Working in the derived∞-category D(Z`), the map

colim(n,Fn→W )O(Z1(Fn, Ĝ))→ O(Z1(W, Ĝ))

is an isomorphism in D(Z`).

In fact, both sides naturally admit the structure of animated Z`-algebras, and the map is a morphism of
such. The proposition then implies that it is in fact an isomorphism of animated Z`-algebras.

Proof. The left-hand side defines an animated Z`-algebra, in fact the universal animated Z`-algebra
A with a 1-cocycle W → Ĝ(A), and the right-hand side is given by π0A. Now the deformation-theoretic
arguments from the proof of Theorem VIII.1.3 show that A is a derived complete intersection, but as π0A
has the correct dimension, we get A = π0A. �

We will later prove an even finer version, incorporating the Ĝ-action; we defer the proof to Sec-
tion VIII.5.

Theorem VIII.3.6. Assume that ` does not divide the order of π1(Ĝ)tor. Then the map

colim(n,Fn→W )O(Z1(Fn, Ĝ))→ O(Z1(W, Ĝ))
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is an isomorphism in the presentable stable∞-category Ind Perf(∗/Ĝ).1

In particular, the map

Exc(W, Ĝ) = colim(n,Fn→W )O(Z1(Fn, Ĝ))
Ĝ → O(Z1(W, Ĝ))Ĝ

is an isomorphism.

In particular, we see that the algebra of excursion operators gives a presentation ofO(Z1(WE/P, Ĝ))
Ĝ.

In the next subsection, we analyze it more explicitly.

VIII.3.3. The algebra of excursion operators. Fix a finite quotientQ ofWE over which theWE-action
on Ĝ factors. Let (ĜoQ)n � Ĝ be the quotient of (ĜoQ)n under simultaneous conjugation by Ĝ.

Proposition VIII.3.7. The algebra of excursion operators Exc(W, Ĝ) is the universal Z`-algebra A
equipped with maps

Θn : O((ĜoQ)n � Ĝ)→Map(Wn, A)

for n ≥ 1, linear over O(Qn) → Map(Wn, A), subject to the following relations. If g : {1, . . . ,m} →
{1, . . . , n} is any map, the induced diagram

O((ĜoQ)m � Ĝ) //

��

Map(Wm, A)

��
O((ĜoQ)n � Ĝ) // Map(Wn, A)

commutes, where both vertical maps are the natural pullback maps. On the other hand, g also induces a
map (ĜoQ)m → (ĜoQ)n, multiplying in every fibre over i = 1, . . . , n the terms in g−1(i) (ordered by
virtue of their ordering as a subset of {1, . . . ,m}). This map is equivariant under diagonal Ĝ-conjugation,
and hence descends to the quotient. Similarly, g induces a mapWm →Wn. Then also the induced diagram

O((ĜoQ)n � Ĝ) //

��

Map(Wn, A)

��
O((ĜoQ)m � Ĝ) // Map(Wm, A)

commutes.
The `-torsion free quotient of Exc(W, Ĝ) is also the universal flat Z`-algebra A′ equipped with maps

Θ′
n : O((ĜoQ)n � Ĝ)→Map((WE/P )

n, A′)

forn ≥ 1, linear overO(Qn)→Map((WE/P )
n, A′), satisfying the same relations as in Proposition VIII.3.7,

where the right-hand side Map((WE/P )
n, A′) denotes the maps of condensed sets (where as usualA′ is con-

sidered as relatively discrete overZ`). In particular, the `-torsion free quotient of Exc(W, Ĝ) is independent
of the discretization W of WE/P .

1This map is also a map (and hence isomorphism) of E∞-algebras in Ind Perf(∗/Ĝ), but the question whether it is an isomor-
phism does not depend on the algebra structure.
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We do not know whether it is necessary to pass to the `-torsion free quotient for the final assertion.
Note that if ` does not divide the order of π1(Ĝ)tor, then Exc(W, Ĝ) ∼= O(Z1(WE/P, Ĝ))

Ĝ is flat over Z`.
Moreover note that the `-torsion in Exc(W, Ĝ) is always nilpotent, so passing to this quotient is a universal
homeomorphism.

Proof. The datum of the Θn is equivalent the datum of a map of algebras

O(Z1(Fn, Ĝ))
Ĝ → A

for each map Fn → W . The relations encode the relations arising in the diagram category (n, Fn → W )
corresponding to maps Fm → Fn (overW ) either sending generators to generators, or multiplying subsets
of generators. If one would also allow the inversion of elements, then this would generate all required
relations. We leave it as an exercise to see that this relation, corresponding to Fn → Fn which is the
identity on the first n−1 generators and inverts the n-th generator, is in fact enforced by the others. (Hint:
Look at the part of Θn+1 corresponding to (γ1, . . . , γn, γ

−1
n ) and use that under multiplication of the last

two variables, this maps to (γ1, . . . , γn−1, 1), which arises from (γ1, . . . , γn−1).)
The second description is a priori stronger as Map((WE/P )

n, A′) injects into Map(Wn, A′) as W ⊂
WE/P is dense. The `-torsion free quotient of Exc(W, Ĝ) injects into O(Z1(WE/P, Ĝ))

Ĝ (as we have
an isomorphism after inverting `), and by density of W ⊂ WE/P the elements of Map(Wn,Exc(W, Ĝ))
map to elements of Map((WE/P )

n,O(Z1(WE/P, Ĝ))
Ĝ) (we only need to check the integrality). Thus,

this already happens on the `-torsion free quotient of Exc(W, Ĝ), which thus has the desired universal
property. �

Regarding the passage toWE in place ofWE/P , where there is no natural (finite type) algebra anymore,
we still have the following result.

Proposition VIII.3.8. Let L be an algebraically closed field over Z`. Then the following are in canon-
ical bijection.

(i) Semisimple L-parameters ϕ :WE → Ĝ(L)oWE , up to Ĝ(L)-conjugation.

(ii)L-valued points of Z1(WE , Ĝ) � Ĝ.

(iii) Collections of maps of Z`-algebras

Θn : O((ĜoQ)n � Ĝ)→Map(Wn
E , L)

for n ≥ 1, linear over O(Qn) → Map(Wn
E , L), such that for any map g : {1, . . . ,m} → {1, . . . , n}, the

diagrams

O((ĜoQ)m � Ĝ)
Θm //

��

Map(Wm
E , L)

��
O((ĜoQ)n � Ĝ)

Θn // Map(Wn
E , L)
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induced by pullback, and

O((ĜoQ)n � Ĝ)
Θn //

��

Map(Wn
E , L)

��
O((ĜoQ)m � Ĝ)

Θm // Map(Wm
E , L)

induced by multiplication, commute.

Proof. We already know that (i) and (ii) are in natural bijection. The recipe above gives a canonical
map from (ii) to (iii). Now take data as in (iii). Forgetting the continuity of all maps, we see that data as
in (iii) gives rise to a semisimple 1-cocycle ϕ : WE → Ĝ(L) (of discrete groups), up to conjugation. We
need to see that if the data in (iii) are maps of condensed sets, then ϕ is also a map of condensed sets (this
condition does not depend on the representative of its conjugacy class). This follows from the proof of
[Laf18, Proposition 11.7], in particular the choice of finitely many elements of γ1, . . . , γn ∈ WE such that
ϕ(γ) is determined by the closed Ĝ-orbit in (ĜoQ)n+1 determined by (γ1, . . . , γn, γ) via Θn+1, cf. [Laf18,
Lemma 11.10]. �

VIII.4. Excursion operators

One can use Proposition VIII.3.8 to construct L-parameters in the following general categorical situa-
tion. In order to avoid topological problems, we work in the setting of the discrete subgroupW ⊂WE/P ;
in fact, we can take here any discrete group W . Let Λ be a discrete Z`-algebra and let C be a Z`-linear
category. Assume that functorially in finite sets I , we are given a monoidal RepZ`(Q

I)-linear functor

RepZ`(ĜoQ)I → End(C)BW I
: V 7→ TV

where End(C) is the category of endomorphisms of C , and End(C)BW I
E is the category of F ∈ End(C)

equipped with a map of groups W I → Aut(F ).
The goal of this section is to prove the following theorem; this is essentially due to V. Lafforgue [Laf18].

Theorem VIII.4.1. Given the above categorical data, there is a natural map of algebras

Exc(W, Ĝ) = colim(n,Fn→W )O(Z1(Fn, Ĝ))
Ĝ → End(idC)

to the Bernstein center of C (i.e., the algebra of endomorphisms of the identity of C).

To prove Theorem VIII.4.1, we construct explicit “excursion operators”. These are associated to the
following data.

Definition VIII.4.2. An excursion datum is a tupleD = (I, V, α, β, (γi)i∈I) consisting of a finite set
I , an object V ∈ RepZ`((Ĝ o Q)I) with maps α : 1 → V |RepZ` (Ĝ), β : V |RepZ` (Ĝ) → 1 and elements
γi ∈W , i ∈ I .

Here, the restriction RepZ`((Ĝ o Q)I) → RepZ`(Ĝ) is the restriction to the diagonal copy of Ĝ ⊂
ĜI ⊂ (ĜoQ)I .
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Now consider excursion data D = (I, V, α, β, (γi)i∈I). These give rise to an endomorphism of the
identity functor of C , as follows.

SD : id = T1
Tα−→ TV

(γi)i∈I−−−−→ TV
Tβ−→ T1 = id.

Varying the γi, this gives a map
W I → End(idC)

to the endomorphisms of the identity functor on C.
We note that if we have two excursion data D = (I, V, α, β, (γi)i∈I) and D′ = (I, V ′, α′, β′, (γi)i∈I)

with same finite set I and elements γi ∈W , and a map g : V → V ′ taking α to α′ and β′ to β (by post- and
pre-composition), then SD = SD′ . Indeed, the diagram

T1
Tα // TV

(γi)i∈I //

Tg
��

TV
Tβ //

Tg
��

T1

T1
Tα′ // TV ′

(γi)i∈I// TV ′
Tβ′ // T1

commutes. Now note that (V, α, β) give rise to an element

f = f(V, α, β) ∈ O(Ĝ\(ĜoQ)I/Ĝ),

the quotient under diagonal left and right multiplication. Indeed, given any gi ∈ Ĝ o Q, i ∈ I , one can
form the composite

1
α−→ V

(gi)i∈I−−−−→ V
β−→ 1,

giving an element of the base ring; as α and β are equivariant for the diagonal Ĝ-action, this indeed gives
an element

f = f(V, α, β) ∈ O(Ĝ\(ĜoQ)I/Ĝ).

Conversely, given f we can look at the (ĜoQ)I -representation V = Vf ⊂ O((ĜoQ)I/Ĝ) generated by
f . This comes with a map αf : 1→ Vf |RepZ` (Ĝ) induced by the element f , and a map βf : Vf |RepZ` (Ĝ) → 1

given by evaluation at 1 ∈ (ĜoQ)I . If we replace V by the subrepresentation generated by α, then there
is a natural map V → Vf taking α to αf and βf to β. The above commutative diagrams then imply that
SD depends on (V, α, β) only through f , and we get a map (a priori, of Z`-modules)

ΘI : O(Ĝ\(ĜoQ)I/Ĝ)→Map(W I ,End(idC)).

Restricted to O(QI), this is given by the natural map O(QI) → Map(W I ,Λ) (and Λ → End(idC)). Also,
it follows from the definitions that for any map g : I → J , the diagram

O(Ĝ\(ĜoQ)I/Ĝ)
ΘI //

��

Map(W I ,End(idC))

��
O(Ĝ\(ĜoQ)J/Ĝ)

ΘJ // Map(W J ,End(idC)),

induced by pullback along g, is cartesian.
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We want to check that ΘI is a map of algebras. For this, we use a version of “convolution product =
fusion product” in this situation. Namely, given f1, f2 ∈ O(Ĝ\(ĜoQ)I/Ĝ), we can build their exterior
product f1 � f2 ∈ O(Ĝ\(ĜoQ)ItI/Ĝ). Then one easily checks

ΘItI(f1 � f2)((γi, γ
′
i)i∈I) = ΘI(f1)((γi)i∈I)Θ

I(f2)((γ
′
i)i∈I).

Applying now functoriality for pullback under ItI → I , it follows that indeedΘI(f1f2) = ΘI(f1)Θ
I(f2).

For any n ≥ 0, we can identify

O(Ĝ\(ĜoQ){0,...,n}/Ĝ)⊗O(Q{0,...,n}) O(Q
{1,...,n}) ∼= O((ĜoQ)n � Ĝ)

via pullback under (g1, . . . , gn) 7→ (1, g1, . . . , gn). This translates Θ{0,...,n} into maps of Z`-algebras

Θn : O((ĜoQ)n � Ĝ)→Map(Wn,End(idC))

over O(Qn) → Map(Wn,Λ), still satisfying compatibility with pullback under maps g : {1, . . . ,m} →
{1, . . . , n}.

Arguing also as in [Laf18, Lemma 10.1, equation (10.5)] and the resulting [Laf18, Proposition 10.8 (iii),
Definition-Proposition 11.3 (d)], one sees that the maps Θn are also compatible with the multiplication
maps induced by such maps g, thus finishing the proof of Theorem VIII.4.1.

In particular, using the description of geometric points, Theorem VIII.4.1 implies the following propo-
sition.

Corollary VIII.4.3. Assume that Λ = L is an algebraically closed field and X ∈ C is an object with
End(X) = L. Then there is, up to Ĝ(L)-conjugation, a unique semisimple L-parameter

ϕX :W → Ĝ(L)oW

such that for all excursion data D = (I, V, α, β, (γi)i∈I), the endomorphism SD(X) ∈ End(X) = L,

X = T1(X)
α−→ TV (X)

(γi)i∈I−−−−→ TV (X)
β−→ T1(X) = X,

is given by the composite

L
α−→ V

(ϕX(γi))i∈I−−−−−−−→ V
β−→ L.

VIII.5. Modular representation theory

The goal of this section is to give a proof of Theorem VIII.3.6. In fact, we prove a slight refinement of
it, concerning perfect complexes, that will be useful in the construction of the spectral action.

Theorem VIII.5.1. Assume that ` does not divide the order of π1(Ĝ)tor. Then the map

colim(n,Fn→W )O(Z1(Fn, Ĝ))→ O(Z1(W, Ĝ))

is an isomorphism in the presentable stable∞-category Ind Perf(∗/Ĝ). Moreover, the∞-category Perf(Z1(W, Ĝ)/Ĝ)

is generated under cones and retracts by Perf(∗/Ĝ), and Ind Perf(Z1(W, Ĝ)/Ĝ) identifies with the ∞-
category of modules overO(Z1(W, Ĝ)) in Ind Perf(∗/Ĝ).

The difficulties in this theorem all arise on the special fibre. Indeed, we will show below that we can
reduce to the following version in characteristic `.
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Theorem VIII.5.2. Assume that ` does not divide the order of π1(Ĝ)tor, and let L = F`. Then the
map

colim(n,Fn→W )O(Z1(Fn, Ĝ)L)→ O(Z1(W, Ĝ)L)

is an isomorphism in the presentable stable∞-category Ind Perf(∗/Ĝ). Moreover, the∞-category Perf(Z1(W, Ĝ)L/Ĝ)

is generated under cones and retracts by Perf(∗/Ĝ).

Then we have the following reduction:

Theorem VIII.5.2 implies Theorem VIII.5.1. For the colimit claim, we need to see that for all rep-
resentations V of Ĝ, the map

colim(n,Fn→W )RΓ(Ĝ,O(Z1(Fn, Ĝ))⊗ V )→ RΓ(Ĝ,O(Z1(W, Ĝ))⊗ V )

in D(Z`) is an isomorphism. It is an isomorphism after inverting `, as then the representation theory of
Ĝ is semisimple, and it is true on underlying complexes by Proposition VIII.3.5. Thus, it suffices to show
that it is an isomorphism after reduction modulo `, or even after base change to L, which follows from
Theorem VIII.5.2.

For the other half, note first that if Perf(BĜ) generates Perf(Z1(W, Ĝ)/Ĝ), then it follows by Barr–
Beck–Lurie [Lur16, Theorem 4.7.4.5] that Ind Perf(Z1(W, Ĝ)/Ĝ) is the∞-category of modules overO(Z1(W, Ĝ))

in Ind Perf(BĜ). Now take any V ∈ Perf(Z1(W, Ĝ)/Ĝ). As its lowest cohomology group is finitely gen-
erated, we can find some surjection from an induced vector bundle onto it, and by passing to cones reduce
the perfect amplitude until V is a Ĝ-equivariant vector bundle on Z1(W, Ĝ). We may then again find a
representation V ′ of Ĝ and a surjection V ′⊗O(Z1(W, Ĝ))→ V . This map splits after inverting `, showing
that V is a retract of an induced vector bundle up to a power of `. Thus, it suffices to show that V /` lies in
this subcategory, and this follows from Theorem VIII.5.2. �

Thus, we concentrate now on Theorem VIII.5.2, which takes place over an algebraically closed base
field L of characteristic `. For the proof, we need many preparations on the modular representation theory
of reductive groups, for Ĝ and many of its subgroups. As everything here happens on the dual side but we
do not want to clutter notation, we will change notation, only for this section, and write G for reductive
groups over L.

VIII.5.1. Good filtrations. First, we need to recall the notion of good filtrations. Let G be a reductive
group over L; recall that “reductive” always means connected for us. Let T ⊂ B ⊂ G be a torus and Borel
for G. For any dominant cocharacter λ of T , we have the induced representation

∇λ = H0(G/B,O(λ)).
A representation V of G has a good filtration if it admits an exhaustive filtration

0 = V−1 ⊂ V0 ⊂ V1 ⊂ . . . ⊂ V
such that each Vi/Vi−1 is isomorphic to a direct sum of ∇λ’s. If one picks a total ordering 0 = λ0, λ1, . . .
of the dominant cocharacters, compatible with their dominance order, one can choose Vi ⊂ V to be the
maximal subrepresentation admitting only weights λj with j ≤ i. In that case, (Vi/Vi−1)

∗ is generated by
its highest weight space W ∗

i , and by adjunction there is a map
Vi/Vi−1 →Wi ⊗∇λi ;
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then V admits a good filtration if and only if all of these maps are isomorphisms. For this, it is in fact
enough that Vi → Wi ⊗ ∇λi is surjective: The kernel is necessarily given by Vi−1, as it has only smaller
weights.

A key result is that ifV andW admit goodG-filtrations, then so doesV⊗W ; this is a theorem of Donkin
[Don85] and Mathieu [Mat90] in general. Moreover, if V admits a good filtration, then H i(G,V ) = 0
for i > 0: This clearly reduces to the case of V = ∇λ, in which case it follows from Kempf’s vanishing
theorem [Kem76]. These results imply the following standard characterization of modules admitting a
good filtration.

Proposition VIII.5.3 ([Don81]). A G-representation V admits a good filtration if and only if for all
λ, one has

H i(G,V ⊗∇λ) = 0

for i > 0.

Using this, one can define a well-behaved notion of a “good filtration dimension” of V , referring to the
minimal i such that Hj(G,V ⊗∇λ) = 0 for all λ and j > i. Equivalently, there is a resolution of length
i by representations with a good filtration. In fact, this notion lets us put an interesting t-structure on the
stable∞-category Perf(∗/G) of perfect complexes of G-representations.

Definition VIII.5.4. Consider the stable∞-category Perf(∗/G) of bounded complexes ofG-representations.
The good filtration t-structure is defined as follows.

(i) An object M ∈ Perf(∗/G) lies in the connective part of the t-structure if for all λ one has
H i(G,M ⊗∇λ) = 0 for i > 0; equivalently, if M has good filtration dimension ≤ 0.

(ii) An object M ∈ Perf(∗/G) lies in the coconnective part of the t-structure if for all λ one has
H i(G,M ⊗∆λ) = 0 for i < 0.

Equivalently, the connective part is generated under finite colimits by the ∇λ. In particular, any M
that is connective in the good filtration t-structure is also connective in the usual t-structure. Using Propo-
sition VIII.5.3, the existence of the t-structure is easy to see, for example by induction on the subcategories
generated by∇λ0 , . . . ,∇λn .

An important observation on this t-structure is the following. Note that the good filtration t-structure
on Perf(∗/G) formally extends to one on the Ind-category Ind Perf(∗/G).

Proposition VIII.5.5. The good filtration t-structure on Ind Perf(∗/G) is left-complete.

We note that the standard t-structure on Ind Perf(∗/G) is far from left-complete, due to issues of infinite
cohomological dimension (which is the main issue we have to address).

Proof. LetM ∈ Ind Perf(∗/G). To see thatM = 0 it suffices to see that for all λ, one hasRΓ(G,M ⊗
∇λ) = 0. But if M is ∞-connective for the good filtration t-structure, then also RΓ(G,M ⊗ ∇λ) is
∞-connective, and hence zero. �

Another key result we need is the following.

Theorem VIII.5.6 ([Kop84], [Don88]). The G×G-representationO(G) (via left and right multipli-
cation) admits a good filtration.
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In particular, we have the following corollary. For any n ≥ 0, let Fn be the free group on n letters.

Corollary VIII.5.7. For any map Fn → Aut(G), the G-representationO(Z1(Fn, G)) admits a good
filtration.

Proof. Note that Z1(Fn, G) = Gn, where the G-action is that of simultaneous twisted conjugation
(by the n given automorphisms ofG). ButO(Gn) admits a good filtration as representation ofG2n, and re-
stricting toG ⊂ G2n it remains good by stability under tensor products (and as the induced representations
of G2n are tensor products of induced representations of each factor). �

VIII.5.2. Equivariant vector bundles. Assume thatX = Spec(A) is an affine scheme of finite type over
L, equipped with an action of a linear-algebraic groupG (not assumed reductive yet). We will be interested
in the question whether allG-equivariant vector bundles onX can be resolved, up to retracts, by those that
are pulled back from representations ofG viaX/G→ ∗/G. It is convenient to frame this question in terms
of the stable∞-category Perf(X/G) of G-equivariant perfect complexes on X (i.e. the full subcategory of
dualizable objects of the quasicoherent derived∞-category D(X/G)). We warn the reader that, being in
positive characteristic, these objects are usually not compact in D(X/G), even when G is reductive. Let
Perfind(X/G) ⊂ Perf(X/G) be the full subcategory generated under cones and retracts by the image of
Perf(∗/G).

