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ABSTRACT. Following the idea of [Far16], we develop the foundations of the geometric Langlands program
on the Fargues-Fontaine curve. In particular, we define a category of /-adic sheaves on the stack Bung of
G-bundles on the Fargues—Fontaine curve, prove a geometric Satake equivalence over the Fargues—Fontaine
curve, and study the stack of L-parameters. As applications, we prove finiteness results for the cohomology
of local Shimura varieties and general moduli spaces of local shtukas, and define L-parameters associated with
irreducible smooth representations of G(E), a map from the spectral Bernstein center to the Bernstein center,
and the spectral action of the category of perfect complexes on the stack of L-parameters on the category of
{-adic sheaves on Bung.
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CHAPTER 1

Introduction

L.1. The local Langlands correspondence

The local Langlands correspondence aims at a description of the irreducible smooth representations 7
of G(E), for a reductive group G over a local field E. Until further notice, we will simplify our life by
assuming that G is split; the main text treats the case of general reductive G, requiring only minor changes.

The case where E is archimedean, i.e. E = R or E = C, is the subject of Langlands’ classical work
[Lan89]. Based on the work of Harish-Chandra, cf. e.g. [HC66], Langlands associates to each 7 an L-
parameter, that is a continuous homomorphism

Or - WE — G((C)

where W is the Weil group of E = R, C (given by W = C* resp. a nonsplit extension 1 — W¢ —
Wr — Gal(C/R) — 1),and G is the Langlands dual group. This is the split reductive group over Z whose
root datum is dual to the root datum of G. The map 7 — ¢ has finite fibres, and a lot of work has been
done on making the fibres, the so-called L-packets, explicit. If G = GL,,, the map 7 — (¢ is essentially a
bijection.

Throughout this paper, we assume that /' is nonarchimedean, of residue characteristic p > 0, with
residue field IF;. Langlands has conjectured that one can still naturally associate an L-parameter

Or - WE — G((C)

to any irreducible smooth representation m of G(F). In the nonarchimedean case, W is the dense sub-
group of the absolute Galois group Gal(F|E), given by the preimage of Z C Gal(F,|F,) generated by the

Frobenius x +— 9. This raises the question where such a parameter should come from. In particular,

(1) How does the Weil group W relate to the representation theory of G(F)?
(2) How does the Langlands dual group (' arise?
The goal of this paper is to give a natural construction of a parameter (. (only depending on a choice

of isomorphism C 2 ), and in the process answer questions (1) and (2).

I.2. The big picture

In algebraic geometry, to any ring A corresponds a space Spec A. The starting point of our investi-
gations is a careful reflection on the space Spec E associated with E[| Note that the group G(E) is the

INeedless to say, the following presentation bears no relation to the historical developments of the ideas, which as usual
followed a far more circuitous route. We will discuss some of our original motivation in Section below.

7



8 I.INTRODUCTION

automorphism group of the trivial G-torsor over Spec E, while the Weil group of E is essentially the ab-
solute Galois group of F, that is the (étale) fundamental group of Spec E. Thus, G(FE) relates to coherent
information (especially G-torsors) on Spec E, while W relates to étale information on Spec E. Moreover,
the perspective of G-torsors is a good one: Namely, for general groups G there can be nontrivial G-torsors
& on Spec F, whose automorphism groups are then the so-called pure inner forms of Vogan [Vog93]. Vogan
realized that from the perspective of the local Langlands correspondence, and in particular the parametriza-
tion of the fibres of 7 = (o, it is profitable to consider all pure inner forms together; in particular, he was
able to formulate a precise form of the local Langlands conjecture (taking into account the fibres of 7 — (1)
for pure inner forms of (quasi)split groups. All pure inner forms together arise by looking at the groupoid

of all G-bundles on Spec E: This is given by
[+/G](Spec E) = Ll /Ga(B),

[a]€HL(Spec E,G)

where H)(Spec E, G) is the set of G-torsors on Spec E up to isomorphism, and G,, the corresponding pure
inner form of G. Also, we already note that representations of G(F) are equivalent to sheaves on [*/G(E)]
(this is a tautology if G(F)) were a discrete group; in the present context of smooth representations, it is
also true for the correct notion of “sheaf”), and hence sheaves on

[*/G](Spec E) = L] [/ Ga(E)],

[a]€ HL(Spec E,G)
are equivalent to tuples (7, )4] of representations of G, (E)ﬂ

Looking at the étale side of the correspondence, we observe that the local Langlands correspondence
makes the Weil group Wy of E appear, not its absolute Galois group Gal(E|E). Recall that Wgr C
Gal(E|E) is the dense subgroup given as the preimage of the inclusion Z C Gal(F,|F,) = Z, where
Gal(F,|FF,) is generated by its Frobenius morphism x + z9. On the level of geometry, this change corre-
sponds to replacing a scheme X over [, with the (formal) quotient X, /Frob.

In the function field case £ = F,((t)), we are thus led to replace Spec E by Spec E/¢” where E =
F,((t)). We can actually proceed similarly in general, taking E tobe the completion of the maximal unram-
ified extension of E. For a natural definition of 7, one then has m; (Spec(E)/¢”) = Wy — for example,

SpeCE — Spec(E)/¢” is a Wg-torsor, where E is a separable closure.

Let us analyze what this replacement entails on the other side of the correspondence: Looking at the
coherent theory of Spec £/ %, one is led to study E-vector spaces V equipped with -linear automorphisms
o. This is known as the category of isocrystals Isocy. The category of isocrystals is much richer than
the category of E-vector spaces, which it contains fully faithfully. Namely, by the Dieudonné—Manin
classification, the category Isocp is semisimple, with one simple object V) for each rational number A € Q.
The endomorphism algebra of V), is given by the central simple E-algebra D), of Brauer invariant A € Q/Z.
Thus, there is an equivalence of categories

Isocp = GBVectDA ® Vi.
A€Q

2The point of replacing [x/G(E)] by [*/G](Spec E) was also stressed by Bernstein.
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Here, if one writes A\ = 7 with coprime integers 5,7, r > 0, then V) = E" is of rank  with o given by the
matrix

01 0 ...
0 1 0

where 7 € FE is a uniformizer.