Proposition VIII.5.8. LetM ∈ Perf(X/G), with dualM∗ and internal endomorphismsM ⊗AM∗ ∈
Perf(X/G). Then M ∈ Perfind(X/G) if and only if the natural map

colim[. . .→M ⊗L A⊗LM∗ →M ⊗LM∗]→M ⊗AM∗

in Ind Perf(∗/G) is an isomorphism.

The left-hand side computes the tensor product M ⊗A M∗ when all three objects are considered in
Ind Perf(∗/G).

Proof. If M ∈ Perfind(X/G), we need to see that it is an isomorphism. In fact, it will be an iso-
morphism for all N ∈ Perf(X/G) in place of M∗. This can be reduced to M = M0 ⊗L A for some
representation M0 of G; and then replacing N by N ⊗M∗

0 , we can even reduce to M0 = L, so M = A. In
that case, the augmented simplicial object underlying the displayed natural map has an extra degeneracy,
yielding the isomorphism.

In the other direction, let M ′ be the image of M in ModA(Ind Perf(∗/G)), and N ′ the image of
N = M∗ in there. Then there is a natural map M ′ ⊗A N ′ → A in ModA(Ind Perf(∗/G)) as the for-
getful functor Ind Perf(X/G) → ModA(Ind Perf(∗/G)) is lax symmetric monoidal (being right adjoint
to the symmetric monoidal pullback). On the other hand, we also get a map A → M ′ ⊗A N ′ by our as-
sumption, as that tensor product agrees with M ⊗A N . This way, we see that M ′ is a dualizable object
of the symmetric monoidal presentable stable∞-category ModA(Ind Perf(∗/G)) with compact unit, and
henceM ′ is a compact object, and therefore a retract of a finite complex of induced vector bundles (as those
are compact generators of ModA(Ind Perf(∗/G)) essentially by definition). As on bounded complexes, the
forgetful functor Ind Perf(X/G) → ModA(Ind Perf(∗/G)) is fully faithful, this implies the same for M ,
as desired. �



288 VIII. L-PARAMETER

A curious consequence of Proposition VIII.5.8 is that when G is reductive with Borel B ⊂ G, then
to check whether M can be resolved G-equivariantly by induced G-vector bundles, it is enough to resolve
B-equivariantly by induced B-vector bundles. Slightly more generally:

Corollary VIII.5.9. Assume that G◦ is reductive with π0G of order prime to `, and let B ⊂ G◦ be a
Borel subgroup of G◦. Let M ∈ Perf(X/G) and assume that the corresponding object M |B ∈ Perf(X/B)

lies in the subcategory generated under cones and retracts by Perf(∗/B). Then M ∈ Perfind(X/G).

Proof. By Proposition VIII.5.8, we have to see that the natural map
colim[. . .→M ⊗L A⊗LM∗ →M ⊗LM∗]→M ⊗AM∗

in Ind Perf(∗/G) is an isomorphism. But Ind Perf(∗/G) → Ind Perf(∗/G◦) is conservative (as π0G is of
order prime to ` so that its representation theory is semisimple), and Perf(∗/G◦) → Perf(∗/B) is fully
faithful by Kempf vanishing (and of course symmetric monoidal). Thus, it suffices to prove that the same
map is an isomorphism in Ind Perf(∗/B). But this follows from Proposition VIII.5.8 in the other direction.

�

A variant of Proposition VIII.5.8 is the following, which shows that the question of generating perfect
complexes by induced vector bundles has direct relations to the theory of good filtrations. We will actually
only use the easy direction of this proposition, and only in order to show that the assumption that ` does
not divide the order of the fundamental group is necessary.

Proposition VIII.5.10. Assume that G◦ is reductive and π0G of order prime to `, and G acts on X =
Spec(A) such that A admits a good G◦-filtration. Let M ∈ Perf(X/G) and assume that M , without its
A-action, has good G◦-filtration dimension ≤ 0, i.e. lies in the connective part of the good G◦-filtration
t-structure on Ind Perf(∗/G). Then M ∈ Perfind(X/G) if and only if for all N ∈ Perf(X/G) that have
good G◦-filtration dimension ≤ 0, also M ⊗A N has good G◦-filtration dimension ≤ 0.

Proof. If M ∈ Perfind(X/G), then the natural map
colim[. . .→M ⊗L A⊗L N →M ⊗L N ]→M ⊗A N

in Ind Perf(∗/G) is an isomorphism, as was proved in the beginning of the proof of Proposition VIII.5.8.
But ifN lies in the connective part of the goodG◦-filtration t-structure, then all terms on the left-hand side
lie in this connective part, and hence so does the colimit. It follows that alsoM⊗AN lies in the connective
part of the good filtration t-structure.

For the converse, we have to see that
colim[. . .→M ⊗L A⊗LM∗ →M ⊗LM∗]→M ⊗AM∗

is an isomorphism in Ind Perf(∗/G). But this map is gotten by starting with the map
colim[. . .→ A⊗L A⊗LM∗ → A⊗LM∗]→M∗

in Ind Perf(X/G) and applyingM⊗A−. Note that this colimit becomes an isomorphism in Ind Perf(∗/G),
as then the augmented simplicial object has extra degeneracies. By [TvdK10, Corollary 1.5], M∗ has finite
goodG◦-filtration dimension. This implies that the preceding colimit can be written as a sequential colimit
of finite colimits, where the finite colimits become increasingly connective in the good G◦-filtration t-
structure. Now we can applyM⊗A−which by assumption preserves connectivity in the goodG◦-filtration
t-structure, and conclude by Proposition VIII.5.5. �
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As an application of the preceding results, we have the following key result.

Proposition VIII.5.11. Assume thatG◦ is reductive and π0G is of order prime to `. LetG act on itself
via conjugation. Let i : ∗ → G be the inclusion of the unit element. The following are equivalent.

(i) The order of π1(G◦)tor is not divisible by `.
(ii) The object i∗L ∈ Perf(G/G) lies in Perfind(G/G).

(iii) The inclusion Perfind(G/G) ⊂ Perf(G/G) is an equality.

We are of course mainly interested in the implication from (i) to (iii), but the backwards direction tells
us that (i) is really required.

Proof. It is clear that (iii) implies (ii). Let us first show that (ii) implies (i). We can assume that G
is connected. Let f : G̃ → G be a central extension such that G̃ has simply connected derived group,
with kernel Z ⊂ G̃ of order divisible by `. Then both f∗OG̃ and i∗L are in Perf(G/G) and have good
filtrations. In fact, also I = ker(OG → i∗L) has a good filtration. Proposition VIII.5.10 shows that if
i∗L ∈ Perfind(G/G), then I ⊗O(G) O(G̃) must have a good filtration. This implies that the map

O(G̃)G → O(Z)G = O(Z)
must be surjective. But it is known that the `-primary part of the center is contained in the unipotent locus,
hence all functions inO(G̃)G are constant on them.

Now we show that (i) implies (ii). Using the criterion of Proposition VIII.5.8, we see that we can assume
thatG is connected. We can also assume thatG has simply connected derived group, via a central extension
(noting that finite free maps of degree prime to ` admit a canonical splitting on structure sheaves given by
the trace map). We use Corollary VIII.5.9, so it suffices to show that i∗L ∈ Perf(G/adB) is generated
by vector bundles induced from B-representations. (Here, B acts on G via conjugation.) Now choosing a
generic dominant cocharacter, so that pairing it with the roots induces a total order on the roots of G, we
can filter G by root spaces, and (using any auxiliary filtration of the torus part) find a B-equivariant flag
of smooth subvarieties

X0 = {1} ⊂ X1 ⊂ . . . ⊂ XdimB = B ⊂ . . . ⊂ XdimG = G.

Each Xi−1 ⊂ Xi is a Cartier divisor, whose corresponding B-equivariant line bundle is induced from a
character of B. Indeed, for i ≤ dimB one has a map from Xi to the corresponding Gm (with trivial B-
action) or root space Ga (withB acting via the root). For i > dimB the situation arises via pullback from a
similar filtration on the flag varietyG/B, with each term being a closed Bruhat stratum. When the derived
group of G is simply connected, all relevant line bundles are induced from B-representations.

Thus, by descending induction on i we can showO(Xi) ∈ Perfind(G/adB), yielding the desired result
for i = 0.

Finally, we prove that (ii) implies (iii). For any K ∈ Perf((G×G)/G) (where G acts on both factors
via conjugation), we get an endofunctor of Ind Perf(G/G) via p2∗(p∗1 −⊗K). Denoting

∆ : G/G→ (G×G)/G
the diagonal, the object K = ∆∗OG/G induces the identity endofunctor of Ind Perf(G/G). On the other
hand, if K = p∗1K0 for some K0 ∈ Perf(G/G), then the induced functor is given by

p2∗p
∗
1(−⊗K0) = π∗π∗(−⊗K0)



290 VIII. L-PARAMETER

where π : G/G → ∗/G is the projection. In particular, this functor has image in Ind Perfind(G/G) ⊂
Ind Perf(G/G). Thus, if ∆∗OG/G lies in the subcategory of Perf((G × G)/G) generated under cones
and retracts by the image of p∗1 Perf(G/G), then the identity endofunctor of Ind Perf(G/G) factors over
Ind Perfind(G/G), giving the desired result. But the map

q : (G×G)/G→ G/G : (g1, g2) 7→ g1g
−1
2

sits in a cartesian diagram

(G×G)/G
q //

p1
��

G/G

π

��
G/G

π // ∗/G
and ∆∗OG/G ∈ Perf((G × G)/G) arises via pullback from i∗L ∈ Perf(G/G). Thus, part (ii) gives the
desired claim by pullback. �

In fact, the proof for (iii) applies more generally, for example to the following result.

Proposition VIII.5.12. Assume that G◦ is reductive and the orders of π0G and π1(G◦)tor are not
divisible by `. Let Θ1, . . . ,Θn be automorphisms of G, and let G act on Gn via

g · (g1, . . . , gn) = (gg1Θ1(g)
−1, . . . , ggnΘn(g)

−1).

Then the inclusion Perfind(Gn/ΘG) ⊂ Perf(Gn/ΘG) is an equality.

Proof. First, if all Θi = id and i : ∗ → Gn is the inclusion of the origin, the object i∗L ∈ Perf(Gn/G)
lies in Perfind(Gn/G). Indeed, this follows from Proposition VIII.5.11 applied to the group Gn (upon
pullback from Gn/Gn to Gn/G). Now arguing as in the proof of (iii) in Proposition VIII.5.11, it suffices
to generate ∆∗OGn/ΘG in Perf((Gn ×Gn)/ΘG). But we have the map

q : (Gn ×Gn)/ΘG→ Gn/G : (g1, . . . , gn, g
′
1, . . . , g

′
n) 7→ (g1g

′−1
1 , . . . , gng

′−1
n )

where on the target G acts by simultaneous (untwisted) conjugation, and ∆∗OGn/ΘG is the pullback of
i∗L ∈ Perf(Gn/G). This can be resolved by induced vector bundles, and the resulting resolution of
∆∗OGn/ΘG shows that the identity endofunctor of Ind Perf(Gn/ΘG) factors over Ind Perfind(Gn/ΘG),
giving the result. �

Another situation of interest will be the following. Consider a derived fibre product

X
i //

f

��

X̃

f̃
��

X0
i0 // X̃0

where X0, X̃0 and X̃ are classical affine schemes of finite type over L equipped with compatible actions
of G and where i0 (and hence i) is a closed immersion and a complete intersection. (Thus, only X can be
derived.) Write

X = Spec(A), X̃ = Spec(Ã), X0 = Spec(A0), X̃0 = Spec(Ã0).

Again, we assume that G◦ is reductive and π0G is of order prime to `.
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Proposition VIII.5.13. Consider a derived fibre product of affine schemes of finite type withG-action
as above, where i0 is a closed immersion and a complete intersection. In the following statements, assump-
tions accumulate, so for example in part (iv) all assumptions from parts (i), (ii) and (iii) are active.

(i) Assume that A0 ∈ Perfind(X̃0/G) ⊂ Perf(X̃0/G). Then the map A0 ⊗Ã0
Ã → A is an isomor-

phism in Ind Perf(∗/G).
(ii) Assume in addition thatA0, Ã0 and Ã have a good filtration. ThenA ∈ Ind Perf(∗/G) lies in the

connective part of the good filtration t-structure.
(iii) Assume in addition that ker(Ã0 → A0) has a good filtration. Then fib(Ã→ A) ∈ Ind Perf(∗/G)

lies in the connective part of the good filtration t-structure.
(iv) Assume in addition that Perf(−/G) = Perfind(−/G) for X̃ andX0. Then Perf(X/G) = Perfind(X/G).

Note that if A is underived, then parts (ii) and (iii) just affirm that A and ker(Ã → A) have a good
filtration.

Proof. Under the assumption of (i),A0 admits a finite resolution byG-equivariant Ã0-modules of the
form V ⊗ Ã0, and hence the tensor productA0⊗Ã0

Ã is bounded. As on bounded complexes, the forgetful
functor Ind Perf(∗/G) → D(∗) is faithful, (i) follows. The tensor product in Ind Perf(∗/G) preserves
connectivity in the good G◦-filtration t-structure, so that part (i) together with the assumptions of (ii)
imply that A lies in the connective part. The same argument applies to the ideal, giving (iii).

For part (iv), it suffices to see that Perf(X/G) is generated by the image of Perf(X̃/G). Arguing as in
Proposition VIII.5.8, we have to see that for all M ∈ Perf(X/G) with dual M∗, the natural map

colim[. . .→M ⊗Ã A⊗ÃM
∗ →M ⊗ÃM

∗]→M ⊗AM∗

in Ind Perf(∗/G) is an isomorphism. We note that each term here is of the form

M ⊗A K ⊗AM∗

for certain K ∈ D(X ×X̃ X/G) with perfect projection to X (in particular, bounded coherent). (Here,
X×X̃X denotes the derived intersection.) Indeed,M⊗AM∗ corresponds to the diagonal, whileM⊗ÃM

∗

corresponds to A⊗Ã A, i.e. the structure sheaf of X ×X̃ X/G (where the fibre product, just like all tensor
products, is derived). Moreover, all transition maps come from maps between K ’s, so the cone of the above
displayed map can be written as a sequential colimit of

M ⊗A Kn ⊗AM∗

for variousKn ∈ D(X×X̃X/G). In fact, as i arises as the base change of i0, all theKn similarly arise as the
base change of complexesKn,0 ∈ D(X0×X̃0

X0/G) along g : X×X̃X → X0×X̃0
X0. Moreover, project-

ing to X0/G, the Kn,0’s become increasingly connective in the good filtration t-structure (as the relevant
complex becomes split exact). Thus, to see that this sequential colimit vanishes, by Proposition VIII.5.5, it is
enough to show thatM ⊗A g∗K⊗AM∗ becomes increasingly connective in the good filtration t-structure
if (the underlying G-representation of) K0 ∈ D(X0 ×X̃0

X0/G) becomes increasingly connective in the
good filtration t-structure. To see this, we can use truncations in the good filtration t-structure to assume
that K0 lives in a single degree for the good filtration t-structure. (This step is the main reason for intro-
ducing the good filtration t-structure.) But then it is a module over Hgood

0 (A0 ⊗Ã0
A0) = A0. (This step

uses that ker(Ã0 → A0) has a good filtration.) As Perf(X0/G) = Perfind(X0/G), we can then resolve
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K0 by induced bundles as in Proposition VIII.5.8 and hence reduce to the case K0 = V ⊗ A0 for some
V ∈ Perf(∗/G), becoming increasingly connective in the good filtration t-structure. But then

M ⊗A g∗K ⊗AM∗ =M ⊗AM∗ ⊗ V

whose connectivity in the good filtration t-structure increases with that of V as soon as M ⊗A M∗ has
bounded good filtration dimension. But M ⊗A M∗ ∈ Perf(X̃/G) = Perfind(X̃/G), and all objects of
Perfind(X̃/G) have bounded good filtration dimension.2 �

These results are already sufficient to handle the case of the space ofL-parameters of a compact Riemann
surface. Indeed, this is a certain fibre product

X //

��

G2g

��
∗ // G

and the preceding propositions apply to show Perf(X/G) = Perfind(X/G), and identify A with the ex-
cursion algebra. In fact, the same argument applies for tame L-parameters of local fields. It remains to deal
with the wild part.

VIII.5.3. Fixed point subgroups. We will need to know some properties of the fixed points H = GP

of reductive groups G under a (finite) group P of automorphisms of G of order prime to `. (Our choice of
notation P is motivated by the later application to the wild inertia group.) For technical reasons, we will
allow G to be disconnected, but always with G◦ reductive and π0G of order prime to `. First, we have the
following structural result.

Proposition VIII.5.14. Let L be an algebraically closed field of characteristic ` > 0, and let G be a
linear algebraic group over L such that G◦ is reductive and π0G is of order prime to `. Assume that P is
a finite group of order prime to ` acting on G and let H = GP be the fixed points. Then H is a smooth
linear algebraic group, H◦ is reductive, and π0H is of order prime to `.

We note that our proof that π0H is of order prime to ` probably uses unnecessarily heavy machinery.
Under the assumption that P is solvable (the only case relevant to us), this can be deduced much more
directly from Steinberg’s theorem [Ste68, Theorem 8.1] by reducing to cyclic P and simply connected G.

Proof. We can assume G = G◦. It is a standard fact that the fixed points of a smooth affine scheme
under a finite group of order prime to the characteristic is still affine and smooth. Moreover, by [PY02,
Theorem 2.1], H◦ is reductive.

For the final statement, we consider the action of G on
∏
P\{1}G, where it acts on the factor enu-

merated by Θ ∈ P through Θ-twisted conjugation. Note that O(
∏
P\{1}G) has a good G-filtration. By

[TvdK10, Corollary 1.5], for any G-equivariant finitely generated O(
∏
P\{1}G)-module M , the good fil-

tration dimension of M is finite, and in particular H i(G,M) = 0 for all large enough i.

2One could also cite [TvdK10, Corollary 1.5].
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Now G/H is a closed orbit of G acting on
∏
P\{1}G (the orbit of the identity element). Moreover, if

π0H has an element of order `, then we get a subgroup H ′ ⊂ H with π0H ′ ∼= Z/`Z. In that case,

RΓ(G,O(G/H ′)) ∼= RΓ(H ′, L) ∼= RΓ(Z/`Z, L)

has cohomology in all positive degrees, while O(G/H ′) correponds to a G-equivariant coherent sheaf on∏
P\{1}G (equipped with its Θ-conjugation), so this contradicts the previous paragraph. �

Assume from now on that P is solvable. Our goal now is to prove the following result. This simul-
taneously generalizes the classical case of Levi subgroups, and the case of involutions known as Brundan’s
conjecture [Bru98], [vdK01]. The remaining cases are for exceptional groups, and are discussed under some
restrictions on ` in [HM13].

Theorem VIII.5.15. The subgroupH◦ ⊂ G◦ is a Donkin subgroup. In other words, for any represen-
tation V of G◦ that admits a good G◦-filtration, also V |H◦ admits a good H◦-filtration. Equivalently, for
any representation W of H◦ that admits a good H◦-filtration, also IndG

◦
H◦W admits a good G◦-filtration.

A notable consequence is that the well-known assertion that Levi subgroups are Donkin subgroups can
be generalized to the statement that centralizers of regular semisimple elements define Donkin subgroups.
Thus the proof below gives, in particular, a new proof that Levi subgroups are Donkin subgroups.

Proof. First, Proposition VIII.5.3 shows that the formulations are equivalent. Indeed, Proposition VIII.5.3
applied to the group H◦ shows that the first statement is equivalent to the assertion that for all represen-
tations V of G◦ with a good G◦-filtration and all representations W of H◦ with a good H◦-filtration, one
has H i(H◦, V |H◦ ⊗W ) = 0. But H i(H◦, V |H◦ ⊗W ) = H i(G◦, V ⊗ IndG

◦
H◦W ), so Proposition VIII.5.3

applied to the group G◦ translates this into the second statement.
By induction, we can assume that P is a cyclic group of prime order p 6= `, so P = Z/pZ. Let Θ denote

the automorphism of G corresponding to 1 ∈ Z/pZ = P . We can do also evidently assume that G is
connected, and reduce to the case that G is simple and simply connected: As the property of admitting a
good filtration is detected after restriction to the derived group, and also after passing to finite covers, we
can assume that G is simply connected. In fact, decomposing G into simple factors, we can assume that P
permutes the simple factors ofG transitively. IfG is not simple, thenG =

∏
P H withP -action permuting

the factors, and H ⊂ G =
∏
P H is the diagonal embedding, so the result follows from the stability of

good filtrations under tensor products. Thus, we can assume that G is simple (and simply connected). In
particular, H is connected by [Ste68, Theorem 8.1].

We will first handle the case W = 1; or more precisely, the assertion that O(G/H) = IndGH1 has a
goodG-filtration. This argument works directly for arbitraryG as in the statement of the theorem, so does
not need the previous reduction. Let

X = {(g0, . . . , gp−1) ∈ Gp | g0Θ(g1) · · ·Θp−1(gp−1) = 1} ⊂ Gp

endowed with the simultaneous Θ-conjugation by G; i.e. g ∈ G acts on (gi)i = (g0, . . . , gp−1) ∈ X via

g(gi)i = (ggiΘ(g)−1)i.