Above, we were considering G-torsors on Spec I, thus we should now look at G-torsors in Isoc;. These
are known as G-isocrystals and have been extensively studied by Kottwitz [Kot85]], [Kot97]. Their study
has originally been motivated by the relation of isocrystals to p-divisible groups and accordingly a relation
of G-isocrystals to the special fibre of Shimura varieties (parametrizing abelian varieties with G-structure,
and thus p-divisible groups with G-structure). Traditionally, the set of G-isocrystals is denoted B(F, G),
and for b € B(E, G) we write &, for the corresponding G-isocrystal. In particular, Kottwitz has isolated
the class of basic G-isocrystals; for G = GL,, a G-isocrystal is just a rank n isocrystal, and it is basic
precisely when it has only one slope \. There is an injection HZ(Spec E, G) — B(E, G) as any G-torsor
on Spec E “pulls back” to a G-torsor in Isocg; the image lands in B(E, G)pasic. For any b € B(E, G)pasics
the automorphism group of &, is an inner form Gy, of Gj the set of such inner forms of G is known as the
extended pure inner forms of G. Note that for G = GL,,, there are no nontrivial pure inner forms of G,
but all inner forms of G are extended pure inner forms, precisely by the occurence of all central simple
E-algebras as H) for some slope \. More generally, if the center of GG is connected, then all inner forms
of G can be realized as extended pure inner forms. Kaletha, [Kal14]], has extended Vogan’s results on pure
inner forms to extended pure inner forms, giving a precise form of the local Langlands correspondence
(describing the fibres of 7 + ) for all extended pure inner forms and thereby showing that G-isocrystals
are profitable from a purely representation-theoretic point of view. We will actually argue below that it
is best to include G}, for all b € B(E, G), not only the basic b; the resulting automorphism groups Gy, are
then inner forms of Levi subgroups of G. Thus, we are led to consider the groupoid of G-torsors in Isocg,

Glsoc | | [#/Guy(E).

[b]eB(E,G)

Sheaves on this are then tuples of representations ()3 p(£,@) of Gb(E). The local Langlands conjecture,
including its expected functorial behaviour with respect to passage to inner forms and Levi subgroups, then
still predicts that for any irreducible sheaf 7 — necessarily given by an irreducible representation ;, of
Gy(E) for some b € B(E, G) — one can associate an L-parameter ¢z : Wz — G(C).

To go further, we need to bring geometry into the picture: Indeed, it will be via geometry that (sheaves
on the groupoid of) G-torsors on Spec E/” will be related to the fundamental group W of Spec E/o”.
The key idea is to study a moduli stack of G-torsors on Spec £ /%,

There are several ways to try to define such a moduli stack. The most naive may be the following.
The category Isocg is an E-linear category. We may thus, for any E-algebra A, consider G-torsors in
Isocg @ A. The resulting moduli stack will then actually be

|| [+/Gul,

beB(E,G)
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an Artin stack over E, given by a disjoint union of classifying stacks for the algebraic groups Gy. This
perspective is actually instrumental in defining the G}, as algebraic groups. However, it is not helpful for the
goal of further geometrizing the situation. Namely, sheaves on [x/G}] are representations of the algebraic
group G, while we are interested in representations of the locally profinite group G(E).

A better perspective is to treat the choice of I, as auxiliary, and replace it by a general FF,-algebra
R. In the equal characteristic case, we can then replace E = F,((t)) with R((t)). This carries a Frobenius
¢ = g acting on R. To pass to the quotient Spec R((t))/%, we need to assume that the Frobenius of R
is an automorphism, i.e. that R is perfect. (The restriction to perfect R will become even more critical in
the mixed characteristic case. For the purpose of considering /-adic sheaves, the passage to perfect rings is
inconsequential, as étale sheaves on a scheme X and on its perfection are naturally equivalent.) We are thus
led to the moduli stack on perfect [F,-algebras

G-TIsoc : {perfect F,-algebras} — {groupoids} : R ++ {G-torsors on Spec R((t))/¢”}.

These are also known as families of G-isocrystals over the perfect scheme Spec R. (Note the curly Z in
G-Tsoc, to distinguish it from the groupoid G-Isoc.)

This definition can be extended to the case of mixed characteristic. Indeed, if R is a perfect IF;-algebra,
the analogue of R[t] is the unique 7-adically complete flat O -algebra R with R/m = R; explicitly, R =
Wo,(R) = W(R) ®@w r,) O in terms of the p-typical Witt vectors W (R) or the ramified Witt vectors
Wo, (R). Thus, if E is of mixed characteristic, we define

G-Tsoc : {perfect F,-algebras} — {groupoids} : R + {G-torsors on Spec(Wo, (R)[1])/¢”}.

We will not use the stack G-Zsoc in this paper. However, it has been highlighted recently among others
implicitly by Genestier—V. Lafforgue, [GL17], and explicitly by Gaitsgory, [Gai16)} Section 4.2], and Zhu,
[Zhu20]], and one can hope that the results of this paper have a parallel expression in terms of G-Zsoc, so
let us analyze it further in this introduction. It is often defined in the following slightly different form.
Namely, v-locally on R, any G-torsor over R((t)) resp. Wo,, (R)[2
[Ans22]]. Choosing such a trivialization, a family of G-isocrystals is given by some element of LG(R), where
we define the loop group

LG(R) = G(R(1)) (resp. LG(R) = G(Wo,(R)[7])).

T

] is trivial by a recent result of Anschiitz

Changing the trivialization of the G-torsor amounts to o-conjugation on LG, so as v-stacks
G-Isoc = LG /pa,LG
is the quotient of LG under o-conjugation by LG.
The stack G-Zsoc can be analyzed. More precisely, we have the following result[]

THEOREM 1.2.1. The prestack G-Zsoc is a stack for the v-topology on perfect F,-algebras. It admits a
stratification into locally closed substacks

G-Tsoc” ¢ G-Tsoc

3This result seems to be well-known to experts, but we are not aware of a full reference. For the v-descent (even arc-descent),
see [[va23] Lemma 5.9]. The stratification is essentially constructed in [RR96]}; the local constancy of the Kottwitz map is proved
in general in Corollary The identification of the strata in some cases is in [[CS17] Proposition 4.3.13], and in general in
[HK22, Theorem 1.4].
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for b € B(E, G), consisting of the locus where at each geometric point, the G-isocrystal is isomorphic to
&p. Moreover, each stratum

G-Tsoc” = [x/Gy(E)]
is a classifying stack for the locally profinite group G(E).