Moreover, endowX with theG-equivariantP = Z/pZ-action taking (g0, g1 . . . , gp−1) to (g1, . . . , gp1 , g0).
Let Y = XP . AsX is smooth affine and P is of order prime to `, also Y is a smooth affine scheme, equipped
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with a remaining G-action. Concretely,

Y = {g0 ∈ G | g0Θ(g0) · · ·Θp−1(g0) = 1} ⊂ G
equipped with Θ-conjugation. A simple calculation on tangent spaces shows that this is a finite disjoint
union of G-orbits. In particular, the orbit of 1 ∈ Y ⊂ G is given by G/H where H = GP = GΘ.

By Lemma VIII.5.16 below, the map

colim[n]∈∆opO(
∏
Pn

X)→ O(XP ) = O(Y )

is an isomorphism in IndPerf(∗/G). But all terms on the left-hand side admit a good G-filtration, hence
also O(Y ) lies in the connective part of the good filtration t-structure, and so admits a good G-filtration.
In particular, the retractO(G/H) has a good G-filtration.

At this point, we make use of the reduction to the case that G is simple and simply connected. Assume
first that Θ is an inner automorphism. Thus, H is the centralizer of some regular semisimple element
g ∈ G (with g ∈ Gad of order p). We can find some maximal torus T ⊂ G containing g, which is then
also a maximal torus ofH . Choose an enumeration of the dominant weights 0 = λ0, λ1, . . . ofG such that
all weights of ∇λi are contained in the Weyl group orbit of λ0, . . . , λi. We argue by induction on i that
∇λi |H has a good H-filtration. More precisely, let Wi ⊂ W be the subset of elements w ∈ W such that
wλi is H-dominant. Then we claim, by induction on i, that there is a surjective map

∇λi |H →
⊕
w∈Wi

∇Hwλi

whose kernel has a good H-filtration (where all weights that occur in the kernel are in the Weyl group
orbit of λ0, . . . , λi−1).

Note that there is indeed such a natural map, as∇λi |H has awλi-weight space of dimension 1 for allw ∈
Wi. We need to see that the homotopy fibreX of this map is connective in the goodH-filtration t-structure.
This homotopy fibre has only weights in the Weyl group orbit of λ0, . . . , λi−1. By the characterization of
the connective part of the good filtration t-structure it suffices to see that

RΓ(H,X ⊗∇Hw′λj )

is connective for all j < i and w′ ∈Wj . But RΓ(H,∇Hwλi ⊗∇
H
w′λj

) = 0, so using the definition of X this
can be rewritten more easily as

Hm(H,∇λi |H ⊗∇
H
w′λj ) = 0

for m > 0. Equivalently, for all j < i,

Hm(H,∇λi |H ⊗
⊕
w′∈Wj

∇Hw′λj ) = 0

for m > 0. But by induction on i we have the surjective map

∇λj |H →
⊕
w′∈Wj

∇Hw′λj

whose kernel has a good H-filtration (with smaller weights). Thus, doing also an induction on j , we see
that it suffices to see that

Hm(H,∇λi |H ⊗∇λj |H) = 0
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for m > 0. But
Hm(H,∇λi |H ⊗∇λj |H) = Hm(G, IndGH1⊗∇λi ⊗∇λj ) = 0

as all three tensor factors admit a good G-filtration, hence so does the tensor product.
It remains to handle the case that G is simple and simply connected and Θ is an outer automorphism,

so necessarily p = 2 or p = 3. We could finish this off by appealing for p = 2 to the case of involutions
handled by Brundan [Bru98] and van der Kallen [vdK01] and for p = 3 by noting that this only occurs
when G = Spin8, where H is either G2 ⊂ Spin8 (for the diagram automorphism) which is handled in
[Bru98], or the fixed points SL3 ⊂ G2 ⊂ Spin8 of an inner automorphism of order 3 ofG2 (handled either
by the above, or by another reference to [Bru98]). On the other hand, we can also repeat the arguments
above. Namely, we note that we can in general lift any highest weight (i.e. dominant cocharacter) µ of H
to a highest weight λ of G and then a similar inductive argument shows that there is some finite set Xµ of
dominant cocharacters of H (with µ ∈ Xµ) such that there is a surjective map

∇λ|H →
⊕
µ′∈Xµ

∇Hµ′

for which the kernel has “smaller” weights and a good H-filtration. Now if λ is general, we want to see
that ∇λ|H has a good H-filtration. We have to see that for all dominant cocharacters µ of H , the H-
representation ∇λ|H ⊗ ∇Hµ has no higher cohomology. Pick some dominant cocharacter λµ of G lifting
λ. By induction on µ and the preceding claim, it suffices to see that ∇λ|H ⊗ ∇λµ |H has no higher H-
cohomology. But this agrees with the G-cohomology of IndGH1 ⊗ ∇λ ⊗ ∇λµ which has no higher G-
cohomology as all three tensor factors have good G-filtrations. �

We used the following key lemma in the proof. Its full force will be required later to prove Theo-
rem VIII.5.2.

Lemma VIII.5.16. LetG be a linear algebraic group over an algebraically closed fieldL of characteristic
` such that G◦ is reductive and π0G is of order prime to `. Let Θ be an automorphism of G of prime order
p 6= `. Let

X = {(g0, . . . , gp−1) ∈ Gp | g0Θ(g1) · · ·Θ(gp−1) = 1}
equipped with the G-action of simultaneous Θ-conjugation, and the P = Z/pZ-action of cyclic permuta-
tion. Consider the corresponding augmented cosimplicial G-space

XP → X ⇒
∏
P

X . . . .

Then the map
colim[n]∈∆opO(

∏
Pn

X)→ O(XP )

is an isomorphism in IndPerf(∗/G).

Proof. The idea is to introduce the formal completion X̂ ofX alongXP and then observe that on the
one hand, replacing X by X̂ yields an isomorphic colimit; and on the other hand, that there is a canonical
(G,P )-equivariant retraction from X̂ ontoXP . More precisely, after replacing all terms

∏
Pn X by formal

completions along XP , the augmented simplicial G-space acquires an extra degeneracy.
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To execute this strategy, we have to enlarge IndPerf(∗/G) in order to allow power series algebras. The
following discussion is inspired by the theory of solid modules [CS]. Note that IndPerf(∗/G) is freely
generated, as a presentable stable∞-category, by the exact category Rep(G). (So IndPerf(∗/G) is the∞-
category of contravariant functors from Rep(G)op to spectra that take exact sequences to fibre sequences.)
Let Pro(Rep(G)) be the Pro-category of Rep(G); it is again an exact symmetric monoidal category (using
that Pro-vector spaces are well-behaved). We will actually only need countable Pro-systems, so the reader is
invited to restrict to this subcategory. Let us denote by IndProPerf(∗/G) the corresponding category freely
generated as a presentable stable∞-category by the exact category Pro(Rep(G)). (It is a slight misnomer
as the compact objects are not all of Pro(Perf(∗/G)) but only the part of bounded amplitude.)

Let ˆO(G) be the completion of O(G) at the unit element (equipped with the action of G by usual
conjugation); this is an object of Pro(Rep(G)). Formally, let Ĝ ⊂ G be the corresponding geometric
object. Critically, ˆO(G) is an idempotent O(G)-algebra in IndProPerf(∗/G). Indeed, by the usual trick
using the group structure to write the diagonal as a pullback of the unit section, it suffices to see that
L⊗O(G)

ˆO(G) = L. If ` does not divide the order ofπ1(G◦)tor, then this follows from Proposition VIII.5.11,
as then the left-hand side is a bounded complex and the isomorphism can be checked after forgetting the
G-action (where it is clear). In general, we can find an embedding G ↪→ GLn, and it suffices to see that

ˆO(GLn)⊗O(GLn) O(G) = ˆO(G)

in IndProPerf(∗/G). For this, it suffices to see that the left-hand side is a bounded complex, for which
it suffices to show that O(G) ∈ Perf(GLn /G) lies in Perfind(GLn /G). But in fact Perf(GLn /G) =

Perfind(GLn /G) by the argument of Proposition VIII.5.11 (iii).
Note thatX embeds intoX ′ = Gp withX ′P = G. The corresponding augmented cosimplicialG-space

X ′P → X ′ ⇒
∏
P

X ′ . . .

admits an extra degeneracy and hence the map

colim[n]∈∆opO(
∏
Pn

X ′)→ O(X ′P ) = O(G)

is an isomorphism in IndPerf(∗/G). The same applies to
∏̂
Pn X

′, the completion of
∏
Pn X

′ along the
diagonal inclusion X ′P = G, so also the map

colim[n]∈∆opO(
∏̂
Pn

X ′)→ O(X ′P ) = O(G)

is an isomorphism in IndProPerf(∗/G). In particular, the natural map

colim[n]∈∆opO(
∏
Pn

X ′)→ colim[n]∈∆opO(
∏̂
Pn

X ′)

is an isomorphism in IndProPerf(∗/G). As geometric realizations of bisimplicial objects can be computed
after diagonal restriction, it now suffices to show

colim[n]∈∆opO(
∏
Pn

X)⊗O(
∏
Pn X

′) O(
∏̂
Pn

X ′)→ O(XP )
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is an isomorphism in IndProPerf(∗/G). We note that each term identifies withO(
∏̂
Pn X)where

∏̂
Pn X is

the completion of
∏
Pn X along the diagonal embedding ofXP . Indeed, this is clear without theG-action.

To see itG-equivariantly (i.e., in IndProPerf(∗/G)), it suffices to see that these tensor product are computed
by bounded complexes. If ` does not divide the order of π1(G◦)tor, this follows from Proposition VIII.5.12
which ensures

O(
∏
Pn

X) ∈ Perf(
∏
Pn

X ′/G) = Perfind(
∏
Pn

X ′/G).

In general, we can argue as above by using an embedding of G into GLn.
Thus, we have a cosimplicial augmented G-space

XP → X̂ ⇒
∏̂
P

X ⇒ . . .

with
∏̂
Pn X the completion of

∏
Pn X along the diagonal embedding of XP . It remains to see that this

has a G-equivariant extra degeneracy. For this, it suffices to construct a (G,P )-equivariant map∏̂
P

X → X̂

whose restriction along the diagonal embedding X̂ →
∏̂
P X is the identity of X̂ . Indeed, this defines an

“averaging” map that can be used to construct the extra degeneracies in a standard way.

Such a map
∏̂
P X → X̂ needs to take a p-tuple (g0,i, . . . , gp−1,i)i∈P of p-tuples (g0,i, . . . , gp−1,i)

satisfying
g0,iΘ(g1,i) · · ·Θp−1(gp−1,i) = 1

and produce a new p-tuple (h0, . . . , hp−1) such that

h0Θ(h1) · · ·Θp−1(hp−1) = 1.

The G-equivariance means that this construction must be invariant under simultaneous Θ-conjugation.
The P -equivariance means that the recipee for h0 must determine the recipees for h1, . . . , hp−1 through
suitable conjugation. And the final condition is that if one applies this in the case where all ga,i = ga are
independent of i, then ha = ga for a = 0, . . . , p− 1.

Now we define this retraction by

h0 = (g0,0Θ(g1,1) · · ·Θp−1(gp−1,p−1))
−1/pg0,0.

Here, the element of which we are taking a p-th root is an element of Ĝ (the completion of G at the unit)
and here one can uniquely take p-th roots. Moreover, the formation of p-th roots is invariant under G-
conjugation; thus this formula has the required G-equivariance. If all ga,i = ga are independent of i, then
this element is actually equal to 1 and hence h0 = g0.

We are then forced to take

hi = (gi,iΘ(gi+1,i+1) · · ·Θp−1(gi−1,i−1))
−1/pgi,i

for the other i in order to get P -equivariance. Thus, we get (G,P )-equivariance, and the property that on
equal elements ga,i = ga, one has ha = ga. It remains to see that we actually defined a map to X̂ , for which
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we have to see
h0Θ(h1) · · ·Θp−1(hp−1) = 1.

But, using that formation of p-th roots is invariant under conjugation, one can start rewriting the first two
factors

h0Θ(h1) = (g0,0Θ(g1,1) · · ·Θp−1(gp−1,p−1))
−1/pg0,0(Θ(g1,1)Θ

2(g2,2) · · · g0,0)−1/pΘ(g1,1)

= g0,0(Θ(g1,1) · · ·Θp−1(gp−1,p−1)g0,0)
−1/p(Θ(g1,1)Θ

2(g2,2) · · · g0,0)−1/pΘ(g1,1)

= g0,0(Θ(g1,1)Θ
2(g2,2) · · · g0,0)−2/pΘ(g1,1)

= g0,0Θ(g1,1)(Θ
2(g2,2) · · · g0,0Θ(g1,1))

−2/p.

This procedure can be continued, shifting the p-th root past each factor Θi(gi,i) using conjugation invari-
ance of forming p-th roots; and then it matches the next p-th root, so they can be combined. In the end,
one gets

h0Θ(h1) · · ·Θp−1(hp−1) = g0,0Θ(g1,1) · · ·Θp−1(gp−1,p−1)(g0,0Θ(g1,1) · · ·Θp−1(gp−1,p−1))
−p/p = 1.

�

Recall that Theorem VIII.5.15 affirms that for a representation W of H◦, if W admits a good H◦-
filtration then IndG

◦
H◦W admits a good G◦-filtration. In fact, the converse is true as well. More precisely,

we have the following assertions.

Proposition VIII.5.17. In the situation of Theorem VIII.5.15, the following results hold true.

(i) Let W be a representation of H◦. Then W admits a good H◦-filtration if and only if IndG
◦

H◦W
admits a good G◦-filtration.

(ii) LetW be a representation ofH . ThenW admits a goodH◦-filtration if and only if IndGHW admits
a good G◦-filtration.

(iii) Let W be a representation of H◦ that admits a good H◦-filtration. Then the kernel of

(IndG
◦

H◦W )|H◦ →W

admits a good H◦-filtration.
(iv) Let W be a representation of H that admits a good H◦-filtration. Then the kernel of

(IndGHW )|H →W

admits a good H◦-filtration.
(v) The image of the restriction Perf(∗/G◦)→ Perf(∗/H◦) generates under cones and retracts.

(vi) The image of the restriction Perf(∗/G)→ Perf(∗/H) generates under cones and retracts.

In a previous version of this manuscript, assertion (vi) was proved by an exhaustive analysis of all
possible cases. One key issue in the proof is that the individual assertions do not generally allow simple
reductions to the case thatG is simply connected and the precise form of the center matters, as the following
example shows. We are able to give a better argument now as Theorem VIII.5.15 gives us very good control
about representations with good filtrations, making a dévissage to the simply connected case possible.

Remark VIII.5.18. The following example shows that the hypothesis that P is of order prime to ` is
important, and cannot be weakened to “quasi-semisimple” automorphisms (preserving a Borel and a torus) or
even automorphisms fixing a pinning; also, the example shows that the precise form of the center is critical.
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IfG = (SL2×SL2)/µ2 with the automorphism switching the two factors, thenH = PGL2×(µ2×µ2)/µ2.
If we had ` = 2, then one can show that for all objects A ∈ Perf(∗/H) in the image of Perf(∗/G), the
summandA1 ofAwith nontrivial central character has the property that the (homotopy) invariants of the
Z/2Z ⊂ PGL2-action on A1 are a perfect complex. This implies that the nontrivial character of H is not
generated by Perf(∗/G) under cones and retracts.

Proof. We will first show that assertions (i), (iii) and (v) are equivalent; and similarly, that assertions
(ii), (iv) and (vi) are equivalent.

Let us start by showing that (v) implies (iii) and (i). Note that (v) is equivalent to the assertion that for
all representations W of H◦, the complex

. . .→ IndG
◦

H◦IndG
◦

H◦W → IndG
◦

H◦W →W → 0

is a resolution in Ind Perf(∗/H◦). Indeed, if it is a resolution, then in particular W is resolved by objects
in the image of Ind Perf(∗/G◦) → Ind Perf(∗/H◦), so the image generates. Conversely, if Perf(∗/G◦) →
Perf(∗/H◦) generates under cones and retracts, then IndG

◦
H◦ : Ind Perf(∗/H◦) → Ind Perf(∗/G◦) is con-

servative; but the above complex becomes split exact after this operation.

Now if W is as in (i), such that IndG
◦

H◦W admits a good G◦-filtration, then this resolution (and The-
orem VIII.5.15) shows that W admits a resolution in Ind Perf(∗/H◦) where all terms admits a good H◦-
filtration, i.e. are connective in the good H◦-filtration t-structure. It follows that W is connective in the
good H◦-filtration t-structure, i.e. admits a good H◦-filtration. Similarly, if W as in (iii), then the same
argument applied to the first truncation of the last displayed resolution shows that this kernel admits a
good H◦-filtration.

For the converse, we show that (i) implies (iii), and (iii) implies (v). Assume (i), and take any W as in
(iii). Then to show that this kernel admits a good H◦-filtration, it suffices to see that after applying IndG

◦
H◦ ,

it admits a goodG◦-filtration. But after applying IndG
◦

H◦ , the map becomes split, and IndG
◦

H◦IndG
◦

H◦W admits
a good G◦-filtration by Theorem VIII.5.15. Now we show that (iii) implies (v). To show (v), it suffices
to see that for any H◦-representation W with a good H◦-filtration, there is some G◦-representation V
with a good G◦-filtration and a surjection V |H◦ → W whose kernel admits a good H◦-filtration. Indeed,
one can then inductively build a resolution of W , using that Ind Perf(∗/H◦) is left-complete for the good
H◦-filtration t-structure. But by (iii), we can simply take V = IndG

◦
H◦W .

A similar analysis shows that (ii), (iv) and (vi) are equivalent. Note first that in (ii), W is a direct
summand of IndHH◦W (as π0H is of order prime to ` by Proposition VIII.5.14), and hence IndGHW is a
direct summand of IndGH◦W ; using Theorem VIII.5.15 this shows that if W admits a good H◦-filtration
then also IndGHW admits a good G◦-filtration. So again (ii) is really about the converse direction.

Now again (vi) is equivalent to the complex

. . .→ IndGHIndGHW → IndGHW →W → 0

being a resolution in Ind Perf(∗/H), for all representations W of H . Assume that this holds. Then if W
is as in (ii) so that IndGHW admits a good G◦-filtration, then all terms in this resolution have a good H◦-
filtration (by Theorem VIII.5.15), hence so doesW . Similarly, ifW is as in (iv), then the truncation of this
sequence shows that ker(IndGHW →W ) has a good H◦-filtration. Thus, (vi) implies (ii) and (iv).



300 VIII. L-PARAMETER

Going from (ii) to (iv) is the same argument as going from (i) to (iii). The argument that (iv) implies (vi)
also adapts verbatim from the argument that (iii) implies (v), noting that Ind Perf(∗/H) is left-complete
for the good H◦-filtration t-structure (as π0H is of order prime to `).

Thus, all items with an odd number are equivalent, as are all items with an even number. But it is
clear that (vi) implies (v) as the image of Perf(∗/H) → Perf(∗/H◦) generates under retracts, as for all
representations W of H◦, one can split W off IndHH◦W as π0H is of order prime to `. On the other hand,
if G is connected, we claim that (iii) implies (iv). Take any H-representation W that admits a good H◦-
filtration. Then

IndGH◦(W |H◦) = IndGH(IndHH◦(W |H◦))

admits IndGHW as a direct summand, in a way compatibly with the map back to W . This implies that the
kernel in (iv) is a direct summand of the kernel in (iii) for the representation W |H◦ , and hence (iii) implies
(iv).

At this point, we have proved that for connectedG, all six assertions are equivalent, and in general (vi)
implies all other assertions. Moreover, assertion (vi) is amenable to induction on P , so we can assume that
P = Z/pZ is cyclic of prime order p 6= `. If G is connected and simply connected, then the arguments
with highest weights in the proof of Theorem VIII.5.15 show that (vi) (which agrees with (v) in this case)
holds. It remains to reduce to the case that G is connected and simply connected.

Assume that G is connected and semisimple and let G′ → G be the simply connected cover of G, with
(connected) fixed pointsH ′. ThenH ′ → H◦ is a central isogeny. We argue that (iii) forG′ implies (iii) for
G. Indeed, for a H◦-representation W , one can write IndGH◦W as the part of IndG

′
H′W on which the kernel

of G′ → G acts trivially. This means that the kernel in (iii) for G is a direct summand of the kernel in (iii)
for G′ (and W considered as a representation of H ′). Thus, we have handled the case that G is connected
and semisimple.

Now take a general G. Let G′ ⊂ G be the derived subgroup of G◦, with fixed points H ′ ⊂ H . Let
D = G/G′ which is linearly reductive (more precisely, D◦ is a torus and π0D is of order prime to `). We
get an exact sequence

1→ H ′ → H → H → 1

where H ⊂ D is linearly reductive (again, H◦ is a torus and π0H is of order prime to `). We argue
that (vi) for G′ implies (vi) for G, thereby finishing the proof. Take any representation W of H . Then
W splits off IndHH′(W |H′) = W ⊗ O(H) as H has semisimple representation theory and hence 1 is a
direct summand of O(H). Thus, it suffices to see that for all representations W ′ of H ′, the representation
IndHH′W ′ ∈ Ind Perf(∗/H) is in the subcategory generated under colimits by the image of Perf(∗/G).
Using (vi) for H ′, and using that any representation V ′ of G′ is a retract of (IndGG′V )|G′ , it suffices to see
that for any representation V ofG, the representation IndHH′(V |H′) ∈ Ind Perf(∗/H) is in the subcategory
generated under colimits by the image of Perf(∗/G). But this is given by V |H ⊗O(H). Thus, it suffices to
see that O(H) ∈ Ind Perf(∗/H) ⊂ Ind Perf(∗/H) is in the subcategory generated under colimits by the
image of Perf(∗/G). This reduces us to H ⊂ D, where the whole representation theory is semisimple, so
thatO(H) is a retract ofO(D)|H . �

To combine the results of this section with the preceding section, we also need the following observa-
tion. Note that in this section, we did not need the assumption that ` does not divide the order of π1(G◦)tor;
but also the operations of this section do not interfere with this condition:
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Proposition VIII.5.19. Assume that G◦ is reductive and that P is a finite solvable group of order
prime to ` acting on G with fixed points H = GP . If π1(G◦)tor is of order prime to `, then also π1(H◦)tor
is of order prime to `.