The loop group LG is an ind-(infinite dimensional perfect scheme), so the presentation
G-Isoc = LG /pa,LG

is of extremely infinite nature. We expect that this is not an issue with the presentation, but that the stack
itself has no good finiteness properties; in particular note that all strata appear to be of the same dimension
0, while admitting nontrivial specialization relations. Xiao-Zhu (see [XZ17], [Zhu20]) have nonetheless
been able to define a category D(G-Zsoc, Q) of (-adic sheaves on G-Zsoc, admitting a semi-orthogonal
decomposition into the various D(G-Zsoc’, Q). Each D(G-Zsoc?, Q;) = D([x/Gy(E)],Qy) is equivalent
to the derived category of the category of smooth representations of Gj,(F) (on Q,-vector spaces). Here, as

usual, we have to fix an auxiliary prime ¢ # p and an isomorphism C = Q,.

At this point we have defined a stack G-Zsoc, with a closed immersion
i: [*/G(E)] = G-Isoc! € G-Tsoc,
thus realizing a fully faithful embedding
ix : D(G(E), Q) < D(G-Tsoc, Qy)

of the derived category of smooth representations of G(E) into the derived category of Q;-sheaves on
G-TIsoc. It is in this way that we “geometrize the representation theory of G(E)".

The key additional structure that we need are the Hecke operators: These will simultaneously make the
Weil group W (i.e. w1 (Spec /%)) and, by a careful study, also the Langlands dual group ' appear. Recall
that Hecke operators are related to modifications of G-torsors, and are parametrized by a point x of the
curve where the modification happens, and the type of the modification at 2z (which can be combinatorially
encoded in terms of a cocharacter of G — this eventually leads to the appearance of (). Often, the effect
of Hecke operators is locally constant for varying . In that case, letting 2 vary amounts to an action of
71(X), where X is the relevant curve; thus, the curve should now be Spec E / (pZ.

Thus, if we want to define Hecke operators, we need to be able to consider modifications of G-isocrystals.
These modifications ought to happen at a section of Spec R((¢t)) — Spec R (resp. a non-existent map
Spec(W(R) ®wr,) E) — Spec R). Unfortunately, the map R — R((t)) does not admit any sections.
In fact, we would certainly want to consider continuous sections; such continuous sections would then be
in bijection with maps F,((#) = E — R. In other words, in agreement with the motivation from the
previous paragraph, the relevant curve should be Spec E, or really Spec £ modulo Frobenius — so we can
naturally hope to get actions of 71 (Spec /%) by the above recipe.

However, in order for this picture to be realized we need to be in a situation where we have continuous

maps F,((t)) — R. In other words, we can only hope for sections if we put ourselves into a setting where
R is itself some kind of Banach ring.

This finally brings us to the setting considered in this paper. Namely, we replace the category of perfect
[F,-schemes with the category of perfectoid spaces Perf = Perfy over F,. Locally any S € Perf is of the
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form S = Spa(R, RT) where R is a perfectoid Tate [F,-algebra: This means that R is a perfect topological
algebra that admits a topologically nilpotent unit @ € R (called a pseudouniformizer) making it a Ba-
nach algebra over F,((z)). Moreover, R™ C R is an open and integrally closed subring of powerbounded
elements. Often R™ = R° is the subring of powerbounded elements, and we consequently use the abbrevia-
tion Spa R = Spa(R, R°). The geometric (rank 1) points of S are given by Spa C for complete algebraically
closed nonarchimedean fields C, and as usual understanding geometric points is a key first step. We refer
to [SW20] for an introduction to adic and perfectoid spaces.

For any S = Spa(R, RT), we need to define the analogue of Spec R((t)) /%, taking the topology of R
into account. Note that for discrete R’, we have

Spa R'((t)) = Spa R’ Xspar, SpaFq((t)),

and we are always free to replace Spec R/ ((t))/¢? by Spa R'((t)) /" as they have the same category of vector
bundles. This suggests that the analogue of Spec R/ ((t)) is

Spa(R, R+) XSpalF, SpalF, (t) = Dépa(R,Rﬂ,
a punctured open unit disc over Spa(R, R™), with coordinate ¢. Note that
Spa(R, R") Xspar, SpaFy((t) C Spa R" Xspar, SpaFy[t] = Spa R [t]

is the locus where t and @w € R™ are invertible, where w is a topologically nilpotent unit of R. The latter
definition can be extended to mixed characteristic: We let

Spa(R,R™) kspayq SpaE C SpaR" >'<spa1pq SpaOp := SpaWo, (R")

be the open subset where 7 and [w]| € W, (R") are invertible. This space is independent of the choice of
w as for any other such w’, one has w|w and w’|w™ for some n > 1, and then the same happens for their
Teichmiiller representatives. We note that the symbol X is purely symbolic: There is of course no map of
adic spaces Spa 2 — Spa I, along which a fibre product could be taken.

DEFINITION 1.2.2. The Fargues—Fontaine curve (for the local field F, over S = Spa(R, R") € Perf) is
the adic space over E defined by
Xs = X5z = (Spa(R, R") Xspar, SpaFy((t)) /",
respectively
Xs = Xgp = (Spa(R, R")Xspar, Spa E) /%,
where the Frobenius ¢ acts on (R, R™).

A novel feature, compared to the discussion of G-isocrystals, is that the action of ¢ is free and to-
tally discontinuous, so the quotient by ¢ is well-defined in the category of adic spaces. In fact, on Yy =
Spa(R, R*)Xspar, Spa E C SpaWo,,(R") one can compare the absolute values of 7 and [ww]. As both are
topologically nilpotent units, the ratio

rad = log([=]])/ log([]) : [Ys] = (0, 50)

gives a well-defined continuous map. The Frobenius on |Yg| multiplies rad by ¢, proving that the action is
free and totally discontinuous.

We note that in the function field case E' = F((¢)), the space
YS =5 Xspa[[rq Span((t)) = ]D)Zv
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is precisely a punctured open unit disc over S. In this picture, the radius function measures the distance to
the origin: Close to the origin, the radius map is close to 0, while close to the boundary of the open unit
disc it is close to 0o. The quotient by ¢ is however not an adic space over S anymore, as ¢ acts on S. Thus,

Xs = Ys/¢" =DY/p”

is locally an adic space of finite type over S, but not globally so. This space, for S = Spa C' a geometric
point, has been first studied by Hartl-Pink [HPo4].