Proof. By induction, we can assume that P = Z/pZ is cyclic of prime order p 6= `. We may evidently
assume that G is connected, and we can also pass to the derived group and its simply connected cover. As
before, we can also assume that G is simple. We need to see that π1(H)tor is of order prime to `. There is
probably both a good reference and a good argument, but lacking both, we quickly run through the list of
possibilities. In typeA, all inner automorphisms give Levi subgroups, which always have simply connected
derived subgroup. Outer automorphisms are involutions so p = 2 and ` 6= 2, and give either symplectic or
orthogonal groups, whose fundamental group is a 2-group. In the triality case, the fixed points of an order
3 automorphism are eitherG2 or SL3, in particular simply connected. In typesB, C andD outside triality,
either p > 2 and the automorphism is inner and the centralizer a Levi subgroup (having simply connected
derived subgroup) or p = 2 and hence ` 6= 2 while the fixed point subgroup is a classical group, with
fundamental group a 2-group. There remain the exceptional groups. Looking at the case of involutions
(cf. [vdK01] or its reference [Spr87]) the only possibly dangerous case is the inner involution of E6 which
has fixed points of type A5 ×A1 which might contribute a 3-group to the fundamental group. But E6 has
center of order 3 which survives to the fixed points. There remain the inner involutions of exceptional
groups of prime order p > 2. The possible cases that are not Levi subgroups are enumerated in [HM13,
Theorem 4.3.3], but the list there includes also centralizers of elements of non-prime order. Restricting to
prime orders, there is one case for p = 5 which is E8 with subgroup of type A4 × A4, so the fundamental
group is necessarily a 5-group. In all remaining cases p = 3. For G2, this gives a group of A2; for F4, of
type A2 × A2; for E6, of type A2 × A2 × A2; these are all fine as the fundamental group is necessarily a
3-group. ForE7, it is of typeA2×A5. This might a priori contribute a 2-group, but again the center ofE7

shows that this does not happen. Finally, forE8, one gets a group of typeA2×E6 orA8; in both cases, the
fundamental group is necessarily a 3-group. �

VIII.5.4. End of proof. Finally, we can prove Theorem VIII.5.2. The subtle part is to give a clean
account of the reduction to the tame case. We take an approach that is inspired by our construction of the
spectral action in Chapter X below.

As preparation, consider any discrete group W and a gerbe G → ∗/W (on the fpqc site of SpecL)
banded by some linear-algebraic group G over L, such that G◦ is reductive and π0G of order prime to `.
(Picking a point of G , this is given by the classifying space of EG for some extension

1→ G→ EG
π−→W → 1.

This extension will later be given by the L-group.) In fact, slightly more generally, we will allow that G is
a finite disjoint union of such gerbes.

For any animaS mapping to ∗/W , we can look at the derived fpqc stack Map∗/W (S,G) of maps S → G
over ∗/W . If S is a finite set equipped with a (necessarily trivial) W -torsor, and G is connected, this is
isomorphic to a product of copies of G. In general, it can be analyzed via resolutions. In fact, the ∞-
category of anima S over ∗/W admits compact projective generators, given by finite sets equipped with a
W -torsor, so the whole∞-category of such S is obtained by animating the category of finite sets equipped
with a W -torsor.
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Now we look at the functor taking any such anima S over ∗/W to the L-linear symmetric monoidal
presentable stable∞-category

Ind Perf(Map∗/W (S,G)).

We can also restrict this functor to compact projective objects; then it commutes with all finite coproducts.
This commutation with finite coproducts reduces to the assertion that forG andH linear-algebraic groups
over L with G◦ and H◦ reductive and π0G and π0H of order prime to `, one has

Ind Perf(∗/G)⊗D(L) Ind Perf(∗/H) ∼= Ind Perf(∗/G×H),

which follows from highest weight theory. We may then extend back to all S via left Kan extension, to
get a colimit-preserving functor

S 7→ Ind Perf(MapΣ
∗/W (S,G))

from anima S over ∗/W to L-linear symmetric monoidal presentable stable∞-categories. (The notation
here is purely symbolic; we like to think of this symmetric monoidal category as the Ind-category of perfect
complexes on some hypothetical stack MapΣ

∗/W (S,G). The symbol Σ here is in reference to the use in
[Lur09, Section 5.5.8] in relation to sifted colimits.) By the universal property of left Kan extensions, there
is a functorial comparison map

Ind Perf(MapΣ
∗/W (S,G))→ Ind Perf(Map∗/W (S,G)).

If S = ∗/Fn → ∗/W is given by the classifying space of a finite free group Fn equipped with a
map Fn → W , and G is connected, then Map∗/W (∗/Fn,G) is given by

∏n
i=1 π

−1(γi)/G where G acts by
simultaneous conjugation and γi ∈ W is the image of the i-th generator of Fn (and π : EG → W is the
projection). In general, one gets a finite disjoint union of such.

Proposition VIII.5.20. In this situation, the functor

Ind Perf(MapΣ
∗/W (∗/Fn,G))→ Ind Perf(Map∗/W (∗/Fn,G))

is fully faithful and the essential image is the full subcategory generated under colimits by Ind Perf(∗/G),
which is equivalent to the category ofO(

∏n
i=1 π

−1(γi))-modules in Ind Perf(∗/G). If π1(G◦)tor is of order
prime to `, the displayed functor is an equivalence.

An obvious variant holds true if G is a finite disjoint union of such gerbes.

Proof. For the identification of Ind Perf(MapΣ
∗/W (∗/Fn,G))withO(

∏n
i=1 π

−1(γi))-modules in Ind Perf(∗/G),
we may use that the functor commutes with colimits to reduce to n = 1. Then we can write ∗/Z as the
pushout of ∗ ← ∗t∗ → ∗ and use that Ind Perf(∗/G) is equivalent toO(G)-modules in Ind Perf(∗/G×G),
and that module categories base change. This description of Ind Perf(MapΣ

∗/W (∗/Fn,G)) shows that the
comparison functor is fully faithful. By Proposition VIII.5.12, this is an equivalence when π1(G◦)tor is of
order prime to `. �

Assume that G is connected, banded by G. Writing W as a sifted colimit of finite free groups, we see
that

Ind Perf(MapΣ
∗/W (∗/W,G))
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is given by the category of modules over

colim(n,Fn→W )O(
n∏
i=1

π−1(γi))

in Ind Perf(∗/G). Thus, to prove Theorem VIII.5.2, we have to see that if W is a discretization of WE as
in the formulation of that theorem, then the functor

Ind Perf(MapΣ
∗/W (∗/W,G))→ Ind Perf(Map∗/W (∗/W,G))

is an equivalence. Indeed, Map∗/W (∗/W,G) = Z1(W,G)/G, so the fully faithfulness is equivalent to the
isomorphism

colim(n,Fn→W )O(
n∏
i=1

π−1(γi))→ O(Z1(W,G))

of algebras in Ind Perf(∗/G), while the essential surjectivity amounts to the assertion that Perf(Z1(W,G)/G)
is generated by Perf(∗/G) under cones and retracts.

We will now show more generally that if W is a discretization of WE as in Theorem VIII.5.2 and G
is a stack over ∗/W that is a finite disjoint union of gerbes banded by linear-algebraic groups G with G◦

reductive and π0G and π1(G◦)tor of order prime to `, then

Ind Perf(MapΣ
∗/W (∗/W,G))→ Ind Perf(Map∗/W (∗/W,G))

is an equivalence.

We will prove this first whenW is a discretization of the tame part, i.e.W = Z[1p ]oZ. We can assume
that G is connected. We can also assume that the corresponding extension

1→ G→ EG →W → 1

splits as otherwise both sides are zero. We can write ∗/W as a pushout ∗/Z← ∗/Zt∗/Z→ ∗/Z, so using
Proposition VIII.5.20 it remains to see that

Ind Perf(G/σG)⊗Ind Perf(G/σG×G/τG) Ind Perf(G/τG)→ Ind Perf(Z1(W,G)/G)

is an equivalence. The tensor product here is dual to writing Z1(W,G) as the fibre product

Z1(W,G) //

��

G×G

��
∗ // G.

The result follows from Proposition VIII.5.13, Proposition VIII.5.12 and Proposition VIII.5.11.
It remains to analyze the wild part. This uses the full force of our results on fixed point groups.

Proposition VIII.5.21. Let P be a finite solvable group of order prime to ` with a map P → W .
Assume that G is a stack over ∗/W that is a finite disjoint union of gerbes banded by linear-algebraic groups
GwithG◦ reductive and π0G of order prime to `. Then Map∗/W (∗/P,G) is itself a finite disjoint union of
gerbes over L that are banded by linear-algebraic groups H with H◦ reductive and π0H of order prime to
`. Moreover, the functor

Ind Perf(MapΣ
∗/W (∗/P,G))→ Ind Perf(Map∗/W (∗/P,G))
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is an equivalence.
If all G appearing as bands in G have the property that π1(G◦)tor is of order prime to `, then the same

holds true for the groups H appearing as bands in Map∗/W (∗/P,G).

Proof. We can assume that W = P . We can assume that the extension

1→ G→ EG → P → 1

splits, as otherwise the stack Map∗/P (∗/P,G) is empty (in which case Haboush’s theorem implies that
also colim(n,Fn→P )O(

∏n
i=1 π

−1(γi))
G = 0 and hence also Ind Perf(MapΣ

∗/P (∗/P,G)) = 0). Fixing a
section, we get an action of P on G and Map∗/P (∗/P,G) = Z1(P,G)/G. If P = Z/pZ is cyclic of
prime order p 6= `, the proposition follows from the results of Section VIII.5.3, noting that the colimit in
Lemma VIII.5.16 is computing

colim(n,Fn→Z/pZ)O(
n∏
i=1

π−1(γi))

in Ind Perf(∗/G), using a specific presentation (and that XP = Z1(P,G)). Namely, inside pointed anima
over ∗/P , one can write ∗/P as the quotient of ∗ tP ∗ by the action of P ; this writes ∗/P as a colimit of
connected pointed anima over ∗/P of the form ∗/Fn, i.e. P as a geometric realization of free groups inside
animated groups, which can be used to compute the displayed colimit. Dually, this writes Z1(P,G) as the
P -fixed points inside the X from Lemma VIII.5.16. Proposition VIII.5.17 shows that the resulting fully
faithful functor

Ind Perf(MapΣ
∗/P (∗/P,G))→ Ind Perf(Map∗/P (∗/P,G))

is essentially surjective. Proposition VIII.5.19 ensures the statement about π1’s.

For the general case, we can find a normal subgroup P ′ ⊂ P and quotient P = Z/pZ and we can
assume by induction that the result holds for P ′. We can then consider the functor taking an anima S with
a map S → ∗/P to

Ind Perf(Map∗/P (S ×∗/P ∗/P,G)).

If S is a finite set I (equipped with a P -torsor), this is given by

Ind Perf(Map∗/P ′(∗/P ′,G)I).

By the structure of Map∗/P ′(∗/P ′,G), this is the I-fold tensor product of the value on a point; it follows
that in this case

Ind Perf(MapΣ
∗/P (S ×∗/P ∗/P,G))→ Ind Perf(Map∗/P (S ×∗/P ∗/P,G))

is an equivalence. It follows that the functor

S 7→ Ind Perf(MapΣ
∗/P (S ×∗/P ∗/P,G))

is the left Kan extension of its restriction to finite sets with a P -torsor, where it agrees with the functor
associated to the gerbe

G = Map∗/P (∗/P
′,G)

over ∗/P . Thus, we conclude by appealing to the case of P = Z/pZ already established, for the gerbe
G. �
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If nowW is a discretization of the Weil groupWE , we takeP ⊂W to be the wild part (a finite p-group,
normal in W ). Using Proposition VIII.5.21, let

Gt = Map∗/W (∗/P,G)

which is a finite disjoint union of gerbes over ∗/W t, whereW t =W/P is the tame quotient ofW . (Equiv-
alently, this is the pushforward of the stack G along the map ∗/W → ∗/W t, and happens to be a finite
disjoint union of gerbes again, by the previous proposition.) Arguing as in the inductive part of the proof
of Proposition VIII.5.21, we can replace W by W t and G by Gt. This reduces us to the tame case already
handled.





CHAPTER IX

The Hecke action

The time has come to put everything together. As before, letE be any nonarchimedean local field with
residue field Fq of residue characteristic p, and let G be a reductive group over E. For any Z`-algebra Λ,
we have defined Dlis(BunG,Λ), we have the geometric Satake equivalence relating Ĝ to perverse sheaves
on the Hecke stack, and we have studied the stack of L-parameters.

Our first task is to use the geometric Satake equivalence to define the Hecke operators onDlis(BunG,Λ).
As in the last chapter, we work over a Z`[

√
q]-algebra Λ in order to trivialize the cyclotomic twist in the

geometric Satake equivalence; let Q be a finite quotient of WE over which the action on Ĝ factors. If Λ is
killed by a power of `, then we can define Hecke operators in the following standard way. For any finite
set I and V ∈ RepΛ(Ĝ o Q)I , we get a perverse sheaf SV onHckIG, which we can pull back to the global
Hecke stack HckIG; we denote its pullback still by SV . Using the correspondence

HckIG
p1

{{

p2

&&
BunG BunG×(Div1)I

we get the Hecke operator

TV : Det(BunG,Λ)→ Det(BunG×(Div1)I ,Λ) : A 7→ Rp2∗(p
∗
1A⊗L

Λ SV ).

By Corollary IV.7.2, the target hasDet(BunG×[∗/W I
E ],Λ) as a full subcategory, and we will see below that

TV will factor over this subcategory. Working∞-categorically in order to have descent, and using a little
bit of condensed formalism in order to deal with W I

E not being discrete, we can in fact rewrite

Det(BunG×[∗/W I
E ],Λ)

∼= Det(BunG,Λ)BW
I
E

as the W I
E-equivariant objects of the condensed∞-category Det(BunG,Λ); we will discuss the condensed

structure below.
The following theorem summarizes the properties of the Hecke operators. In particular, it asserts that

these functors are defined even when Λ is not torsion.

Theorem IX.0.1 (Theorem IX.2.2; Corollary IX.2.4, Proposition IX.5.1). For any Z`[
√
q]-algebra Λ,

any finite set I , and any V ∈ RepΛ(ĜoQ)I , there is a natural Hecke operator

TV : Dlis(BunG,Λ)→ Dlis(BunG,Λ)BW
I
E .

307
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(i) Forgetting the W I
E-action, i.e. as an endofunctor of Dlis(BunG,Λ), the functor TV commutes with all

limits and colimits, and preserves compact objects and universally locally acyclic objects. Letting sw∗ :

RepΛ Ĝ
I → RepΛ Ĝ

I be the involution of Proposition VI.12.1, there are natural isomorphisms

DBZ(TV (A)) ∼= Tsw∗V ∨(DBZ(A)) , RHomlis(TV (A),Λ) ∼= Tsw∗V ∨RHomlis(A,Λ).

(ii) As a functor of V , it induces an exact RepΛ(Q
I)-linear monoidal functor

RepΛ(ĜoQ)I → EndΛ(Dlis(BunG,Λ)ω)BW
I
E ,

where the target denotes W I
E-equivariant objects inside the condensed∞-category EndΛ(Dlis(BunG,Λ)ω)

(equipped with the trivial W I
E-action). Moreover, for any compact object X ∈ Dlis(BunG,Λ)ω , there is

some open subgroupP of the wild inertia subgroup ofWE such that for all I andV , theP I -action onTV (X)
is trivial. In particular, one can writeDlis(BunG,Λ)ω as an increasing union of full stable∞-subcategories
DPlis(BunG,Λ)ω such that the Hecke action defines functors

RepΛ(ĜoQ)I → EndΛ(DPlis(BunG,Λ)ω)B(WE/P )I .

(iii) Varying also I , the functors of (ii) are functorial in I .

Here, functoriality in I means, more precisely, that one treats the preceding objects as coCartesian
fibrations over the category of finite sets, and the functors are then required to lift to the total space of
these coCartesian fibrations.

In particular, the categories DP
lis(BunG,Λ)ω fit the bill of the discussion of Section VIII.4, so Theo-

rem VIII.4.1 gives a construction of excursion operators. To state the outcome, we make the following
definitions as in the introduction.

Definition IX.0.2.

(i) The Bernstein center of G(E) is

Z(G(E),Λ) = π0End(idD(G(E),Λ)) = lim←−
K⊂G(E)

Z(Λ[K\G(E)/K])

where K runs over open pro-p subgroups of G(E), and Λ[K\G(E)/K] = EndG(E)(c-IndG(E)
K Λ) is the

Hecke algebra of level K.
(ii) The geometric Bernstein center of G is

Zgeom(G,Λ) = π0End(idDlis(BunG,Λ)).

Inside Zgeom(G,Λ), we let Zgeom
Hecke(G,Λ) be the subring of all endomorphisms f : id → id commuting

with Hecke operators, in the sense that for all V ∈ Rep(ĜI) and A ∈ Dlis(BunG,Λ), one has TV (f(A)) =
f(TV (A)) ∈ End(TV (A)).
(iii) The spectral Bernstein center of G is

Z spec(G,Λ) = O(Z1(WE , Ĝ)Λ)
Ĝ,

the ring of global functions on Z1(WE , Ĝ)Λ � Ĝ.

The inclusion D(G(E),Λ) ↪→ Dlis(BunG,Λ) induces a map of algebra Zgeom(G,Λ) → Z(G(E),Λ).
This discussion will lead to the following corollary.
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Corollary IX.0.3. Assume that the order of π0Z(G) is invertible in Λ. There is a canonical map

Z spec(G,Λ)→ Zgeom
Hecke(G,Λ) ⊂ Z

geom(G,Λ),

and in particular a map
ΨG : Z spec(G,Λ)→ Z(G(E),Λ).

In particular, if Λ = L is an algebraically closed field over Z`[
√
q], we get the following construction

of L-parameters. (This works even if ` does divide the order of π0Z(G).)

Definition IX.0.4. Let L be an algebraically closed field over Z`[
√
q], and let A ∈ Dlis(BunG, L)

be a Schur-irreducible object, i.e. End(A) = L as condensed algebras. Then there is a unique semisimple
L-parameter

ϕA :WE → Ĝ(L)oQ

such that for all excursion data (I, V, α, β, (γi)i∈I) consisting of a finite set I , V ∈ Rep((Ĝ o Q)I), α :
1→ V |Ĝ, β : V |Ĝ → 1 and γi ∈WE for i ∈ I , the endomorphism

A = T1(A)
α−→ TV (A)

(γi)i∈I−−−−→ TV (A)
β−→ T1(A) = A

is given by the scalar

L
α−→ V

(ϕA(γi))i∈I−−−−−−−→ V
β−→ L.

We can apply this in particular in the case of irreducible smooth representationsπ ofG(E). Concerning
the L-parameters we construct, we can prove the following basic results. (In fact, we prove slightly finer
results on the level of Bernstein centers.)

Theorem IX.0.5 (Sections IX.6, IX.7).

(i) If G = T is a torus, then π 7→ ϕπ is the usual Langlands correspondence.
(ii) The correspondence π 7→ ϕπ is compatible with twisting.
(iii) The correspondence π 7→ ϕπ is compatible with central characters (cf. [Bor79, 10.1]).
(iv) The correspondence π 7→ ϕπ is compatible with passage to congradients (cf. [AV16]).
(v) If G′ → G is a map of reductive groups inducing an isomorphism of adjoint groups, π is an irreducible
smooth representation ofG(E) and π′ is an irreducible constitutent of π|G′(E), then ϕπ′ is the image of ϕπ
under the induced map Ĝ→ Ĝ′.
(vi) IfG = G1×G2 is a product of two groups and π is an irreducible smooth representation ofG(E), then
π = π1�π2 for irreducible smooth representations πi ofGi(E), and ϕπ = ϕπ1×ϕπ2 under Ĝ = Ĝ1× Ĝ2.
(vii) If G = ResE′|EG

′ is the Weil restriction of scalars of a reductive group G′ over some finite separable
extension E′|E , so that G(E) = G′(E′), then L-parameters for G|E agree with L-parameters for G′|E′.
(viii) The correspondence π 7→ ϕπ is compatible with parabolic induction.
(ix) For G = GLn and supercuspidal π, the correspondence π 7→ ϕπ agrees with the usual local Langlands
correspondence [LRS93], [HT01], [Hen00].
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IX.1. Condensed∞-categories

In order to meaningfully talk aboutW I
E-equivariant objects inDlis(BunG,Λ), we need to giveDlis(BunG,Λ)

the structure of a condensed∞-category. This is in fact easy to do: We can associate to any extremally dis-
connected profinite set S the∞-categoryDlis(BunG×S,Λ). This is a full condensed∞-subcategory of the
condensed∞-category D�(BunG,Λ), taking any profinite S to D�(BunG×S,Λ). The latter defines a hy-
persheaf in S , by v-hyperdescent ofD�(X,Λ) (as follows from the case ofD(Xv,Λ)). With this definition,
it becomes a direct consequence of descent that

D�(BunG×[∗/W I
E ],Λ)

∼= D�(BunG,Λ)BW
I
E ,

where the latter is the evaluation of the condensed ∞-category D�(BunG,Λ) on the condensed anima
BW I

E . More concretely, this is the ∞-category of objects A ∈ D�(BunG,Λ) together with a map of
condensed animated groups W I

E → Aut(A). We see in particular that to define D�(BunG,Λ)BW
I
E , we

do not need to know the full structure as a condensed∞-category. Rather, we only need the structure as
an∞-category enriched in condensed anima. This structure on D�(BunG,Λ) induces a similar structure
on Dlis(BunG,Λ).

For the discussion of Hecke operators, we observe in particular the following result, that follows directly
from the discussion above.

Proposition IX.1.1. Pullback under BunG×(Div1)I → BunG×[∗/W I
E ] induces a fully faithful func-

tor

Dlis(BunG,Λ)BW
I
E ↪→ D�(BunG,Λ)BW

I
E ∼= D�(BunG×[∗/W I

E ],Λ) ↪→ D�(BunG×(Div1)I ,Λ).