If S = SpaC is a geometric point but F is general, this curve (or rather a closely related schematic
version) has been extensively studied by Fargues—Fontaine [FF18], where it was shown that it playsa central
role in p-adic Hodge theory. From the perspective of adic spaces, it has been studied by Kedlaya-Liu [KL15].
In particular, in this case where S is a point, X is indeed a curve: It is a strongly noetherian adic space
whose connected affinoid subsets are spectra of principal ideal domains. In particular, in this situation there
is a well-behaved notion of “classical points”, referring to those points that locally correspond to maximal
ideals. These can be classified. In the equal characteristic case, the description of

YS = Dg =5 Xspan Spa Fq((t))

shows that the closed points are in bijection with maps S — SpaF((t)) up to Frobenius; where now one
has to take the quotient under ¢ — ¢%. In mixed characteristic, the situation is more subtle, and brings us
to the tilting construction for perfectoid spaces.

PROPOSITION 1.2.3. If E is of mixed characteristic and S = Spa C' is a geometric point, the classical
points of X are in bijection with untilts C*|E of C, up to the action of Frobenius.

Here, we recall that for any complete algebraically closed field C’|E, or more generally any perfectoid
Tate ring R, one can form the tilt
R’ = lim R,
x%l’

where the addition is defined on the ring of integral elements in terms of the bijection R’* = lim Rt =
<—ax—zxP

lim R* /7, where now 2 > P is compatible with addition on Rt /7. Then R’ is a perfectoid Tate
—x—aP

algebra of characteristic p. Geometrically, sending Spa(R, R*) to Spa(R’, R°t) defines a tilting functor
on perfectoid spaces T+ T”, preserving the underlying topological space and the étale site, cf. [SW20].

One sees that the classical points of Xg, for S = Spa C a geometric point, are in bijection with untilts
S% of S together with a map S — Spa E, modulo the action of Frobenius. Recall from [SW20] that for any

adic space Z over W (IF,), one defines a functor
Z9 . Perf — Sets : S+ {S*, f: S* = 7}

sending a perfectoid space S over F, to pairs S of an untilt of S, and a map S* — Z. If Z is an analytic
adic space, then Z¢ is a diamond, that is a quotient of a perfectoid space by a pro-étale equivalence relation.
Then the classical points of Xg are in bijection with the S-valued points of the diamond

(Spa ) /0",

More generally, for any S € Perf, maps S — (Spa E)</¢” are in bijection with degree 1 Cartier divisors
Dg C Xg, so we define

Div! = (Spa E)¢ /2.
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We warn the reader the action of the Frobenius here is a geometric Frobenius. In particular, it only exists
on (Spa F)?, not on Spa E, in case E is of mixed characteristic. However, one still has 7 (Div!) = Wg.

This ends our long stream of thoughts on the geometry of Spec I: We have arrived at the Fargues-
Fontaine curve, in its various incarnations. To orient the reader, we recall them here:
(i) For any complete algebraically closed nonarchimedean field C|F,, the curve X¢ = X¢ f, a strongly
noetherian adic space over E, locally the adic spectrum of a principal ideal domain. One can also construct
a schematic version X%, with the same classical points and the same category of vector bundles. The
classical points are in bijection with untilts C*|E of C, up to Frobenius.
(ii) More generally, for any perfectoid space S € Perf, the “family of curves” Xg, again an adic space over

E, but no longer strongly noetherian. If S is affinoid, there is a schematic version Xglg, with the same
category of vector bundles.

(iii) The “mirror curve” Div! = (Spa E) /%, whichisonly a diamond. Forany S € Perf, this parametrizes
“degree 1 Cartier divisors on Xg”.

A peculiar phenomenon here is that there is no “absolute curve” of which all the others are the base
change. Another peculiar feature is that the space of degree 1 Cartier divisors is not the curve itself.

Again, it is time to study G-torsors. This leads to the following definition.

DEFINITION 1.2.4. Let
Bung : Perf — {groupoids} : S — {G-torsors on Xg}

be the moduli stack of G-torsors on the Fargues—Fontaine curve.

REMARK 1.2.5. Let us stress here that while “the Fargues-Fontaine curve” is not really a well-defined
notion, “the moduli stack of G-torsors on the Fargues—Fontaine curve” is.

As X s maps towards Spa E /%, there is a natural pullback functor G-Isoc — Bung (S). The following
result is in most cases due to Fargues [Far20]], completed by Anschiitz, [Ans19].

THEOREM 1.2.6. If S = Spa (' is a geometric point, the map
B(G) — Bung(95)/ =

is a bijection. In particular, any vector bundle on X is a direct sum of vector bundles Ox(\) associated

toD_y, A € Q.

Under this bijection, b € B(G) is basic if and only if the corresponding G-torsor &£, on X g is semistable
in the sense of Atiyah-Bott [AB83].

However, it is no longer true that the automorphism groups are the same. On the level of the stack, we
have the following result.
THEOREM I.2.7. The prestack Bung is a v-stack. It admits a stratification into locally closed substacks
i Bunlé C Bung

for b € B(G) consisting of the locus where at each geometric point, the G-torsor is isomorphic to &.
Moreover, each stratum

Bunl, = [x/G})
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is a classifying space for a group Gy that is an extension of the locally profinite group G;(E) by a “unipotent
group diamond”.

The semistable locus Bung C Bung is an open substack, and

Bung = | | [+/Gy(E)).

beB(G)basic

REMARK 1.2.8. The theorem looks formally extremely similar to Theorem However, there is a
critical difference, namely the closure relations are reversed: For Bung, the inclusion of Bunl& for b €
B(G) basic is an open immersion while it was a closed immersion in Theorem Note that basic b €
B(G) correspond to semistable G-bundles, and one would indeed expect the semistable locus to be an open
substack. Generally, Bung behaves much like the stack of G-bundles on the projective line.

REMARK 1.2.9. We define a notion of Artin stacks in this perfectoid setting, and indeed Bung is an
Artin stack; we refer to Section [[.4]for a more detailed description of our geometric results on Bung. This
shows that Bung has much better finiteness properties than G-Zsoc, even if it is defined on more exotic test
objects.

We can define a derived category of /-adic sheaves
D(BunG7 @f)
on Bung. This admits a semi-orthogonal decomposition into all D(Bun%, Q,), and
D(Bung, Q) = D([/Gy(E)], Qr) = D(Gy(E), Q)
is equivalent to the derived category of smooth G ( E)-representations.

REMARK [.2.10. Itisreasonable to expect that this category is equivalent to the category D(G-Zsoc, Q)
defined by Xiao—Zhu. However, we do not pursue this comparison here.

Finally, we can define the Hecke stack that will bring all key players together. Consider the global
Hecke stack Hck¢; parametrizing pairs (€, £’) of G-bundles on Xg, together with a map S — Div! giving
rise to a degree 1 Cartier divisor Dg C Xg, and an isomorphism

[ Elxans = E xa\Ds

that is meromorphic along Dg. This gives a correspondence

h h .
Bung ¢+ Hckg —2 Bung xDivl.

To define the Hecke operators, we need to bound the modification, i.e. bound the poles of f along Dg.
This is described by the local Hecke stack Hckg, parametrizing pairs of G-torsors on the completion of
Xg along Dg, together with an isomorphism away from Dg; thus, there is a natural map Hckg — Hckg
from the global to the local Hecke stack. Geometrically, Hckg admits a Schubert stratification in terms of
the conjugacy classes of cocharacters of G; in particular, there are closed Schubert cells Hckg <, for each
conjugacy class p : G, — G. By pullback, this defines a correspondence

hy < ha < .
Bung +——=% Hckg <, —=, Bung xDiv!
where now hj <, and hg <, are proper. One can then consider Hecke operators

Rh2 <;«hi <, : D(Bung, A) — D(Bung xDiv!, A).
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The following theorem ensures that Hecke operators are necessarily locally constant as one varies the
point of Div!, and hence give rise to representations of 11 (Div!) = Wp. In the following, we are somewhat
cavalier about the precise definition of D(—, Q) employed, and the notion of W p-equivariant objects: The
fine print is addressed in the main text.

THEOREM L.2.11. Pullback along the map Div! — [x/Wpg] induces an equivalence

D(Bung xDiv!, Q) = D(Bung x[*/Wg],Q,) = D(Bung, Q,)5"=.

Thus, Hecke operators produce Wg-equivariant objects in D(Bung, Q,), making the Weil group appear
naturally.

One also wants to understand how Hecke operators compose. This naturally leads to the study of
D(Hckg, Q) as a monoidal category, under convolution. Here, we have the geometric Satake equivalence.
In the setting of usual smooth projective curves (over C), this was established in the papers of Lusztig
[Lus83], Ginzburg [Gingo]] and Mirkovié-Vilonen [MV07]. The theorem below is a first approximation;
we will actually prove a more precise version with Z-coefficients, describing all perverse sheaves on Hckg,
and applying to the Beilinson-Drinfeld Grassmannians in the spirit of Gaitsgory’s paper [Gaio7].

THEOREM l.2.12. There is a natural monoidal functor from Rep G to D(Hckg, Qp).

REMARK 1.2.13. Our proof of Theorem follows the strategy of Mirkovi¢-Vilonen’s proof, and
in particular defines a natural symmetric monoidal structure on the category of perverse sheaves by using
the fusion product. This requires one to work over several copies of the base curve, and let the points
collide. It is a priori very surprising that this can be done in mixed characteristic, as it requires a space
like Spa @), X spa, Spa Q). Spaces of this type do however exist as diamonds, and this was one of the main
innovations of [SW20].

REMARK 1.2.14. Using a degeneration of the local Hecke stack, which is essentially the Bj, -affine Grass-
mannian of [SW20], to the Witt vector affine Grassmannian, Theorem gives a new proof of Zhu's
geometric Satake equivalence for the Witt vector affine Grassmannian [Zhu17]]. In fact, we even prove a
version with Z-coefficients, thus also recovering the result of Yu [Yu22].

REMARK 1.2.15. Regarding the formalism of /-adic sheaves, we warn the reader that we are cheating
slightly in the formulation of Theorem the definition of D(Bung, Q) implicit above is not the same
as the one implicit in Theorem With torsion coefficients, the problem would disappear, and in any
case the problems are essentially of technical nature.

Thus, this also makes the Langlands dual group G appear naturally. For any representation V of G, we
get a Hecke operator
Ty : D(Bung, Q) — D(Bung, Q,)"""*.
Moreover, the Hecke operators commute and
TV®W = TV o TW|A(WE)
where we note that 77, o Tyy naturally takes values in Wg x Wg-equivariant objects; the restriction on the
right means the restriction to the action of the diagonal copy A(Wg) C Wg x Wg.

At this point, the representation theory of G(E) (which sits fully faithfully in D(Bung,Qy)), the
Weil group Wi, and the dual group G, all interact with each other naturally. It turns out that this
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categorical structure is precisely what is needed to construct L-parameters for (Schur-)irreducible objects
A € D(Bung,Qy), and in particular for irreducible smooth representations of G(E). We will discuss the
construction of L-parameters below in Section[[.9|

We note that the whole situation is exactly parallel to the Betti geometric Langlands situation consid-
ered by Nadler-Yun [NY19]], and indeed the whole strategy can be described as “the geometric Langlands
program on the Fargues—Fontaine curve”. It is curious that our quest was to understand the local Langlands
correspondence in an arithmetic setting, for potentially very ramified representations, and eventually we
solved it by relating it to the global Langlands correspondence in a geometric setting, in the everywhere
unramified setting.

In the rest of this introduction, we give a more detailed overview of various aspects of this picture:

(i) The Fargues—Fontaine curve (Section ;

(ii) The geometry of the stack Bun (Section ;

(iii) The derived category of ¢-adic sheaves on Bun (Section ;
(iv) The geometric Satake equivalence (Section ;

(v) Finiteness of the cohomology of Rapoport-Zink spaces, local Shimura varieties, and more general mod-
uli spaces of shtukas (Section [L.7));

(vi) The stack of L-parameters (Section ;
(vii) The construction of L-parameters (Section ;

(viii) The spectral action (Section ;
(ix) The origin of the ideas fleshed out in this paper (Section [[.11]).

These items largely mirror the chapters of this paper, and each chapter begins with a reprise of these
introductions.