The essential image of the first functor consists of all objects A ∈ D�(BunG×[∗/W I
E ],Λ) whose pullback

to BunG lies in Dlis(BunG,Λ). �

In fact, this structure of Dlis(BunG,Λ) as an ∞-category enriched in condensed anima, in fact con-
densed animated Λ-modules, can be obtained in the following way from its structure as a Λ-linear stable
∞-category.

Proposition IX.1.2. For A ∈ Dlis(BunG,Λ)ω and B ∈ Dlis(BunG,Λ), the condensed animated Λ-
module HomDlis(BunG,Λ)(A,B) is relatively discrete over Z`.

In other words, the condensed structure on Dlis(BunG,Λ) can also be defined as the relatively discrete
condensed structure when restricted to compact objects, and in general induced from this. In particular,
when restricting attention to the compact objects Dlis(BunG,Λ)ω , it is simply the relatively discrete con-
densed structure.

Proof. Take some b ∈ B(G) and K ⊂ Gb(E) an open pro-p-subgroup, and let fK : M̃b/K → BunG
be the local chart. We can assume A = fK\Z`, as these form a family of generators. By adjunction, it
is enough to show that for any B′ ∈ Dlis(M̃b/K,Λ), the global sections RΓ(M̃b/K,B′) have the rel-
atively discrete condensed Z`-module structure. We claim that the restriction map RΓ(M̃b/K,B′) →
RΓ([∗/K], B′) is an isomorphism, where [∗/K] ⊂ M̃b/K is the base point. Without the condensed struc-
ture, this was proved in the proof of Proposition VII.7.2, but actually the proof applies with condensed
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structure (as Theorem VII.2.10 remembers the condensed structure). But RΓ([∗/K], B′) is a direct sum-
mand of the stalk ofB′ at ∗, which has the relatively discrete condensed Z`-module structure (as this is true
for all objects of Dlis(∗,Λ)). �

IX.2. Hecke operators

The geometric Satake equivalence gives exact RepZ`[
√
q](Q

I)-linear monoidal functors

RepZ`[
√
q](ĜoQ)I → Sat(HckIG,Z`[

√
q]) : V 7→ SV ,

where the target category is defined as the inverse limit over n of the similar categories with Z/`n[√q]-
coefficients, see Section VI.7. Moreover, this association is functorial in I . We can compose with the functor
A 7→ D(A)∨ (where the Verdier duality is relative to the projectionHckIG → [(Div1)I/L+G]) to get exact
RepZ`[

√
q](Q

I)-linear monoidal functors

RepZ`[
√
q](ĜoQ)I → D�(HckIG,Z`[

√
q]),

functorially in I . Here, the functor A 7→ D(A)∨ is monoidal with respect to the usual convolution on
perverse sheaves, and the convolution of Section VII.5 on the right. We note that as the convolution on
D� makes use only of pullback, tensor product, and π\-functors, all of which are defined naturally on∞-
categories, this monoidal structure is actually a monoidal structure on the∞-categoryD�(HckIG,Z`[

√
q]).

(We would have to work harder to obtain this structure when employing lower-!-functors, as we have not
defined them in a sufficiently structured way.) Also, the functor from RepZ`[

√
q](Ĝ o Q)I is monoidal in

this setting, as on perverse sheaves there are no higher coherences to take care of.
This extends by linearity uniquely to an exact RepΛ(Q

I)-linear monoidal functor

RepΛ(ĜoQ)I → D�(HckIG,Λ) : V 7→ S ′V ;

here, we implicitly use highest weight theory to show

Perf(B(ĜoQ)IZ`[
√
q])⊗Perf(BQIZ`[

√
q]
) Perf(∗/QIΛ) ∼= Perf(∗/(ĜoQ)IΛ),

and that the free stable∞-category with an exact functor from RepΛ(ĜoQ)I is Perf(∗/(ĜoQ)IΛ).

Pulling back to the global Hecke stack, we get exact RepΛ(Q
I)-linear monoidal functors

RepΛ(ĜoQ)I → D�(HckIG,Λ).

On the other hand, there is a natural exact RepΛ(Q
I)-linear monoidal functor

D�(HckIG,Λ)→ EndD�((Div1)I ,Λ)(D�(BunG×(Div1)I ,Λ)),

where the right-hand side denotes theD�((Div1)I ,Λ)-linear endofunctors. In particular, anyV ∈ RepΛ(Ĝo
Q)I gives rise to a functor

TV : Dlis(BunG,Λ)→ D�(BunG×(Div1)I ,Λ)

via
TV (A) = p2\(p

∗
1A

�

⊗L
ΛS ′V )
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where we consider the usual diagram

HckIG
p1

{{

p2

&&
BunG BunG×(Div1)I .

Note that we have thus essentially used the translation of Proposition VII.5.2 to extend the Hecke operators
from the case of torsion rings Λ to all Λ.

We note that if we pull back to the diagonal geometric point SpdC → (Div1)I , where C = Ê , then
this functor depends only on the composite

RepΛ(ĜoQ)I → D�(HckIG,Λ)→ D�(HckIG×(Div1)I SpdC,Λ),

and this composite factors naturally over RepΛ(Ĝ
I).

Proposition IX.2.1. For any V ∈ RepΛ(Ĝ
I), the functor

TV : D�(BunG× SpdC,Λ)→ D�(BunG× SpdC,Λ)

restricts to a functor
TV : Dlis(BunG,Λ)→ Dlis(BunG,Λ).

Proof. By highest weight theory, one can reduce to the case that V is an exterior tensor product of
representations of Ĝ, and then by using that V 7→ TV is monoidal, we can reduce to the tensor factors,
which reduces us to the case I = {∗}. Consider the Hecke diagram

BunG,C
h1←− HckG,C

h2−→ BunG,C
where HckG,C parametrizes over S ∈ PerfC pairs ofG-torsors E1, E2 onXS together with an isomorphism
over XS \ S] meromorphic along S]. It suffices to see that for all B ∈ DULA(HckG,SpdC/Div1X

,Z`), the
object

h2\(h
∗
1A

�

⊗Lq∗B∨) ∈ Dlis(BunG,C ,Λ).
Now the category of such B is generated (under colimits) by the objects Rfẇ∗Z` for

fẇ : L+I\Demẇ → HckG,SpdC/Div1X

a Demazure resolution (modulo action of Iwahori) of some Schubert variety in the affine flag variety. Using
Proposition VII.4.3, it thus suffices to see that for the corresponding push-pull correspondence on BunG,C
with kernel given by the Demazure resolution, one has preservation ofDlis(BunG,C ,Λ). But this is a proper
and cohomologically smooth correspondence. �

Theorem IX.2.2. For any V ∈ RepΛ(Ĝ
I), the action of TV on Dlis(BunG,Λ) preserves all limits and

colimits, and the full subcategories of compact objects, and of universally locally acyclic objects. Moreover,
for the automorphism sw∗ of RepΛ(Ĝ

I) given by Proposition VI.12.1, there are natural isomorphisms

DBZ(TV (A)) ∼= Tsw∗V ∨(DBZ(A)) , RHomlis(TV (A),Λ) ∼= Tsw∗V ∨RHomlis(A,Λ).
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Proof. The functor V 7→ TV is monoidal. As V is dualizable in the Satake category, with dual V ∨, it
follows that TV has a left and a right adjoint, given by TV ∨ , and hence it follows formally that it preserves
all limits and colimits, and compact objects. Now recall that A ∈ Dlis(BunG,Λ) is universally locally
acyclic if and only if for all compact B ∈ Dlis(BunG,Λ), the object RHomΛ(B,A) ∈ D(Λ) is perfect,
by Proposition VII.7.9. Thus, the preservation of universally locally acyclic objects follows by adjointness
from the preservation of compact objects.

For the duality statements, we note that, for π : BunG → ∗ the projection, there are natural isomor-
phisms

π\(TV (A)
�

⊗L
ΛB) ∼= π\(A

�

⊗L
ΛTsw∗V (B)),

as follows from the definition of the Hecke operator, and Proposition VI.12.1: Both sides identify with the

homology of HckIG×(Div1)I SpdC with coefficients in h∗1A
�

⊗L
Λh

∗
2B

�

⊗L
ΛS ′V . The displayed equation implies

the statement for Bernstein–Zelevinsky duals by also using that Tsw∗V ∨ is right adjoint to Tsw∗V , and the
statement for naive duals by using that Tsw∗V ∨ is left adjoint to Tsw∗V . �

Composing Hecke operators, we get the following corollary.

Corollary IX.2.3. For any V ∈ RepΛ(ĜoQ)I , the functor

TV : Dlis(BunG,Λ)→ D�(BunG×(Div1X)I ,Λ)

takes image in the full subcategory D�(BunG×[∗/W I
E ],Λ); moreover, all objects in the image have the

property that their pullback to D�(BunG,Λ) lies in Dlis(BunG,Λ), so by Proposition IX.1.1 the functor
TV induces a functor

Dlis(BunG,Λ)→ Dlis(BunG,Λ)BW
I
E .

Proof. We only need to see that the image lands in D�(BunG×[∗/W I
E ],Λ); the rest follows from

Proposition IX.2.1. One can reduce to the case that V is an exterior tensor product of |I| representations
Vi ∈ RepΛ(ĜoQ) — one can always find a, possibly infinite, resolution by such exterior tensor products
that involves only finitely many weights of ĜI , and thus induces a resolution inD�(HckIG,Λ) — and thus
reduce to I = {∗}. By Corollary VII.2.7, it suffices to see that the pullback toD�(BunG× SpdC,Λ) lies in
D�(BunG,Λ). But by Proposition IX.2.1, we know that it lies inDlis(BunG× SpdC,Λ), andDlis(BunG,Λ)→
Dlis(BunG× SpdC,Λ) is an equivalence by Proposition VII.7.3. �

Finally, we get the following Hecke action.

Corollary IX.2.4. Endowing the stable Z`-linear∞-categoryDlis(BunG,Λ)ω with the relatively dis-
crete condensed structure, the Hecke action defines exact RepΛ(Q

I)-linear monoidal functors

RepΛ(ĜoQ)I → EndΛ(Dlis(BunG,Λ)ω)BW
I
E ,

functorially in I .
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IX.3. Cohomology of local Shimura varieties

Theorem IX.2.2 encodes strong finiteness properties for the cohomology of local Shimura varieties,
giving unconditional proofs, and refinements, of the results of [RV14, Section 6]. For this, we first specialize
to E = Qp as this is the standard setting of local Shimura varieties. Consider any local Shimura datum,
consisting of a reductive group G over Qp, a conjugacy class of minuscule cocharacters µ : Gm → GQp
with field of definitionE|Qp and some element b ∈ B(G,µ) ⊂ B(G). (Beware that we are making a small
sin here in changing the meaning of the letter E , using it now in its usual meaning as a reflex field.) In
[SW20, Lecture 24], we construct a tower of partially proper smooth rigid-analytic spaces

(M(G,b,µ),K)K⊂G(Qp)

over Ĕ , equipped with a Weil descent datum. Each object in the tower carries an action of Gb(Qp), and the
tower carries an action of G(Qp). Following Huber [Hub98], one defines

RΓc(M(G,b,µ),K,C ,Z`) = lim−→
U

RΓc(U,Z`)

whereU ⊂M(G,b,µ),K,C runs through quasicompact open subsets, and one definesRΓc(U,Z`) = lim←−mRΓc(U,Z/`
mZ).

This carries an action of Gb(Qp) as well as an action of the Weil group WE .

Theorem IX.3.1. The complex RΓc(M(G,b,µ),K,C ,Z`) is naturally a complex of smooth Gb(Qp)-
representations, and, if K is pro-p, a compact object in D(Gb(Qp),Z`). Moreover, the action of WE is
continuous.

In particular, each H i
c(M(G,b,µ),K,C ,Z`) is a finitely generated smooth Gb(Qp)-representation. By

descent, this is true even for all K (not necessarily pro-p).

Proof. Let fK : M(G,b,µ),K,C → SpaC be the projection. Up to shift, we can replace Z` by the
dualizing complex Rf !KZ`. Now by Proposition VII.5.2, one has

RfK!Rf
!
KZ`|U ∼= fK\Z`|U

for any quasicompact U ⊂ M(G,b,µ),K,C . As the left-hand side is perfect, it is given by its limit over
reductions modulo `m. We see that H i

c(M(G,b,µ),K,C ,Z`) can be identified with H i(fK\Z`) up to shift.
Now µ gives rise to a Hecke operator Tµ = TVµ where Vµ is the highest weight representation of

weight µ. It corresponds to the Hecke correspondence on BunG,C parametrizing modifications of type µ;
this Hecke correspondence is proper and smooth over both factors. We apply Tµ to the compact object

A = j!c-IndG(Qp)
K Z` ∈ Dlis(BunG,Z`)

where j : Bun1
G
∼= [∗/G(Qp)] ↪→ BunG is the open immersion. By Theorem IX.2.2, also Tµ(A) is compact.

By Proposition VII.7.4, it follows that also ib∗Tµ(A) ∈ Dlis(BunbG,Z`) ∼= D(Gb(Qp),Z`) is compact. But
this is, up to shift again, precisely fK\Z`, by the identification ofM(G,b,µ),K,C with the space of modifica-
tions of G-torsors of type µ from the G-bundle Eb to the G-bundle E1, up to the action of K (cf. [SW20,
Lecture 23, 24]).

Descending to E , note that Tµ can be defined with values in D�(BunG× SpdE/ϕZ,Z`), and takes
values in those sheaves whose pullback to BunG,C lies in Dlis(BunG,Z`). Thus WE , as a condensed group,
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acts on ib∗Tµ(A) ∈ Dlis(BunbG,Z`) ∼= D(Gb(Qp),Z`) considered as representations on condensed Z`-
modules. In classical language, this means that the action is continuous. �

In particular, for each admissible representation ρ of Gb(Qp) on a Z`-algebra Λ, the complex

RHomGb(Qp)(RΓc(M(G,b,µ),K,C ,Z`), ρ)

is a perfect complex of Λ-modules. Passing to the colimit over K , one obtains at least on each cohomology
group an admissible G(Qp)-representation. In fact, as Tµ is left adjoint to Tµ∨ , we see that this is (up to
shift) given by

i1∗Tµ∨(Ri
b
∗[ρ]) ∈ Dlis(Bun1

G,Λ)
∼= D(G(Qp),Λ).

Here ib : BunbG ↪→ BunG is the inclusion, and [ρ] ∈ D(Gb(Qp),Λ) ∼= Dlis(BunbG,Λ) can be a complex
of smooth Gb(Qp)-representations. This shows in particular that there is in fact a natural complex of
admissible G(Qp)-representations underlying

colimKRHomGb(Qp)(RΓc(M(G,b,µ),K,C ,Z`), ρ).

Assuming again that ρ is admissible, one can pull through Verdier duality,

i1∗Tµ∨(Ri
b
∗[ρ])

∼= i1∗Tµ∨(Ri
b
∗D([ρ∨]))

∼= i1∗Tµ∨(D(ib! [ρ∨]))
∼= i1∗D(Tsw∗µ(i

b
! [ρ

∨]))

∼= D(i1∗Tsw∗µ(i
b
! [ρ

∨])).

As Tsw∗µ also preserves compact objects, it follows that [RV14, Remark 6.2 (iii)] has a positive answer: If
Λ = Q` and ρ has finite length, then also each cohomology group of

colimKRHomGb(Qp)(RΓc(M(G,b,µ),K,C ,Z`), ρ)

has finite length asG(Qp)-representation. Indeed, with Q`-coefficients, the category of smooth representa-
tions has finite global dimension, and hence being compact is equivalent to each cohomology group being
finitely generated. Compact objects are preserved under the Hecke operators, and so we see that each co-
homology group is finitely generated. Being also admissible, it is then of finite length by Howe’s theorem
[Ren10, VI.6.3].

The same arguments apply to prove Corollary I.7.3. Let us recall the setup. We start with a general E
now. As in [SW20, Lecture XXIII], for any collection {µi}i of conjugacy classes of cocharacters with fields
of definition Ei/E and b ∈ B(G), there is a tower of moduli spaces of local shtukas

fK : (Sht(G,b,µ•),K)K⊂G(E) →
∏
i∈I

Spd Ĕi

as K ranges over compact open subgroups of G(E), equipped with compatible étale period maps

πK : Sht(G,b,µ•),K → Grtw
G,

∏
i∈I Spd Ĕi,≤µ•

.

Here, Grtw
G,

∏
i∈I Spd Ĕi

→
∏
i∈I Spd Ĕ is a certain twisted form of the convolution affine Grassmannian,

cf. [SW20, Section 23.5]. Let W be the exterior tensor product �i∈IVµi of highest weight representations,
and SW the corresponding sheaf on Grtw

G,
∏
i∈I Spd Ĕi

. More precisely, away from Frobenius-twisted partial
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diagonals, Grtw
G,

∏
i∈I Spd Ĕi

is isomorphic to the Beilinson–Drinfeld Grassmannian GrG,∏i∈I Spd Ĕi , and we
have defined SW on this locus. One can uniquely extend over these Frobenius-twisted partial diagonals
to universally locally acyclic, necessarily perverse, sheaves, as in the discussion of the fusion product. We
continue to write SW for its pullback to Sht(G,b,µ•),K . Let S ′W = D(SW )∨ be the corresponding solid sheaf.
By Proposition VII.5.2, with torsion coefficients fK\S ′W agrees with RfK!SW , but fK\S ′W is well-defined
in general.

Proposition IX.3.2. The sheaf

fK\S ′W ∈ D�([∗/Gb(E)]×
∏
i∈I

Spd Ĕi,Λ)

is equipped with partial Frobenii, thus descends to an object of

D�([∗/Gb(E)]×
∏
i∈I

Spd Ĕi/ϕZ
i ,Λ).

This object lives in the full∞-subcategory

D(Gb(E),Λ)B
∏
i∈IWEi ⊂ D�([∗/Gb(E))]×

∏
i∈I

Spd Ĕi/ϕZ
i ,Λ),

and its restriction toD(Gb(E),Λ) is compact. In particular, for any admissible representation ρ of Gb(E),
the object

RHomGb(E)(fK\S ′W , ρ) ∈ D(Λ)B
∏
i∈IWEi

is a representation of
∏
i∈IWEi on a perfect complex of Λ-modules. Taking the colimit over K , this gives

rise to a complex of admissible G(E)-representations

lim−→
K

RHomGb(E)(fK\S ′W , ρ)

equipped with a
∏
i∈IWEi-action.

If ρ is compact, then so is
lim−→
K

RHomGb(E)(fK\S ′W , ρ)

as a complex of G(E)-representations.

Proof. The key observation is that fK\S ′W can be identified with TW (j![c-IndG(E)
K Λ])|BunbG

. A priori,
for the latter, we have to look at the moduli space M of modifications of type bounded by µ• from Eb
to the trivial vector bundle, up to the action of K , and take the homology ofM with coefficients in S ′W ;
more precisely, the relative homology ofM →

∏
i∈I Spd Ĕi/ϕZ

i . After pull back to
∏
i∈I Spd Ĕi, there

is a natural map from M to Sht(G,b,µ•,K) that is an isomorphism away from Frobenius-twisted partial
diagonals. Indeed, Sht(G,b,µ•,K) parametrizes G-torsors over YS together with an isomorphism with their
Frobenius pullback away from the given points, together with a level-K-trivialization of theG-bundle near
{π = 0}. This induces two vector bundles on XS , given by the bundles near {π = 0} and near {[$] = 0},
and these are identified away from the images of the punctures in XS . As long as their images in XS are
disjoint, one can reverse this procedure. Now the fusion compatibility of SW (and thus S ′W ) implies the
desired result.
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In particular, this shows that fK\S ′W admits natural partial Frobenius operators. The rest of the proof
is now as before. �

IX.4. L-parameter

We can now define L-parameter.

Definition/Proposition IX.4.1. Let L be an algebraically closed field over Z`[
√
q], and let A ∈

Dlis(BunG, L) be a Schur-irreducible object, i.e. End(A) = L as condensed algebras. Then there is a unique
semisimple L-parameter

ϕA :WE → Ĝ(L)oQ

such that for all excursion data (I, V, α, β, (γi)i∈I) consisting of a finite set I , V ∈ Rep((Ĝ o Q)I), α :
1→ V |Ĝ, β : V |Ĝ → 1 and γi ∈WE for i ∈ I , the endomorphism

A = T1(A)
α−→ TV (A)

(γi)i∈I−−−−→ TV (A)
β−→ T1(A) = A

is given by the scalar

L
α−→ V

(ϕA(γi))i∈I−−−−−−−→ V
β−→ L.

Proof. By the arguments of Section VIII.4, we can build excursion data as required for Proposi-
tion VIII.3.8. �

IX.5. The Bernstein center

As before, there is the problem that the stack Z1(WE , Ĝ)/Ĝ of L-parameters is not quasicompact, but
an infinite disjoint union. We can now actually decompose Dlis(BunG,Λ) into a direct product according
to the connected components of Z1(WE , Ĝ). We start with the following observation.

Proposition IX.5.1. Let A ∈ Dlis(BunG,Λ)ω be any compact object. Then there is an open subgroup
P ⊂WE of the wild inertia subgroup such that for all finite sets I and all V ∈ Rep((ĜoQ)I), the object

TV (A) ∈ Dlis(BunG,Λ)BW
I
E

lies in the full∞-subcategory

Dlis(BunG,Λ)B(WE/P )I ⊂ Dlis(BunG,Λ)BW
I
E .

Proof. First, note that indeed the functor

Dlis(BunG,Λ)B(WE/P )I → Dlis(BunG,Λ)BW
I
E .

is fully faithful; this follows from fully faithfulness of the pullback functor

f∗ : D�(BunG×[∗/(WE/P )
I ],Λ)→ D�(BunG×[∗/W I

E ],Λ),

which in turn follows from f\Λ ∼= Λ (and the projection formula for f\), which can be deduced via base
change from the case of [∗/W I

E ] → [∗/(WE/P )
I ], or after pullback to a v-cover SpaC → [∗/(WE/P )

I ],
for [SpaC/P I ]→ SpaC , where it amounts to the vanishing of the Λ-homology of P I .



318 IX. THE HECKE ACTION

Now note that if P I acts trivially on TV (A) and on TW (A) for two V,W ∈ RepZ`((ĜoQ)I), then it
also acts trivially onTV⊗W (A) = TV (TW (A)) = TW (TV (A)): Indeed, theW ItI

E -action onTV (TW (A)) ∼=
TV �W (A) ∼= TW (TV (A)) is trivial on P It∅ and P ∅tI , thus on P ItI , and hence the diagonal W I

E-action
is trivial on P I . Using reductions to exterior tensor products, we can also reduce to I = {∗}. Then if
V ∈ RepZ`(ĜoQ) is a ⊗-generator, it follows that it suffices that P acts trivially on TV (A). But

(Dlis(BunG,Λ)ω)BWE =
⋃
P

(Dlis(BunG,Λ)ω)B(WE/P )

as for any relatively discrete condensed animated Z`-algebra R with a map Z`[WE ] → R, the map factors
over Z`[WE/P ] for some P . Indeed, we may restrict to Z`[IE ], and then (as IE is compact) the image is
contained in some finitely generated Z`-submodule R0 ⊂ R, so we can assume that R is finite over Z`; but
then AutZ`(R) is profinite, and locally pro-`, so the map IE → R× ⊂ AutZ`(R) factors over IE/P for
some P . �

Fix some open subgroup P of the wild inertia subgroup of WE , and let

DPlis(BunG,Λ)ω ⊂ Dlis(BunG,Λ)ω

be the full∞-subcategory of all A such that P I acts trivially on TV (A) for all V ∈ Rep((ĜoQ)I). Pick
W ⊂WE/P a discrete dense subgroup, by discretizing the tame inertia, as before. Then Theorem VIII.4.1
gives a canonical map of algebras

Exc(W, Ĝ)→ Z(DPlis(BunG,Λ)ω) = π0End(idDPlis(BunG,Λ)ω).

As Exc(W, Ĝ) ⊗ Λ → O(Z1(WE/P, Ĝ)Λ)
Ĝ is a universal homeomorphism, there are in particular

idempotents corresponding to the connected components ofZ1(WE/P, Ĝ)Λ. Their action onDPlis(BunG,Λ)ω
then induces a direct sum decomposition

DPlis(BunG,Λ)ω =
⊕

c∈π0Z1(WE/P,Ĝ)Λ

Dclis(BunG,Λ)ω.

Taking now a union over all P , we get a direct sum decomposition

Dlis(BunG,Λ)ω =
⊕

c∈π0Z1(WE ,Ĝ)Λ

Dclis(BunG,Λ)ω.

On the level of Ind-categories, this gives a direct product

Dlis(BunG,Λ) =
∏

c∈π0Z1(WE ,Ĝ)Λ

Dclis(BunG,Λ).

Note in particular that any Schur-irreducible object A ∈ Dlis(BunG,Λ) necessarily lies in one of these
factors, given by some connected component c of Z1(WE , Ĝ)Λ; and then the L-parameter ϕA of A neces-
sarily lies in this connected component.

Using excursion operators, we get the following result on the “Bernstein center”. This is a generalization
of results of Helm–Moss, [HM18], noting that by the fully faithful functorD(G(E),Λ) ↪→ Dlis(BunG,Λ),
there is a map of algebras

Zgeom(G,Λ)→ Z(G(E),Λ)
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to the usual Bernstein center of smoothG(E)-representations on Λ-modules. From now on we assume that
the order of π0Z(G) is invertible in Λ.

Theorem IX.5.2. Assume that the order of π0Z(G) is invertible in Λ. There is a natural map

Z spec(G,Λ)→ Zgeom(G,Λ)

compatible with the above decomposition into connected components. Moreover, for all finite sets I , all
V ∈ RepΛ(Ĝ

I), and all A ∈ Dlis(BunG,Λ), the diagram

Z spec(G,Λ) //

''

End(A)

��
End(TV (A))

commutes, so the map factors over Zgeom
Hecke(G,Λ) ⊂ Z

geom(G,Λ).

Proof. This follows from the decomposition into connected components, the map Exc(W, Ĝ)Λ →
Z(DPlis(BunG,Λ)ω) above, and Theorem VIII.3.6. The statement about commutation with Hecke operators
follows from the construction of excursion operators and the commutation of Hecke operators. �

Before going on, we make the following observation regarding duality. The Bernstein–Zelevinsky du-
ality functor DBZ on Dlis(BunG,Λ) induces an involution Dgeom of Zgeom(G,Λ). On the other hand, on
Z1(WE , Ĝ), the Chevalley involution of Ĝ induces an involution; after passing to the quotient by the con-
jugation action of Ĝ, we can also forget about the inner automorphism appearing in Proposition VI.12.1.
Let Dspec be the induced involution of Z spec(G,Λ).

Proposition IX.5.3. The diagram

Z spec(G,Λ)

Dspec

��

// Zgeom(G,Λ)

Dgeom

��
Z spec(G,Λ) // Zgeom(G,Λ)

commutes.
The formation of L-parameters for irreducible smooth representations of G(E) is compatible with

passage to Bernstein–Zelevinsky duals, and to smooth duals.

Proof. The commutation follows easily from the construction of excursion operators and Proposi-
tion VI.12.1. For the final part, it now follows that the formation of L-parameters is compatible with pas-
sage to Bernstein–Zelevinsky duals. For supercuspidal representations, this agrees with the smooth dual.
In general, the claim for smooth duals follows from the compatibility with parabolic induction proved
below. �

IX.6. Properties of the correspondence

In this section, we check various basic properties of the correspondence. Throughout, we assume for
simplicity that the order of π0Z(G) is invertible in Λ. All results admit an obvious variant replacing the
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spectral Bernstein center by an excursion algebra when this assumption is omitted, and in particular the
claims about L-parameters of Schur-irreducible objects work in any characteristic (6= p, of course).

IX.6.1. Isogenies.

Theorem IX.6.1. LetG′ → G be a map of reductive groups inducing an isomorphism of adjoint groups,
inducing a dual map Ĝ→ Ĝ′, and π : BunG′ → BunG. Then for any A ∈ Dlis(BunG,Λ) the diagram

Z spec(Ĝ′,Λ) //

��

End(π∗A)

Z spec(Ĝ,Λ) // End(A)

OO

commutes. In particular, if Λ = L is an algebraically closed field, A is Schur-irreducible and A′ is a Schur-
irreducible constituent of π∗A, then ϕA′ is the composite of ϕA with Ĝ→ Ĝ′.

Proof. Consider any excursion operator for G′, given by some finite set I , a representation V ′ ∈
RepΛ((Ĝ

′ oQ)I), maps α : 1→ V ′|Ĝ′ , β : V ′|Ĝ′ → 1 and elements γi ∈ Γ as usual. Consider the diagram

BunG′

π

��

HckIG′
h′1oo

πH
��

h′2 // BunG′ ×(Div1)I

π

��
BunG HckIG

h1oo h2 // BunG×(Div1)I .

Then
TV ′(π∗A) = h′2\(h

′∗
1 π

∗A
�

⊗L
ΛS ′V ′).

We are interested in computing an endomorphism ofπ∗A; in particular, it is enough to computeπ\TV ′(π∗A).
But

π\TV ′(π∗A) = π\h
′
2\(h

′∗
1 π

∗A
�

⊗L
ΛS ′V ′)

∼= h2\πH\(π
∗
Hh

∗
1A

�

⊗L
ΛS ′V ′)

∼= h2\(h
∗
1A

�

⊗L
ΛπH\S ′V ′)

∼= h2\(h
∗
1A

�

⊗L
Λh

∗
1π\Λ

�

⊗L
ΛS ′V ) = TV (A⊗ π\Λ).

This identification is functorial in V ′ and I , and is over BunG×(Div1)I , hence implies the desired equality
of excursion operators. Here, to identify πH\SV ′ , we write πH as the composite

HckIG′ → HckIG×BunG BunG′ → HckIG .

The first map is locally (over BunG′) isomorphic to the map GrIG′ → GrIG and hence pushforward takes
SV ′ to the pullback of SV , by the compatibility of the geometric Satake equivalence with the mapG→ G′

inducing isomorphisms of adjoint groups, as in the proof of Theorem VI.11.1. Now the projection formula
shows

πH\S ′V ′ ∼= h∗1π\Λ
�

⊗L
ΛS ′V . �
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IX.6.2. Products.

Proposition IX.6.2. If G = G1 ×G2 is a product of two groups, then the diagram

Z spec(G1,Λ)⊗Λ Z spec(G2,Λ)

∼=
��

// Zgeom(G1,Λ)⊗Λ Zgeom(G1,Λ)

��
Z spec(G,Λ) // Zgeom(G,Λ)

commutes.
In particular, ifΛ = L is an algebraically closed field andA1, A2 ∈ Dlis(BunG, L) are Schur-irreducible,

and A is a Schur-irreducible constituent of A1 �A2, then
ϕA = (ϕA1 , ϕA2) :WE → Ĝ(L) ∼= Ĝ1(L)× Ĝ2(L).

Proof. The statement can be checked using excursion operators, and the proof is a straightforward
diagram chase, noting that everything decomposes into products. �

IX.6.3. Weil restriction.

Proposition IX.6.3. IfG = ResE′|EG
′ is a Weil restriction of scalars of some reductive groupG′ over

some finite separable extension E′ of E. Choose P to be an open subgroup of the wild inertia of WE′ ⊂
WE , and let W ′ ⊂ WE′/P be the preimage of W ⊂ WE/P . Then there are canonical identifications
BunG′ ∼= BunG, Z1(WE , Ĝ)/Ĝ ∼= Z1(WE′ , Ĝ′)/Ĝ′ and Exc(W, Ĝ) ∼= Exc(W ′, Ĝ′), and the diagram

Z spec(G′,Λ)

∼=
��

// Zgeom(G′,Λ)

∼=
��

Z spec(G,Λ) // Zgeom(G,Λ)

commutes. In particular, L-parameters are compatible with Weil restriction.

Proof. The most nontrivial of these identifications is the identification
Exc(W, Ĝ) ∼= Exc(W ′, Ĝ′).

One way to understand this is to use the presentation

Exc(W, Ĝ) = colim(n,Fn→W )O(Z1(Fn, Ĝ))
Ĝ

(and the similar presentation for Exc(W ′, Ĝ′)) and the natural isomorphism Z1(Fn, Ĝ)� Ĝ ∼= Z1(Fn×W
W ′, Ĝ′) � Ĝ′ of affine schemes (and then passing to global sections), noting that Fn ×W W ′ ⊂ Fn is a
subgroup of finite index, and thus itself a finitely generated free group. This shows in fact that restricting
to those maps Fn →W factoring over W ′ produces the same colimit, and so

Exc(W, Ĝ) = colim(n,Fn→W )O(Z1(Fn, Ĝ))
Ĝ

∼←− colim(n,Fn→W ′)O(Z1(Fn, Ĝ))
Ĝ

∼= colim(n,Fn→W ′)O(Z1(Fn, Ĝ′))Ĝ
′

= Exc(W ′, Ĝ′).
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Now consider an excursion operator for G′, including a representation V ′ of (Ĝ′ oWE′)I . Note that
Ĝ oWE contains Ĝ oWE′ as a subgroup, and this admits a surjection onto Ĝ′ oWE′ (noting that Ĝ =∏
E′↪→E Ĝ

′, where we picked out an embeddingE′ ↪→ E and hence a projection Ĝ→ Ĝ′ when we regarded
WE′ ⊂ WE as a subgroup). In this way, one can inflate V ′ to a representation of (Ĝ oWE′)I and then
induce to (ĜoWE)

I to get a representation V of (ĜoWE)
I . Geometrically, this procedure amounts to

the commutative diagram

BunG′

∼=
��

HckIG′
h′1oo

h′2 //

ψ
��

BunG′ ×(Div′1)I

��
BunG HckIG

h1oo h2 // BunG×(Div1)I

and taking ψ∗ on sheaves. More precisely, we note that

HckIG′ → HckIG×(Div1)I (Div′1)I

is a closed immersion (compatibly with a similar closed immersion of Beilinson–Drinfeld Grassmannians).
Now the claim follows from a diagram chase. �

IX.6.4. Tori. If G = T is a torus, then

Dlis(BunT ,Λ) ∼=
∏

b∈B(T )=π1(T )Γ

D(T (E),Λ)

and in particular
Zgeom(T,Λ) =

∏
b∈B(T )

Z(T (E),Λ)

where Z(T (E),Λ) is the Bernstein center of T (E); explicitly, this is
Z(T (E),Λ) = lim←−

K⊂T (E)

Λ[T (E)/K]

where K runs over open subgroups of T (E).

Proposition IX.6.4. There is a natural isomorphism
Z spec(T,Λ) ∼= lim←−

K⊂T (E)

Λ[T (E)/K].

Proof. One can resolve T by products of induced tori and then reduce to the case that T is induced,
and then by Weil restrictions of scalars to T = Gm. In that case Z1(WE ,Gm) = Hom(E∗,Gm) by local
class field theory, giving the result. �

Proposition IX.6.5. Under the above identifications
Z spec(T,Λ) = lim←−

K⊂T (E)

Λ[T (E)/K]

and
Zgeom(T,Λ) =

∏
b∈B(T )

lim←−
K⊂T (E)

Λ[T (E)/K],



IX.7. APPLICATIONS TO REPRESENTATIONS OF G(E) 323

the map

Z spec(T,Λ)→ Zgeom(T,Λ)

is the diagonal embedding.

Proof. We may resolve T by induced tori and use Theorem IX.6.1, Proposition IX.6.2 and Proposi-
tion IX.6.3 to reduce to the case of T = Gm. It is enough to compute the excursion operators corresponding
to I = {1, 2}, V = std� std∨ and the tautological maps α : 1→ std⊗ std∨ and β : std⊗ std∨ → 1. It is
then an easy consequence of Section II.2.1. �

Proposition IX.6.5 in particular shows that the L-parameters we construct for tori are the usual L-
parameters, and together with Theorem IX.6.1 and Proposition IX.6.2 implies that L-parameters are com-
patible with central characters (in case of connected center) and twisting, by applying Theorem IX.6.1 to
the maps Z × G → G and G → G × D where Z ⊂ G is the center and G → D is the quotient by the
derived group. To deduce compatibility with central characters in general, one can reduce to the case of
connected center using z-extensions [Kal18, Section 5].

IX.7. Applications to representations of G(E)

Finally, we apply the preceding results to representations of G(E). We get the following map to the
Bernstein center.

Definition IX.7.1. The map

ΨG : Z spec(G,Λ)→ Z(G(E),Λ)

is the composite

Z spec(G,Λ)→ Zgeom(G,Λ)→ Z(G(E),Λ)

induced by the fully faithful functor

j! : D(G(E),Λ) ∼= Dlis(Bun1
G,Λ)→ Dlis(BunG,Λ).

More generally, for any b ∈ B(G), we can define a map

Ψb
G : Z spec(G,Λ)→ Z(Gb(E),Λ)

to the Bernstein center for Gb(E) by using the fully faithful embedding

D(Gb(E),Λ) ∼= Dlis(BunbG,Λ)→ Dlis(BunG,Λ)

determined for example by the left adjoint to ib∗, where ib : BunbG ↪→ BunG is the locally closed embedding
(see Proposition VII.7.2). (Recall that in the Dlis-setting, we do not have a general ib! -functor, although it
can be defined in the present situation. All these maps will induce the same map to the Bernstein center.)
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IX.7.1. Compatibility with Gb. One can describe the maps Ψb
G for b 6= 1 in terms of the maps ΨGb .

Note that Ĝb is naturally a Levi subgroup of Ĝ, as Gb,Ĕ ⊂ GĔ is the centralizer of the slope morphism
νb : D→ GĔ . This extends naturally to a morphism of L-groups

Ĝb oQ→ ĜoQ

where as usual Q is a finite quotient of WE over which the action on Ĝ factors. However, from geometric
Satake we rather get the natural inclusion

Gb

∧

oWE → G

∧

oWE

where the WE-actions include the cyclotomic twist. The latter induces a map

Z1(WE , Ĝb)→ Z1(WE , Ĝ)

that in terms of the usual WE-action is given by sending a 1-cocycle ϕ :WE → Ĝb(A) to the 1-cocycle

WE → Ĝ(A) : w 7→ (2ρĜ − 2ρĜb)(
√
q)|w|ϕ(w)

where | · | :WE →WE/IE ∼= Z is normalized as usual by sending a geometric Frobenius to 1.

Theorem IX.7.2. For all G and b ∈ B(G), the diagram

Z spec(G,Λ)
ΨbG //

��

Z(D(Gb(E),Λ))

Z spec(Gb,Λ)

ΨGb

66

commutes.

Proof. We note that to prove the theorem, we can assume that Λ is killed by power of ` (if ` divides
the order of π0Z(G), replacing the left-hand side with an algebra of excursion operators), as the result for
Λ = Z`[

√
q] implies it in general, and the right-hand side

Z(D(Gb(E),Λ)) = lim←−
K⊂Gb(E)

Z(Λ[Gb(E) �K])

is `-adically separated in that case. This means we can avoid the subtleties of Dlis in place of Det.
If b is basic, the theorem follows from the identification BunG ∼= BunGb of Corollary III.4.3, which is

equivariant for the Hecke action.
In general, we first reduce to the case that G is quasisplit. Take a z-embedding G ↪→ G′ as in [Kal18,

Section 5], with quotient a torusD, so that the center Z(G′) is connected. Then BunG = BunG′ ×BunD{∗}
and the map B(G) → B(G′) is injective. To see the latter, by the description of the stacks, it suffices to
see that for all b ∈ B(G) with image b′ ∈ B(G′), the map G′

b′(E) → D(E) is surjective. But for any
b ∈ B(G), the map Gb → G′

b′ is a z-embedding with quotient D, and Z ′(E) → D(E) is surjective by
[Kal18, Fact 5.5], where also Z ′ ⊂ G′

b′ , so in particular G′
b′(E)→ D(E) is surjective. An element of

Z(D(Gb(E),Λ)) = lim←−
K⊂Gb(E)

Z(Λ[Gb(E) �K])

of the Bernstein center of Gb(E) is determined by its action on π′|Gb(E) for representations π′ of G′
b′(E).

By Theorem IX.6.1, we can thus reduce to G′ in place of G, i.e. that the center of G is connected. When
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Z(G) is connected, there is some basic b0 ∈ B(G) such that Gb0 is quasisplit. Using the Hecke-equivariant
isomorphism BunG ∼= BunGb0 we can thus assume that G is quasisplit.

Now if G is quasisplit, fix a Borel B ⊂ G. Any b ∈ B(G) then admits a reduction to a canonical
parabolic P = Pb ⊂ G containing B. Pick a cocharacter µ : Gm → G with dynamical parabolic P . For
any N ≥ 0, let bN = bµ(πN ): This is a sequence of elements of B(G) associated to the same parabolic P
but increasingly instable. Moreover, Gb = GbN . We note that the diagram

Z spec(G,Λ)
ΨbG //

=

��

Z(Gb(E),Λ)

=

��
Z spec(G,Λ)

Ψ
bN
G // Z(GbN (E),Λ)

commutes. For this, take any representation σ of Gb(E) and consider the sheaf AN ∈ Det(BunG,Λ)
concentrated on BunbNG , corresponding to the representation σ. Let V ∈ Rep Ĝ be the highest weight
representation with weight µN . We claim that TV (AN )|BunbG

is given by the representation σ. As Hecke
operators commute with excursion operators, this implies the desired result. To compute TV (AN )|BunbG

,
we have to analyze the moduli space of modifications of Eb of type bounded by µN that are isomorphic to
EbN . There is in fact precisely one such modification, given by pushout of the standard modification of line
bundles fromO toO(1) via µN : Gm → G; its type is exactly µN . This gives the claim.

Now to prove the theorem, we have to prove the commutativity of the diagram for any excursion
operator, given by excursion data (I, V, α, β, (γi)i∈I). For any such excursion data, we can pick N large
enough so that any modification of EbN to itself, of type bounded by V , is automatically compatible with
the Harder–Narasimhan reduction to P . In that case, for σ and AN as above, to analyze the excursion
operators

AN = T1(AN )
α−→ TV (AN )

(γi)i∈I−−−−→ TV (AN )
β−→ T1(AN ) = AN ,

we have to analyze the moduli space of modifications of EbN , at I varying points, of type bounded by V , and
that are isomorphic to EbN . By assumption onN , this is the same as the moduli space of such modifications
asP -bundles. This maps to the similar moduli space parametrizing modifications asM -bundles, whereM is
the Levi ofP (andGb =MbM for a basic bM ∈ B(M)). We want to computeTV (AN ). Note thatAN comes
from A′

N ∈ Det(BunP ,Λ) as it is concentrated on BunbNG ∼= BunbNP ⊂ BunP , by the Harder–Narasimhan
reduction.

Consider the diagram

BunM

ψ

��

HckIM,P

ψH
��

h′′1oo
h′′2 // BunP ×(Div1)I

=

��
BunP

π

��

HckIP
h′1oo

πH
��

h′2 // BunP ×(Div1)I

π

��
BunM HckIM

h1oo h2 // BunM ×(Div1)I
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where HckIM,P is defined as the fibre product HckIP ×BunP BunM , and thus parametrizes modifications from
an M -bundle to a P -bundle.

We need to computeTV (AN )|BunbNG
, which by the above argument that any modification of EbN to itself

of type bounded by V is a modification as P -bundles, can be computed in terms of the middle diagram, as

Rh′2!(h
′∗
1 A

′
N ⊗L

Λ SV )|BunbNP

where SV ∈ HckIG is the perverse sheaf determined by V under the geometric Satake equivalence, and we
continue to denote by SV any of its pullbacks.