I.3. The Fargues-Fontaine curve

The Fargues—Fontaine curve has been studied extensively in the book of Fargues—Fontaine [FF18] and
further results, especially in the relative situation, have been obtained by Kedlaya-Liu [KL15]. In the first
chapter, we reprove these foundational results, thereby also collecting and unifying certain results (proved
often only for £ = Q,).

The first results concern the Fargues—Fontaine curve X¢ = Xg when S = Spa C' for some complete
algebraically closed nonarchimedean field C'|F,. We define a notion of classical points of X in that case;
they form a subset of | X|. The basic finiteness properties of X are summarized in the following result.

THEOREM L.3.1. The adic space X is locally the adic spectrum Spa(B, B") where B is a principal
ideal domain; the classical points of Spa(B, B*) C X are in bijection with the maximal ideals of B. For
each classical point € X, the residue field of z is an untilt C" of C over F, and this induces a bijection
of the classical points of X with untilts C* of C over E, taken up to the action of Frobenius.

In the equal characteristic case, Theorem is an immediate consequence of the presentation X¢ =
D}, /¢ and classical results in rigid-analytic geometry. In the p-adic case, we use tilting to reduce to the
equal characteristic case. At one key turn, in order to understand Zariski closed subsets of X, we use the



18 I.INTRODUCTION

result that Zariski closed implies strongly Zariski closed [BS22]]. Using these ideas, we are able to give an
essentially computation-free proof.

A key result is the classification of vector bundles.

THEOREM 1.3.2. The functor from Isocg to vector bundles on X induces a bijection on isomorphism
classes. In particular, there is a unique stable vector bundle Ox (\) of any slope A € Q, and any vector
bundle £ can be written as a direct sum of stable bundles.

We give a new self-contained proof of Theorem making critical use of the v-descent results for
vector bundles obtained in [Schi7a] and [SW20]], and basic results on the geometry of Banach-Colmez
spaces established here. The proof in the equal characteristic case by Hartl-Pink [HP0o4]] and the proof
of Kedlaya in the p-adic case [Kedo4]] relied on heavy computations, while the proof of Fargues—Fontaine
[FF18] relied on the description of the Lubin-Tate and Drinfeld moduli spaces of 7-divisible O-modules.
Our proof is related to the arguments of Colmez in [Colo2]].

Allowing general S € Perqu, we define the moduli space of degree 1 Cartier divisors as Div! =

Spd F/¢”. Given a map S — Div', one can define an associated closed Cartier divisor Dg C Xg; lo-
cally, this is given by an untilt Dg = S* C X of S over F, and this embeds Div' into the space of closed
Cartier divisors on X (justifying the name). Another important result is the following ampleness result,
cf. [KL15, Proposition 6.2.4], which implies that one can define an algebraic version of the curve, admitting
the same theory of vector bundles.

THEOREM 1.3.3. Assume that S € Perf is affinoid. For any vector bundle £ on Xg, the twist £(n) is
globally generated and has no higher cohomology for all n > 0. Defining the graded ring

P =P H(Xs, Ox4(n))

n>0

and the scheme X glg = Proj P, there is a natural map of locally ringed spaces Xg — X;Ig, pullback along
which defines an equivalence of categories of vector bundles, preserving cohomology.

If S = SpaC for some complete algebraically closed nonarchimedean field C, then X, é}g is a regular
noetherian scheme of Krull dimension 1, locally the spectrum of a principal ideal domain, and its closed
points are in bijection with the classical points of X¢.

We also need to understand families of vector bundles, i.e. vector bundles £ on Xg for general S. Here,
the main result is the following.

THEOREM 1.3.4. Let S € Perfand let £ be a vector bundle on Xg. Then the function taking a point s €
S to the Harder—Narasimhan polygon of £| x, defines a semicontinuous function on S. If it is constant, then
£ admits a global Harder—Narasimhan stratification, and pro-étale locally on S one can find an isomorphism
with a direct sum of Ox(\)’s.

In particular, if € is everywhere semistable of slope 0, then £ is pro-étale locally trivial, and the category
of such £ is equivalent to the category of pro-étale E-local systems on S.

The key to proving Theorem is the construction of certain global sections of £. To achieve this, we
use v-descent techniques, and an analysis of the spaces of global sections of &; these are known as Banach-
Colmez spaces, and were first introduced (in slightly different terms) in [Colo2].
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DEFINITION 1.3.5. Let £ be a vector bundle on Xg. The Banach—Colmez space BC (&) associated with
€ is the locally spatial diamond over S whose T-valued points, for 7" € Perfg, are given by

BC(EYT) = HY (X7, E|x,)-

Similarly, if £ is everywhere of only negative Harder—Narasimhan slopes, the negative Banach—Colmez
space BC(E[1]) is the locally spatial diamond over S whose T-valued points are

BC(E)T) = HY (X1, E|xy).

Implicit here is that this functor actually defines a locally spatial diamond. For this, we calculate some
key examples of Banach-Colmez spaces. For example, if £ = Ox,(A\) with 0 < X\ < [E : Q] (resp. all
positive \ if E is of equal characteristic), then BC () is representable by a perfectoid open unit disc (of
dimension given by the numerator of \). A special case of this is the identification of BC(Ox, (1)) with
the universal cover of a Lubin-Tate formal group law, yielding a very close relation between Lubin-Tate
theory, and thus local class field theory, and the Fargues—Fontaine curve; see also [Far18]]. On the other
hand, for larger ), or negative )\, Banach-Colmez spaces are more exotic objects; for example, the negative
Banach-Colmez space

BC(Oxo (-D[1)) = (Ag)® /E
is the quotient of the affine line by the translation action of £ C Alcn. We remark that our proof of the
classification theorem, Theorem ultimately relies on the negative result that BC(Ox, (—1)[1]) is not
representable by a perfectoid spa

For the proof of Theorem a key result is that projectivized Banach-Colmez spaces
(BC(E)\{0})/EX

are proper — they are the relevant analogues of “families of projective spaces over S”. In particular, their
image in S is a closed subset, and if the image is all of .S, then we can find a nowhere vanishing section of £
after a v-cover, as then the projectivized Banach—Colmez space is a v-cover of S. From here, Theorem|[.3.4]
follows easily.