There is some BN ∈ Det(BunM ,Λ) such that A′
N = Rψ!BN . In fact, one can take BN = Rπ!A

′
N ,

noting that on the support of A′
N , the map π : BunP → BunM is (cohomologically) smooth, so Rπ! is

defined on A′
N (although π is a stacky map). (Indeed, everything is concentrated on one stratum, and the

relevant categories are all equivalent to D(Gb(E),Λ).) Moreover, to compute the restriction to BunbNP it
is enough to do the computation after applying Rπ!. We compute:

Rπ!Rh
′
2!(h

′∗
1 A

′
N ⊗L

Λ SV ) = Rπ!Rh
′
2!RψH!(h

′′∗
1 BN ⊗L

Λ SV )
= Rh2!(h

∗
1BN ⊗L

Λ Rg!SV )

where g : HckIM,P → HckIM is the projection. But this is the pullback of the map L+M\GrIP →
L+M\GrIM = HckIM under HckIM → HckIM . This means thatRg!SV arises via pullback from CTP (SV ) ∈
Det(HckIM ,Λ). Up to the shift [degP ], this agrees with SV |

(M̂oQ)I
, where the restriction involves a cyclo-

tomic twist, as above. (It is the canonical restriction along M

∧

→ G

∧

for the canonical WE-actions arising
geometrically.) Now the excursion operators, which involve maps from and to the sheaf corresponding to
V = 1, require only the connected component where degP = 0, so we can ignore the shift.

With these translations, we see that the excursion operators on BunbNG and on BunbNM agree, giving the
desired result. �

IX.7.2. Parabolic induction. A corollary of this result is compatibility with parabolic induction.

Corollary IX.7.3. Let G be a reductive group with a parabolic P ⊂ G and Levi P → M . Then for
all representations σ of M(E) with (unnormalized) parabolic induction IndG(E)

P (E)σ, the diagram

Z spec(G,Λ) //

��

End(IndG(E)
P (E)σ)

Z spec(M,Λ) // End(σ)

OO

commutes. In particular, the formation of L-parameters is compatible with parabolic induction: If Λ = L

is an algebraically closed field, σ is irreducible and σ̃ is an irreducible subquotient of IndG(E)
P (E)σ, then ϕσ̃ is

conjugate to the composite
WE

ϕσ−−→ M̂(L)oWE → Ĝ(L)oWE

where the map M̂ oWE → ĜoWE is defined as above, involving the cyclotomic twist.
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Proof. It suffices to prove the result for σ = c-IndM(E)
K Λ for K ⊂ M(E) an open pro-p-subgroup,

and then one can assume Λ = Z`[
√
q], where one can further by `-adic separatedness reduce to torsion

coefficients.
Let µ : Gm → G be a cocharacter with dynamical parabolic P and let b = µ(π−1) ∈ B(G). Then

Gb = M , and we can build a sheaf A ∈ Det(BunG,Λ) concentrated on BunbG, given by the representation
σ. Then Tµ−1(A)|Bun1

G
is given by a parabolic induction of σ, more precisely IndG(E)

P (E)σ(−
d
2)[−d] where

d = 〈2ρ, µ〉: To see this, we have to understand the moduli space of modifications of the trivial G-torsor
of type bounded by µ that are isomorphic to Eb. This is in fact given by G(E)/P (E), the G(E)-orbit
of the pushout of the modification from O to O(1) via µ. All of these modifications are of type exactly
µ (so the Satake sheaf is simply a twist (−d

2)[−d] of the constant sheaf). This easily gives the claim on
Tµ−1(A)|Bun1

G
.1 Now as Hecke operators commute with excursion operators, the excursion operators on

IndG(E)
P (E)σ agree with those on A, and these are determined by Theorem IX.7.2, giving the result. �

IX.7.3. The caseG = GLn. For the groupG = GLn, we can identify the L-parameters with the usual
L-parameters of [LRS93], [HT01], [Hen00]. This is the only place of this paper where we rely on previous
work on the local Langlands correspondence, or (implicitly) rely on global arguments. More precisely,
we use the identification of the cohomology of the Lubin–Tate and Drinfeld tower, see [Boy99], [Har97],
[HT01], [Hau05], [Dat07]. In the proof, we use the translation between Hecke operators and local Shimura
varieties as Section IX.3, together with the description of these as the Lubin–Tate tower and Drinfeld tower
in special cases, see [SW13].

Theorem IX.7.4. Letπ be any irreducible smoothQ`-representation of GLn(E). Then theL-parameter
ϕπ agrees with the usual (semisimplified) L-parameter.

Proof. By Corollary IX.7.3, we can assume that π is supercuspidal. We only need to evaluate the
excursion operators for the excursion data given by I = {1, 2}, the representation V = std� std∨ of ĜLn

2
,

and the unit/counit mapsα : 1→ std⊗std∨ and β : std⊗std∨ → 1, as these excursion operators determine
the trace of the representation (and thus the semisimplified representation).

First, we analyze these excursion operators on the sheaf B which is the sheaf on BunbGLn for b cor-
responding to the bundle O(− 1

n), given by the representation σ = JL(π) of D×; here D is the division
algebra of invariant 1

n . The Hecke operator TV is the composite of two operators. The first Hecke operator,
corresponding to std, takes minuscule modifications O(− 1

n) ⊂ E with cokernel a skyscraper sheaf of rank
1. Such an E is necessarily isomorphic toOn, and the Hecke operator will then produce the σ-isotypic part
of the cohomology of the Lubin–Tate tower, which is π ⊗ ρπ , where ρπ is the irreducible n-dimensional
WE-representation associated to π by the local Langlands correspondence. (Note that the shift [n − 1], as
well as the cyclotomic twist (n−1

2 ) that usually appears, is hidden inside the normalization of the perverse
sheaf corresponding to the standard representation.) Now the second Hecke operator, when restricted to
BunbGLn , produces the π-isotypic component of the cohomology of the Drinfeld tower, which is σ⊗ ρ∗π. In
total, we see that TV (B)|BunbGLn

is given by σ⊗ρπ⊗ρ∗π as representation ofD××WE×WE . By irreducibil-
ity of ρπ , theWE-equivariant map σ → σ⊗ρπ⊗ρ∗π induced by α (and the similar map backwards induced
by β) must agree up to scalar with the obvious map. The scalar of the total composite can be identified by

1See [GI16, Theorem 4.26] for more details on the analysis of Hodge–Newton reducible local Shimura varieties.
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taking both elements ofWE to be equal to 1. This shows thatB has the correct L-parameter. Now use that
the sheaf corresponding to π appears as a summand of Tstd(B) (after forgetting theWE-action) to conclude
the same for π. �

In particular, it follows that the mapZ spec(GLn,Q`)→ Z(GLn(E),Q`) to the Bernstein center agrees
with the usual map. But this refines to a map

Z spec(GLn,Z`[
√
q])→ Z(GLn(E),Z`[

√
q])

to the integral Bernstein center, recovering a result of Helm–Moss [HM18].



CHAPTER X

The spectral action

As a final topic, we construct the spectral action. We will first construct it with characteristic 0 coeffi-
cients, and then explain refinements with integral coefficients.

Let Λ be the ring of integers in a finite extension of Q`(
√
q). We have the stable ∞-category C =

Dlis(BunG,Λ)ω of compact objects, which is linear over Λ, and functorially in the finite set I an exact
monoidal functor RepΛ(Ĝ o Q)I → EndΛ(C)BW

I
E that is linear over RepΛ(Q

I). A first version of the
following theorem is due to Nadler–Yun [NY19] in the context of Betti geometric Langlands, and a more
general version appeared in the work of Gaitsgory–Kazhdan–Rozenblyum–Varshavsky [GKRV22]. Both
references, however, effectively assume thatG is split, work only with characteristic 0 coefficients, and work
with a discrete group in place of WE . At least the extension to Z`-coefficients is a nontrivial matter.

Note that Z1(WE , Ĝ) is not quasicompact, as it has infinitely many connected components; it can be
written as the increasing union of open and closed quasicompact subschemes Z1(WE/P, Ĝ). We say that
an action of Perf(Z1(WE , Ĝ)/Ĝ) on a stable∞-category C is compactly supported if for all X ∈ C the
functor Perf(Z1(WE , Ĝ)/Ĝ)→ C (induced by acting on X) factors over some Perf(Z1(WE/P, Ĝ)/Ĝ).

The goal of this chapter is to prove the following theorem. Below, “functorially in the finite set I”
means a map on total spaces over Fin of the corresponding coCartesian fibrations.

Theorem X.0.1. Assume that ` does not divide the order of π1(Ĝ)tor. Let C be a small idempotent-
completeΛ-linear stable∞-category. Then giving, functorially in the finite set I , an exact RepΛ(Q

I)-linear
monoidal functor

RepΛ(ĜoQ)I → EndΛ(C)BW
I
E

is equivalent to giving a compactly supported Λ-linear action of

Perf(Z1(WE , Ĝ)Λ/Ĝ).

Here, given a Λ-linear action of Perf(Z1(WE , Ĝ)Λ/Ĝ), one can produce such an exact RepΛ(Q
I)-linear

monoidal functor
RepΛ(ĜoQ)I → EndΛ(C)BW

I
E

functorially in I by composing the exact RepΛ(Q
I)-linear symmetric monoidal functor

RepΛ(ĜoQ)I → Perf(Z1(WE , Ĝ)Λ/Ĝ)
BW I

E

with the action of Perf(Z1(WE , Ĝ)Λ/Ĝ).
The same result holds true if Λ is a field over Q`(

√
q), for any prime `.

329



330 X. THE SPECTRAL ACTION

Here, the exact RepΛ(Q
I)-linear symmetric monoidal functor

RepΛ(ĜoQ)I → Perf(Z1(WE , Ĝ)Λ/Ĝ)
BW I

E

is induced by tensor products and the exact RepΛ(Q)-linear symmetric monoidal functor

RepΛ(ĜoQ)→ Perf(Z1(WE , Ĝ)Λ/Ĝ)
BWE

corresponding to the universal Ĝ o Q-torsor, with the universal WE-equivariance as parametrized by
Z1(WE , Ĝ)/Ĝ.

Before starting the proof, we note that the proof of Proposition IX.5.1 shows that we may replace WE

byWE/P in the statement of Theorem X.0.1. Choosing moreover a discretizationW ⊂WE/P , we reduce
to the following variant.

Theorem X.0.2. Assume that ` does not divide the order of π1(Ĝ)tor. Let C be a small idempotent-
completeΛ-linear stable∞-category. Then giving, functorially in the finite set I , an exact RepΛ(Q

I)-linear
monoidal functor

RepΛ(ĜoQ)I → EndΛ(C)BW
I

is equivalent to giving a Λ-linear action of

Perf(Z1(W, Ĝ)Λ/Ĝ),

with the same compatibility as above. The same result holds true if Λ is a field over Q`, for any prime `.

X.1. Rational coefficients

With rational coefficients, we can prove a much more general result, following [GKRV22]. Consider
a reductive group H over a field L of characteristic 0 (like Ĝ over Q`) with an action of a finite group Q.
Let S be any anima over ∗/Q (like ∗/W , where W ⊂ WE/P is a discretization of WE/P for an open
subgroup of the wild inertia, as usual). We can then consider the (derived) stack Map∗/Q(S, ∗/(H o Q))

over L, whose values in an animated L-algebra A are the maps of anima S → ∗/(H o Q)(A) over ∗/Q.
This recovers the stack [Z1(W, Ĝ)Q`/Ĝ] in the above example, using Proposition VIII.3.5.

In general, Map∗/Q(S, ∗/(H o Q)) is the fpqc quotient of an affine derived scheme by a power of H .
Indeed, pick a surjection S′ → S ×∗/Q ∗ from a set S′. Then Map∗/Q(S, ∗/(H oQ)) maps to ∗/HS′ ; we
claim that the fibre is an affine derived scheme, i.e. representable by an animated L-algebra. For this, note
that

Map∗/Q(S, ∗/(H oQ))→Map(S ×∗/Q ∗, ∗/H)

is relatively representable, as it is given by theQ-fixed points. To show that the right-hand side is relatively
representable over ∗/HS′ , we can replace S ×∗/Q ∗ by a connected anima T , and S′ by a point. Then
Map(T, ∗/H) ×∗/H ∗ parametrizes pointed maps T → ∗/H , which are equivalent to maps of E1-groups
Ω(T )→ H , cf. [Lur09, Lemma 7.2.2.11 (1)]. Writing Ω(T ) as a sifted colimit of finite free groups Fn, one
reduces to representability of maps of groups Fn → H , which is representable by Hn.

Theorem X.1.1. Let C be an idempotent-complete small stable L-linear∞-category. Giving, functo-
rially in finite sets I , an exact RepL(Q

I)-linear monoidal functor

RepL((H oQ)I)→ EndL(C)S
I
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is equivalent to giving anL-linear action of Perf(Map∗/Q(S, ∗/(HoQ))) on C. Here, given such an action
of Perf(Map∗/Q(S, ∗/(H oQ))), one gets exact RepL(Q

I)-linear monoidal functors

RepL((H oQ)I)→ EndL(C)S
I

by precomposing the exact monoidal functor Perf(Map∗/Q(S, ∗/(H oQ)))→ EndL(C) with the natural
exact RepL(Q

I)-linear symmetric monoidal functor

RepL((H oQ)I)→ Perf(Map∗/Q(S, ∗/(H oQ)))S
I

given by I-fold tensor product of the exact RepL(Q)-linear symmetric monoidal functor

RepL(H oQ)→ Perf(Map∗/Q(S, ∗/(H oQ)))S

assigning to each s ∈ S pullback along evaluation at s, Map∗/Q(S, ∗/(H oQ))→ ∗/(H oQ).

Proof. Note first that, for any L-linear idempotent-complete small stable ∞-category C , giving an
exact L-linear functor RepL((H o Q)I) → C is equivalent to giving an exact L-linear functor of stable
∞-categories Perf((H o Q)I) → C , as the ∞-category of perfect complexes is freely generated by the
exact category of representations. Indeed, such functors extend to the∞-category obtained by inverting
quasi-isomorphisms in Chb(RepL(H oQ)I), and this is Perf(∗/(H oQ)I).

For any S , we have the anima F1(S) of L-linear actions of Perf(Map∗/Q(S, ∗/(H o Q))) on C ,1 and
the anima F2(S) of functorial exact monoidal functors

RepL((H oQ)I)→ EndL(C)S
I

linear over RepL(Q
I), and a natural map F1(S) → F2(S) functorial in S (where both F1 and F2 are

contravariant functors ofS). Both functors take sifted colimits inS to limits. This is clear forF2 (asS 7→ SI

commutes with sifted colimits). For F1, it is enough to see that taking S to Perf(Map∗/Q(S, ∗/(H oQ)))

commutes with sifted colimits (taken in idempotent-complete stable∞-categories), which is Lemma X.1.2
below.

Therefore it suffices to handle the case that S is a finite set, for which the map S → ∗/Q can be factored
over ∗. Then Map∗/Q(S, ∗/(H oQ)) ∼= ∗/HS . Similarly, exact monoidal functors

RepL((H oQ)I)→ EndL(C)S
I

linear over RepL(Q
I) are equivalent to exact monoidal functors

RepL(H
I)→ EndL(C)S

I

linear over L. Here, we use Perf(∗/(H o Q)I) ⊗Perf(∗/QI) Perf(L) ∼= Perf(∗/HI), which follows easily
from highest weight theory.

The latter data is equivalent to maps

Hom(I, S) = SI → Funmon
ex,L(RepL(H

I),EndL(C))

1Indeed, any ∞-categorical datum will naturally produce an anima, or ∞-groupoid, via incorporating all isomorphisms and
higher isomorphisms.
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functorially in I , where Funmon
ex,L denotes the exact L-linear monoidal functors. Both sides here are functors

in I , and on the left-hand side we have a representable functor. By the Yoneda lemma, it follows that this
data is equivalent to L-linear exact monoidal functors

RepL(H
S)→ EndL(C).

Such actions extend uniquely to Perf(∗/HS) by the observation explained in the first paragraph of this
proof, giving the desired result. �

Lemma X.1.2. The functor taking an anima S over ∗/Q to Perf(Map∗/Q(S, ∗/(H o Q))), regarded
as an idempotent-complete stable∞-category, commutes with sifted colimits. More precisely, as a functor
intoL-linear symmetric monoidal idempotent-complete stable∞-categories, it commutes with all colimits.

We use here [Lur16, Corollary 3.2.3.2] to see that sifted colimits agree with or without symmetric
monoidal structure.

Proof. We first check that it commutes with filtered colimits. For this, let Si, i ∈ I , be a filtered
diagram of anima over ∗/Q, and choose compatible surjections S′

i → Si ×∗/Q ∗ from sets S′
i. Let S =

colimi Si and S′ = colimi S
′
i, which is a set surjecting onto S ×∗/Q ∗. Letting Gi = HS′

i and G = HS′ , we
get presentations Map∗/Q(Si, ∗/(HoQ)) = Xi/Gi as quotients of affine derivedL-schemesXi by the pro-
reductive group Gi, and similarly Map∗/Q(S, ∗/(H o Q)) = X/G, with X = lim←−iXi and G = lim←−iGi.
We claim that in this generality

lim−→
i

Perf(Xi/Gi)→ Perf(X/G)

is an isomorphism of idempotent-complete stable∞-categories.
Assume first that allX = SpecL are a point. Then note that Perf(∗/G) is generated by Rep(G), which

is easily seen to be the filtered colimit lim−→i
Rep(Gi), and (by writing it as limit of reductive groups) is seen

to be semisimple. The claim is easily checked in this case.
In general, Perf(X/G) is generated by Rep(G) as an idempotent complete stable∞-category. Indeed,

given any perfect complex A ∈ Perf(X/G), we can look at the largest n for which the cohomology sheaf
Hn(A) is nonzero; after shift, n = 0. Pick V ∈ Rep(G) with a map V → H0(A) such that V ⊗LOX/G →
H0(A) is surjective. By semisimplicity of Rep(G), we can lift V → H0(A) to V → A, and then pass to the
cone of V ⊗L OX/G → A to reduce the projective amplitude until A is a vector bundle. In that case the
homotopy fibre B of V ⊗L OX/G → A is again a vector bundle, and the map V ⊗L OX/G → A splits, as
the obstruction is H1(X/G,A∨ ⊗OX/G

B), which vanishes by semisimplicity of Rep(G).

This already proves essential surjectivity. For fully faithfulness, it suffices by passage to internal Hom’s
to show that for allAi0 ∈ Perf(Xi0/Gi0) (for some chosen i0) with pullbacksAi ∈ Perf(Xi/Gi) for i→ i0
andA ∈ Perf(X/G), the map lim−→i

RΓ(Xi/Gi, Ai)→ RΓ(X/G,A) is an isomorphism. By semisimplicity
of Rep(Gi) and Rep(G), it suffices to see that lim−→i

RΓ(Xi, Ai) → RΓ(X,A) is an isomorphism, which is
clear by affineness.

This handles the case of filtered colimits. For the more precise claim, it is also easy to see that it com-
mutes with disjoint unions. It is now enough to handle pushouts, so consider a diagram S1 ← S0 → S2 of
anima over ∗/Q, with pushout S. We can assume that the maps S0 → S1 and S0 → S2 are surjective, as
otherwise we can use compatibility with disjoint unions (replacing S2 by the disjoint union of the image
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of S0 and its complement). Then choose a surjection S′ → S0 ×∗/Q ∗, which induces similar surjections
in the other cases. Thus, we get affine derived L-schemes X1 → X0 ← X2 with actions by G = HS′ , and
X = X1 ×X0 X2, and we want to see that the functor

Perf(X1/G)⊗Perf(X0/G) Perf(X2/G)→ Perf(X1 ×X X2/G)

is an equivalence. On the level of Ind-categories, Ind Perf(Xi/G) is the∞-category of O(Xi)-modules in
Ind Perf(∗/G): This is a consequence of Barr–Beck–Lurie [Lur16, Theorem 4.7.4.5] and the fact observed
above that Perf(∗/G) generates Perf(Xi/G), so that the forgetful functor Ind Perf(Xi/G)→ Ind Perf(∗/G)
is conservative. It follows that the tensor product is the ∞-category of O(X1) ⊗O(X0) O(X2)-modules
in Ind Perf(∗/G), the tensor product O(X1) ⊗O(X0) O(X2) taken in the symmetric monoidal stable∞-
category Ind Perf(∗/G). The map O(X1) ⊗O(X0) O(X2) → O(X) is an isomorphism in Ind Perf(∗/G):
This can be checked after the forgetful functor Ind Perf(∗/G) → D(L) as it is conservative (using that G
is pro-reductive, hence Rep(G) is semisimple), and then it amounts to X = X1 ×X0 X2. �

In particular, we get the following corollary.

Corollary X.1.3. LetL be a field overQ`(
√
q). There is a natural compactly supportedL-linear action

of Perf(Z1(WE , Ĝ)L/Ĝ) onDlis(BunG, L)ω , uniquely characterized by the requirement that by restricting
along the RepL(Q

I)-linear maps

RepL((ĜoQ)I)→ Perf(Z1(WE , Ĝ)L/Ĝ)
BW I

E

it induces the Hecke action, which gives functorially in the finite set I exact RepL(Q
I)-linear functors

RepL((ĜoQ)I)→ EndL(Dlis(BunG, L)ω)BW
I
E .

Proof. We can reduce to the subcategories DPlis(BunG, L)ω ⊂ Dlis(BunG, L) for open subgroups P of
the wild inertia ofWE , acting trivially on Ĝ. Then we can replaceWE byWE/P throughout. In that case,
restricting the given Hecke action to W ⊂WE/P , Theorem X.1.1 gives an action of Perf(Z1(W, Ĝ)L/Ĝ),
and Z1(W, Ĝ) = Z1(WE/P, Ĝ), so we get the desired action of Perf(Z1(WE/P, Ĝ)L/Ĝ). �

With this action, we can formulate the main conjecture, “the categorical form of the geometric Lang-
lands conjecture on the Fargues–Fontaine curve”. Recall that for a quasisplit reductive group G over E ,
Whittaker data consist of a choice of a BorelB ⊂ Gwith unipotent radicalU ⊂ B, together with a generic
character ψ : U(E)→ Q×

` . As usual, we also fix√q ∈ Q`. Let

Wψ ∈ Dlis(BunG,Q`)

be the Whittaker sheaf, which is the sheaf concentrated on Bun1
G ⊂ BunG corresponding to the represen-

tation c-IndG(E)
U(E)ψ of G(E).

Conjecture X.1.4. Consider the functor

Dqcoh(Z
1(WE , Ĝ)Q`/Ĝ) = Ind Perfqc(Z1(WE , Ĝ)Q`/Ĝ)→ Dlis(BunG,Q`) :M 7→ ActM (Wψ)

given as the colimit-preserving extension of the spectral action Act on the Whittaker sheaf. The corre-
sponding right adjoint functor is fully faithful when restricted to the compact objects, and induces an
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equivalence of (Perf(Z1(WE , Ĝ)Q`/Ĝ)-linear small stable)∞-categories

Dlis(BunG,Q`)
ω ∼= Db,qc

coh (Z
1(WE , Ĝ)Q`/Ĝ).

To be precise,Db,qc
coh (Z

1(WE , Ĝ)Q`/Ĝ) refers here to the∞-category of those bounded complexes with
coherent cohomology that also have quasicompact support, i.e. only live on finitely many connected com-
ponents.

Remark X.1.5. There is an orthogonal decomposition

Dlis(BunG,Q`)
ω =

⊕
α∈π1(G)Γ

Dlis(Bunc1=αG ,Q`)
ω

given by the connected components of BunG. There is a morphism Z(Ĝ)Γ → Aut(IdZ1(WE ,Ĝ)Q`
/Ĝ), as

Z(Ĝ)Γ ⊂ Ĝ acts trivially on Z1(WE , Ĝ). There is an associated “eigenspace” decomposition

Db,qc
coh (Z

1(WE , Ĝ)Q`/Ĝ) =
⊕

χ∈X∗(Z(Ĝ)Γ)

Db,qc
coh (Z

1(WE , Ĝ)Q`/Ĝ)χ.

Compatibility with the spectral action implies that via the identification π1(G)Γ = X∗(Z(Ĝ)Γ) those two
decompositions should match.

Another way to phrase the preceding conjecture is to say that, noting ∗ the spectral action, the “non-
abelian Fourier transform”2

Perfqc(Z1(WE , Ĝ)Q`/Ĝ) −→ Dlis(BunG,Q`)

M 7−→M ∗Wψ

is fully faithful and extends to an equivalence of Q`-linear small stable∞-categories

Db,qc
coh (Z

1(WE , Ĝ)Q`/Ĝ)
∼−→ Dlis(BunG,Q`)

ω.

Example X.1.6. Fully faithfulness in the categorical conjecture, applied to the structure sheaf, implies
that

Z spec(G,Q`)
∼−→ End(c-IndG(E)

U(E)ψ).

Example X.1.7 (Kernel of functoriality). Conjecture X.1.4 implies the existence of a kernel of functo-
riality for the local Langlands correspondence in the following way. Let

f : LH → LG

be an L-morphism between the L-groups of two quasi-split reductive groupsH andG overE. This defines
a morphism of stacks

Z1(WE , Ĥ)Q`/Ĥ −→ Z1(WE , Ĝ)Q`/Ĝ,

and pushforward along this map induces a functor

IndDb,qc
coh (Z

1(WE , Ĥ)Q`/Ĥ)→ IndDb,qc
coh (Z

1(WE , Ĝ)Q`/Ĝ).

2No precise meaning is implied by these words.



X.2. ELLIPTIC PARAMETERS 335

(There may be slightly different ways of handling the singularities here. One way to argue is to observe
that pushforward is naturally a functor

D≥0
qcoh(Z

1(WE , Ĥ)Q`/Ĥ)→ D≥0
qcoh(Z

1(WE , Ĝ)Q`/Ĝ),

andD≥0
qcoh = IndDb,qc,≥0

coh , and then extend by shifts.) The categorical equivalence then leads to a canonical
functor

Dlis(BunH ,Q`)→ Dlis(BunG,Q`).

By the self-duality of Dlis coming from Bernstein–Zelevinsky duality, and Proposition VII.7.10, any such
functor is given by a kernel

Af ∈ Dlis(BunH ×BunG,Q`).

One could, in fact, identify the image of Af under the categorical equivalence for H × G; up to minor
twists, it should be given by the structure sheaf of the graph of Z1(WE , Ĥ)Q`/Ĥ −→ Z1(WE , Ĝ)Q`/Ĝ.
It would be very interesting if some examples of such kernels Af can be constructed explicitly.

Since D(H(E),Q`), resp. D(G(E),Q`), are direct factors of Dlis(BunH ,Q`), resp. Dlis(BunG,Q`),
this should give rise to the “classical” Langlands functoriality D(H(E),Q`)→ D(G(E),Q`).

Remark X.1.8. Above, we assumed G and H are quasisplit, in order to define the Whittaker sheaf. To
some extent, this is necessary, as the Jacquet–Langlands correspondence cannot be given by a completely
canonical functor (in particular, one defined over Q`): In fact, as is well-known, any discrete series rep-
resentation of GLn(E) is defined over its field of moduli but this is not the case for smooth irreducible
representations of D× if D is a division algebra over E.

Let us now explain how Fargues’s original conjecture fits into this context. Let ϕ : WE → Ĝ(Q`) be a
Langlands parameter. Consider the map i : SpecQ` → Z1(WE , Ĝ)Q`/Ĝ corresponding to ϕ, and let

Eϕ = i∗Q` ∈ Dqcoh(Z
1(WE , Ĝ)Q`/Ĝ) = Ind Perfqc(Z1(WE , Ĝ)Q`/Ĝ).

(We take the pushforward here in the sense of Dqcoh. One could a priori produce a more refined object of
IndDb,qc

coh , but we do not consider this here.) Factoring the map i via [SpecQ`/Sϕ], one actually sees that
Eϕ carries naturally an action of Sϕ. Moreover, if one acts via tensoring with a representation V of ĜoQ,
then by the projection formula the sheaf Eϕ gets taken to itself, tensored with theWE-representation V ◦ϕ.
Using the spectral action, we find an Sϕ-equivariant “automorphic complex”

Autϕ = Eϕ ∗Wψ ∈ Dlis(BunG,Q`).

It already follows that Autϕ ∈ Dlis(BunG,Q`) is a Hecke eigensheaf, with eigenvalue ϕ, so the spectral
action produces Hecke eigensheaves. Except, it is not clear whether Autϕ 6= 0. Under the fully faithfulness
part of the categorical conjecture, one sees that it must be nonzero, and moreover have some of the properties
stated in [Far16], in particular regarding the relation toL-packets. The particular case of elliptic parameters
is further spelled out in the next section.

X.2. Elliptic parameters

Let us make explicit what the spectral action, and Conjecture X.1.4, entails in the case of elliptic pa-
rameters. As coefficients, we take L = Q` for simplicity.



336 X. THE SPECTRAL ACTION

Definition X.2.1. An L-parameter ϕ :WE → Ĝ(Q`) is elliptic if it is semisimple and the centralizer
Sϕ ⊂ ĜQ`

has the property that Sϕ/Z(Ĝ)ΓQ` is finite.

By deformation theory,3 it follows that the unramified twists of ϕ define a connected component

Cϕ ↪→ [Z1(WE , Ĝ)Q`/Ĝ].

Thus, the spectral action (in fact, the excursion operators are enough for this, see the discussion around
Theorem IX.5.2) implies that there is a corresponding direct summand

DCϕlis (BunG,Q`)
ω ⊂ Dlis(BunG,Q`)

ω,

explicitly given as those objects on which the excursion operator corresponding to the function that is 1 on
Cϕ and 0 elsewhere acts via the identity. For any Schur-irreducible A ∈ DCϕlis (BunG,Q`)

ω , the excursion
operators act via scalars on A, as determined by an unramified twist of ϕ. In particular, they act in this
way on ib∗A for any b ∈ B(G). By compatibility with parabolic induction, it follows that for any A ∈
DCϕlis (BunG,Q`)

ω , the restriction ib∗A is equal to 0 if b is not basic (if it was not zero, one could find an
irreducible subquotient to which this argument applies). Thus,

DCϕlis (BunG,Q`)
ω ∼=

⊕
b∈B(G)basic

DCϕ(Gb(E),Q`)
ω.

Moreover, all A ∈ DCϕ(Gb(E),Q`)
ω must lie in only supercuspidal components of the Bernstein center,

again by compatibility with parabolic induction. If Z(Ĝ)Γ is finite (equivalently, if the connected split
center of G is trivial), then Cϕ = [∗/Sϕ] is a point and it follows that all A are finite direct sums of shifts
supercuspidal representations of Gb(E), and so

DCϕlis (BunG,Q`)
ω ∼=

⊕
b∈B(G)basic

⊕
π

Perf(Q`)⊗ π,

where π runs over supercuspidal Q`-representations of Gb(E) with L-parameter ϕπ = ϕ.

In general, acting on DCϕlis (BunG,Q`)
ω , we have the direct summand

Perf(Cϕ)

of
Perf([Z1(WE , Ĝ)Q`/Ĝ]).

If Z(Ĝ)Γ is finite, one has Cϕ = [∗/Sϕ], and hence we get an action of Rep(Sϕ) on DCϕlis (BunG,Q`)
ω. In

general, one can get a similar picture by fixing central characters; let us for simplicity only spell out the
case when Z(Ĝ)Γ is finite, i.e. the connected split center of G is trivial.

If πb is a supercuspidal representation of some Gb(E) with ϕπb = ϕ, and W ∈ Rep(Sϕ) then acting
via W on πb we get some object

ActW (πb) ∈
⊕

b′∈B(G)basic

⊕
π

Perf(Q`)⊗ π.

3One has H2(WE , adϕ) = 0 using Tate duality, and the H0 reduces to the Lie algebra of Z(Ĝ)Γ. The H1 must thus be of
the same dimension and be accounted for by the unramified twists.
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Assume that W |Z(Ĝ)Γ is isotypic, given by some character χ : Z(Ĝ)Γ → Q×
` . As Z(Ĝ)Γ is the diagonal-

izable group with characters π1(G)Γ, it follows that we get an element bχ ∈ π1(G)Γ = B(G)basic. Then
ActW (πb) is concentrated on b′ = b+ bχ, and so

ActW (πb) ∼=
⊕
πb′

Vπb′ ⊗ πb′

for a certain multiplicity space Vπb′ ∈ Perf(Q`), where πb′ runs over supercuspidal representations of
Gb′(E), b′ = b+ bχ, with L-parameter ϕπb′ = ϕ.

The conjectural description of L-packets [Kal14] then suggests the following conjecture, which is (up
to the added t-exactness) the specialization of Conjecture X.1.4 to the case of elliptic L-parameters. (If
one projects the Whittaker sheaf to the Cϕ-component, a priori it could break into a direct sum of several
supercuspidal representations; but then the functor would not have a chance of being an equivalence.)

Conjecture X.2.2. Assume thatG is quasisplit, with a fixed Whittaker datum, and that the connected
split center of G is trivial. Then there is a unique generic supercuspidal representation π of G(E) with
L-parameter ϕπ = ϕ, and the functor

Perf([SpecQ`/Sϕ])→ D
Cϕ
lis (BunG,Q`)

ω :W 7→ ActW (π)

is an equivalence. In particular, the set of irreducible supercuspidal representations of some Gb(E) with
L-parameter ϕ is in bijection with the set of irreducible representations of Sϕ.

Moreover, the equivalence is t-exact for the standard t-structures on source and target.

Thus, the conjecture gives an explicit parametrization of L-packets.
Let us explain what the compatibility of the spectral action with Hecke operators entails in this case.

Given V ∈ Rep(Ĝ o Q), the restriction of V to Sϕ admits a commuting WE-action given by ϕ. This
defines a functor

Rep(ĜoQ)→ Rep(Sϕ)BWE .

Now the diagram of monoidal functors

Rep(ĜoQ) //

��

EndQ`
(DCϕlis (BunG,Q`))

BWE

Rep(Sϕ)BWE

55

commutes; this follows from the compatibility of the spectral action with the Hecke action.

Concretely, given π as above and V ∈ Rep(Ĝ o Q), decompose the image of V in Rep(Sϕ)BWE as a
direct sum

⊕
i∈IWi ⊗ σi where Wi ∈ Rep(Sϕ) is irreducible and σi is some continuous representation of

WE on a finite-dimensional Q`-space. Then

TV (π) ∼=
⊕
i∈I

ActWi(π)⊗ σi.

Recall that TV (π) can be calculated concretely through the cohomology of local Shimura varieties, or
in general moduli spaces of local shtukas. Noting that the functor ActWi is realizing a form of the Jacquet–
Langlands correspondence relating different inner forms, the formula above is essentially the conjecture of
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Kottwitz [RV14, Conjecture 7.3]. In fact, assuming Conjecture X.2.2, it is an easy exercise to deduce [RV14,
Conjecture 7.3], assuming that the parametrization of the Conjecture X.2.2 agrees with the parametrization
implicit in [RV14, Conjecture 7.3].

X.3. Integral coefficients

We want to construct the spectral action with integral coefficients. Unfortunately, the naive analogue
of Theorem X.1.1 is not true, the problem being that the analogue of Lemma X.1.2 fails. However, the rest
of the argument still works, and gives the following result.

Consider a split reductive group H over a discrete valuation ring R with an action of a finite group Q.
Let S be any anima over ∗/Q. As before, we can define a derived stack Map∗/Q(S, ∗/(H o Q)) over R,
whose values in an animatedR-algebraA are the maps of anima S → ∗/(HoQ)(A) over ∗/Q. In general,
the functor S 7→ Perf(Map∗/Q(S, ∗/(H oQ))) does not commute with sifted colimits in S.

However, we can consider the best approximation to it that does commute with sifted colimits. Note
that the∞-category of anima over ∗/Q is the animation of the category of sets equipped with a Q-torsor;
it is freely generated under sifted colimits by the category of finite sets equipped with a Q-torsor. Thus,
the sifted-colimit approximation to S 7→ Perf(Map∗/Q(S, ∗/(H oQ))) is the animation of its restriction
to finite sets with Q-torsors; we denote it by

S 7→ Perf(MapΣ
∗/Q(S, ∗/(H oQ))),

with the idea in mind that it is like the∞-category of perfect complexes on some (nonexistent) derived
stack MapΣ

∗/Q(S, ∗/(H oQ)), gotten as a (co-)sifted limit approximation to Map∗/Q(S, ∗/(H oQ)). The
symbol Σ here is in reference to the notation used in [Lur09, Section 5.5.8] in relation to sifted colimits.
Thus Perf(MapΣ

∗/Q(S, ∗/(HoQ))) is anR-linear idempotent-complete small stable∞-category, mapping
to Perf(Map∗/Q(S, ∗/(H oQ))).

Proposition X.3.1. Let C be anR-linear idempotent-complete small stable∞-category. Giving, func-
torially in finite sets I , an exact RepR(Q

I)-linear monoidal functor

RepR((H oQ)I)→ EndR(C)S
I

is equivalent to giving anR-linear action of Perf(MapΣ
∗/Q(S, ∗/(HoQ))) on C. Here, given such an action

of Perf(MapΣ
∗/Q(S, ∗/(H oQ))), one gets exact RepR(Q

I)-linear monoidal functors

RepR((H oQ)I)→ EndR(C)S
I

by composing the exact monoidal functor Perf(MapΣ
∗/Q(S, ∗/(H o Q))) → EndR(C) with the natural

exact RepR(Q
I)-linear symmetric monoidal functor

RepR((H oQ)I)→ Perf(MapΣ
∗/Q(S, ∗/(H oQ)))S

I

given by I-fold tensor product of the exact RepR(Q)-linear symmetric monoidal functor

RepR(H oQ)→ Perf(MapΣ
∗/Q(S, ∗/(H oQ)))S

assigning to each s ∈ S pullback along evaluation at s, Map∗/Q(S, ∗/(H o Q)) → ∗/(H o Q); more
precisely, it is defined in this way if S is a finite set, and in general by animation.
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Proof. This follows from the proof of Theorem X.1.1. �

To make use of Proposition X.3.1, we need to find sufficiently many situations in which the functor

Perf(MapΣ
∗/Q(S, ∗/(H oQ)))→ Perf(Map∗/Q(S, ∗/(H oQ)))

is an equivalence, and specifically we need to prove this for Map∗/Q(∗/W, ∗/(ĜoQ)) = Z1(W, Ĝ)/Ĝ.

First, we have the following result.

Proposition X.3.2. The functor S 7→ Perf(MapΣ
∗/Q(S, ∗/(H o Q))) from anima over ∗/Q to sym-

metric monoidal idempotent-complete stable R-linear∞-categories commutes with all colimits.

Proof. As the functor commutes with sifted colimits by definition, it suffices to show that when re-
stricted to finite sets S equipped withQ-torsors, it commutes with disjoint unions. But for such S , the map
S → ∗/Q can be factored over a point, and then Map∗/Q(S, ∗/(H o Q)) = ∗/HS . Thus, one has to see
that for two finite sets S1, S2, the functor

Perf(∗/HS1)⊗Perf(R) Perf(∗/HS2)→ Perf(∗/HS1tS2)

is an equivalence. But this follows easily from highest weight theory, which for any split reductive group
H filters Perf(∗/H) in terms of copies of Perf(R) enumerated by highest weights. �

Proposition X.3.3. Assume that S = ∗/Fn is the classifying space of a free group. Then the functor

Perf(MapΣ
∗/Q(S, ∗/(H oQ)))→ Perf(Map∗/Q(S, ∗/(H oQ)))

is fully faithful, and the essential image is the idempotent-complete stable∞-subcategory generated by the
image of RepR(H).

Proof. Represent ∗/Fn → ∗/Q by a map Fn → Q, and let σ1, . . . , σn ∈ Q be the images of the
generators. Then Map∗/Q(S, ∗/(H o Q)) can be identified with [Hn/H], where H acts on Hn via the
(σ1, . . . , σn)-twisted diagonal conjugation action. We claim that

Perf(MapΣ
∗/Q(S, ∗/(H oQ)))

is the∞-category of compact objects in the∞-category of modules overO(Hn) in Ind Perf(∗/H); in fact,
this is equivalent to the claim, as by Barr–Beck–Lurie [Lur16, Theorem 4.7.4.5] this gives a description of
the full∞-subcategory of Perf([Hn/H]) generated by Perf(∗/H).

As O(Hn) = O(H) ⊗ . . . ⊗ O(H) in Ind Perf(∗/H), one reduces to the case n = 1. In that case
S = ∗/F1 is a circle, which we can present as a pushout of ∗ t ∗⇒ ∗. Thus, we have to compute

Perf(∗/H)⊗Perf(∗/H2) Perf(∗/H)

where the two implicit maps H → H2 are given by the diagonal and the σ1-twisted diagonal, respec-
tively. As the pullback functors Perf(∗/H2)→ Perf(∗/H) generate the image, we can write Perf(∗/H) =
Perf(H/H2) as the compact objects in the∞-category ofO(H)-modules in Ind Perf(∗/H2). Similarly, the
expected answer Perf([H/H]) = Perf([H ×H/H2]) is given by the compact objects in the∞-category of
modules overO(H ×H) = O(H)⊗O(H) in Ind Perf(∗/H2), thus implying the result. �
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Proposition X.3.4. Let S = ∗/Γ, where Γ is any discrete group, and lift the map S → ∗/Q to a map
Γ→ Q. One can write

∗/Γ = colim(n,Fn→Γ) ∗/Fn
as a sifted colimit (in anima). Then Perf(MapΣ

∗/Q(S, ∗/(H oQ))) is the∞-category of compact objects in
the∞-category of modules over

colim(n,Fn→Γ)O(Hn)

in Ind Perf(∗/H), where O(Hn) is equipped with the twisted (via the map Fn → Γ → Q) diagonal
conjugation of H .

Proof. As E1-groups in anima are equivalent to animated groups, with compact projective generators
the free groups Fn, it follows that ∗/Γ is the sifted colimit colim(n,Fn→Γ) ∗/Fn. Now the result follows
from the previous proposition (and its proof), together with the commutation with sifted colimits. �

Combining this with Theorem VIII.5.1, we have finished the proof of Theorem X.0.2. In particular,
this gives the spectral action on Dlis(BunG).

Let us end by stating again the main conjecture with integral coefficients. The formulation may have
to be adapted at very small primes (i.e., bad primes) as then the nilpotent cone implicit in the formulation
of nilpotent singular support of Section VIII.2.2 may not be well-behaved.

Conjecture X.3.5. Assume thatG is quasisplit and choose Whittaker data consisting of a BorelB ⊂ G
and generic character ψ : U(E) → O×

L of the unipotent radical U ⊂ B, where L/Q` is some algebraic
extension; also fix√q ∈ OL. Let n be the order of π0Z(G) and let Λ = OL[ 1n ]. Let

Wψ ∈ Dlis(BunG,Λ)

be the Whittaker sheaf, which is the sheaf concentrated on Bun1
G corresponding to the Whittaker repre-

sentation c-IndG(E)
U(E)ψ, and let

Ind Perfqc(Z1(WE , Ĝ)Λ/Ĝ)→ Dlis(BunG,Λ) :M 7→ ActM (Wψ)

be defined as the colimit-preserving extension of the spectral action onWψ. Then the corresponding right
adjoint functor is fully faithful when restricted to the compact objects, and induces an equivalence of
(Perf(Z1(WE , Ĝ)Λ/Ĝ)-linear small stable)∞-categories

D(BunG,Λ)ω ∼= D
b,qc
coh,Nilp(Z

1(WE , Ĝ)Λ/Ĝ).
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