I.4. The geometry of Bung

Let us discuss the geometry of Bung. Here, G can be any reductive group over a nonarchimedean local
field E, with residue field I of characteristic p. Recall that Kottwitz’ set B(G) = B(E, G) of G-isocrystals
can be described combinatorially, by two discrete invariants. The first is the Newton point

v:B(G) — (X*(T)((g)r,

where T is the universal Cartan of G and I' = Gal(E|E). More precisely, any G-isocrystal £ defines a
slope morphism D — G'j; where D is the diagonalizable group with cocharacter group Q; its definition
reduces to the case of GL,,, where it amounts to the slope decomposition of isocrystals. Isomorphisms of
G-isocrystals lead to conjugate slope morphisms, and this defines the map v.

The other map is the Kottwitz invariant

k: B(G) = m(Gg)r.

4Actually, we only know this for sure if E is p-adic; in the function field case, we supply a small extra argument circumventing
the issue.
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Its definition is indirect, starting from tori, passing to the case of G with simply connected derived group,
and finally to the general case by z-extensions. Then Kottwitz shows that

(v,k) : B(G) — (X*(T)a)r x m1(G)r

is injective. Moreover,  induces a bijection between B(G )pasic and 71 (G )r. The non-basic elements can
be described in terms of Levi subgroups.

Using v and , one can define a partial order on B(G) by declaring b < b’ if 5(b) = x(b') and v, < vy
with respect to the dominance order.

Up to sign, one can think of v, resp. , as the Harder—Narasimhan polygon, resp. first Chern class, of a

G-bundle.
THEOREM I.4.1. The prestack Bun(; satisfies the following properties.

(i) The prestack Bung; is a stack for the v-topology.
(ii) The points | Bun | are naturally in bijection with Kottwitz’ set B(G) of G-isocrystals.
(iii) The map

v:|Bung| — B(G) = (X.(T){)"
is semicontinuous, and

k:|Bung | = B(G) — m(Gg)r

is locally constant. Equivalently, the map | Bung | — B(G) is continuous when B(G) is equipped with the
order topology.
(iv) For any b € B(G), the corresponding subfunctor

i’ : Bun% = Bung X|Bung |10} C Bung

islocally closed, and isomorphic to [* Z éb], where G} is a v-sheaf of groups such tllat Gy — * is representable
in locally spatial diamonds with moGy, = G,(F). The connected component Gy C Gy, of the identity is
cohomologically smooth of dimension (2p, 11).

(v) In particular, the semistable locus Bun, C Bung; is open, and given by

Bunj = | | [/Gy(E)].
beB(G)basic
(vi) For any b € B(G), there is a map
Ty © ./\/lb — Bung

that is representable in locally spatial diamonds, partially proper and cohomologically smooth, where M,
parametrizes G-bundles £ together with an increasing Q-filtration whose associated graded is, at all geo-
metric points, isomorphic to &, with its slope grading. The v-stack M, is representable in locally spatial
diamonds, partially proper and cohomologically smooth over [x/G}(E)].

(vii) The v-stack Bung; is a cohomologically smooth Artin stack of dimension 0.

As examples, let us analyze the case of GLj and GL5. For GL1, and general tori, everything is semistable,
so

Pic := Bungy, & |_|[*/E7X]
7
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For GLo, the Kottwitz invariant gives a decomposition

Bungy, = |_| Bungy, .
aG%Z
Each connected component has a unique semistable point, given by the basic element b € B(GL2)pasic With
k(b) = a. For b € B(GL2)pasic = 17Z, the corresponding group Gy(E) is given by GLy(E) when b € Z,
and by D* when b € 1Z \ Z, where D|E is the quaternion algebra.

The non-semistable points of Bungy, are given by extensions of line bundles, which are of the form
O(i)®O(j) forsome i, j € Z, with 2a = i+j. Let us understand the simplest degeneration inside Bungp,,

which is from O(3) to O & O(1). The individual strata here are
(/D] [+/Aut(0 & O(1))].
Here
auo0 s o) = (5 HEI).

Here BC(O(1)) is representable by a perfectoid open unit disc Spd T, [t'/?™].
In this case, the local chart M}, for Bungy,, parametrizes rank 2 bundles £ written as an extension
0L—>E=L =0

such that at all geometric points, £ = O and £ = O(1). Fixing such isomorphisms definesa E* x E*-
torsor ~

My = M,
with M;, = BC(O(—1)[1]) a “negative Banach-Colmez space”. This local chart shows that the local struc-
ture of Bung is closely related to the structure of negative Banach—Colmez spaces. It also shows that while
the geometry of Bung is quite nonstandard, it is still fundamentally a finite-dimensional and “smooth”
situation.

For general GG, we still get a decomposition into connected components

Bung = |_| Bung,
acm (G)r

and each connected component Bung, admits a unique semistable point.

By a recent result of Viehmann [Vie21]], the map |Bung | — B(G) is a homeomorphism. This had
previously been proved for G = GL,, by Hansen [Han17] based on [BFH ™ 22]; that argument was extended
to some classical groups in unpublished work of Hamann.

Let us say some words about the proof of Theorem Part (i) has essentially been proved in [SW20],
and part (ii) follows from the result of Fargues and Anschiitz, Theorem In part (iii), the statement
about v reduces to GL,, by an argument of Rapoport-Richartz [RR96]], where it is Theorem The
statement about x requires more work, at least in the general case: If the derived group of G is simply con-
nected, one can reduce to tori, which are not hard to handle. In general, one approach is to use z-extensions
G — G to reduce to the case of simply connected derived group. For this, one needs that Bun; — Bung
is a surjective map of v-stacks; we prove this using Beauville-Laszlo uniformization. Alternatively, one
can use the abelianized Kottwitz set of Borovoi [Borgg|, which we prove to behave well relatively over a
perfectoid space S. Part (iv) is a also consequence of Theorem Part (v) is a consequence of parts (iii)
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and (iv). The key point is then part (vi), which will imply (vii) formally. (One can, and we do, also prove
part (vii) directly. Part (vi) is however critical for the other results we prove below.) The properties of M,
itself are easy to establish — the analysis for GLy above generalizes easily to show that M, is a successive
extension of negative Banach-Colmez spaces. The key difficulty is to prove that

mp : Mp — Bung

is cohomologically smooth. Note that as we are working with perfectoid spaces, there are no tangent spaces,
and we cannot hope to prove smoothness via deformation theory. To attack this problem, we nonetheless
prove a general “Jacobian criterion of cohomological smoothness”. The setup here is the following.

Let S be a perfectoid space, and let Z — Xg be a smooth map of (sousperfectoid) adic spaces; this
means that Z is an adic space that is locally étale over a finite-dimensional ball over Xg. In this situation,
we can define a v-sheaf M ; — S parametrizing sections of Z — Xg, i.e. the S’-valued points, for S’/S a
perfectoid space, are given by the maps s : Xg — Z lifting Xs» — Xg. For each such section, we get the
vector bundle s*Tz,x on S’, where T, /X is the tangent bundle. Naively, deformations of S — My,
ie.of Xg/ = Z over Xg» — Xg,should correspond to global sections H Y Xgr,s*Ty /X ), and obstructions
to HY(Xg/,s*Ty /xg)- If 8Tz x4 has everywhere only positive Harder-Narasimhan slopes, then this
vanishes locally on S’. By analogy with the classical situation, we would thus expect the open subspace

MSZm Cc Mg,
where s*T x, has positive Harder-Narasimhan slopes, to be (cohomologically) smooth over S. Our key
geometric result confirms this, at least if Z — Xg is quasiprojective.

THEOREM 1.4.2. Assume that Z — Xg can, locally on S, be embedded as a Zariski closed subset of an
open subset of (the adic space) P’ .. Then Mz — S is representable in locally spatial diamonds, compact-
ifiable, and of locally finite dim. trg. Moreover, the open subset M$* C M7 is cohomologically smooth
over S.

In the application, the space Z — Xg will be the flag variety parametrizing Q-filtrations on a given
G-torsor £ on Xg. Then M;, will be an open subset of M.

The proof of Theorem requires several innovations. The first is a notion of formal smoothness, in
which infinitesimal thickenings (that are not available in this perfectoid setting) are replaced by small étale
neighborhoods. This leads to a notion with a close relation to the notion of absolute neighborhood retracts
[Bor67] in classical topology. We prove that virtually all examples of cohomologically smooth maps are also
formally smooth, including Banach-Colmez spaces and Bung. We also prove that M3 — S is formally
smooth, which amounts to some delicate estimates, spreading sections X7, — Z into small neighborhoods
of Ty C T, for any Zariski closed immersion Ty C T of affinoid perfectoid spaces — here we crucially
use the assumption that all Harder—Narasimhan slopes are positive. Coupled with the theorem that Zariski
closed implies strongly Zariski closed [BS22] this makes it possible to write M, up to (cohomologically
and formally) smooth maps, as a retract of a space that is étale over a ball over S. Certainly in classical
topology, this is not enough to ensure cohomological smoothness — a coordinate cross is a retract of R?
— but it does imply that the constant sheaf Fy is universally locally acyclic over S. For this reason, and
other applications to sheaves on Bung as well as geometric Satake, we thus also develop a general theory of
universally locally acyclic sheaves in our setting. To finish the proof, we use a deformation to the normal
cone argument to show that the dualizing complex is “the same” as the one for the Banach-Colmez space

BC(S*TZ/XS)-
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I.5. /-adic sheaves on Bung

For our results, we need to define the category of /-adic sheaves on Bung. More precisely, we will define
for each Zy-algebra A a category
D(Bung, A)
of sheaves of A-modules on Bung. If A is killed by some power of /, such a definition is the main achieve-
ment of [Schi7a]. Our main interest is however the case A = @Q,. In the case of schemes (of finite type
over an algebraically closed field), the passage from torsion coefficients to Q-coefficients is largely formal:

Roughly,
D(X,Q) = Ind(lim DX(X, Z/("Z) ®7, Qy)-

Behind this definition are however strong finiteness results for constructible sheaves; in particular, the
morphism spaces between constructible sheaves are finite. For Bung, or for the category of smooth repre-
sentations, there are still compact objects (given by compactly induced representations in the case of smooth
representations), but their endomorphism algebras are Hecke algebras, which are infinite-dimensional. A
definition along the same lines would then replace all Hecke algebras by their /-adic completions, which
would drastically change the category of representations.

Our definition of D(Bung, A) in general involves some new ideas, employing the idea of solid modules
developed by Clausen—Scholze [[CS] in the context of the pro-étale (or v-)site; in the end, D(Bung, A) is
defined as a certain full subcategory

D]is(Bung, A) C Dy (Bun(;, A)

of the category Dg(Bung, A) of solid complexes of A-modules on the v-site of Bun¢. The formalism of
solid sheaves, whose idea is due to Clausen and the second author, is developed in Chapter|[VTI] It presents
some interesting surprises; in particular, there is always a left adjoint f, to pullback f*, satisfying base
change and a projection formula. (In return, R f| fails to exist in general.)

THEOREM L.5.1. Let A be any Z,-algebra.

(i) Via excision triangles, there is an infinite semiorthogonal decomposition of D(Bun¢;, A) into the various
D(BunZ, A) for b € B(G).
(ii) For each b € B(G), pullback along

Bung; = [/G)] — [+/Go(E)]

gives an equivalence

D([#/Gy(E)], A) = D(Bung, A),

and D([x/Gy(E)],A) = D(Gy(E), A) is equivalent to the derived category of the category of smooth
representations of G,(F) on A-modules.

(iii) The category D(Bung, A) is compactly generated, and a complex A € D(Bung, A) is compact if and
only if for all b € B(G), the restriction

i**A € D(Bunl, A) = D(Gy(E), A)

is compact, and zero for almost all b. Here, compactness in D(G(E), A) is equivalent to lying in the thick

(E)

triangulated subcategory generated by C-Ind% A as K runs over open pro-p-subgroups of G(E).
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(iv) On the subcategory D(Bung, A)* C D(Bung, A) of compact objects, there is a Bernstein—Zelevinsky
duality functor

Dpz : (D(Bung, A)*)°® — D(Bung, A)“
with a functorial identification

RHom(A, B) = my(Dpz(A) ®% B)

for B € D(Bung, A), where 7 : Bung — * is the projection. The functor Dp is an equivalence, and
D%, is naturally equivalent to the identity. It is compatible with usual Bernstein-Zelevinsky duality on
D(Gy(E), A) for basic b € B(G).
(v) An object A € D(Bung, A) is universally locally acyclic (with respect to Bung — *) if and only if for
all b € B(G), the restriction

i” A € D(Bun, A) = D(Gy(E), A)
is admissible, i.e. for all pro-p open subgroups K C G(F), the complex (i** A)X is perfect. Universally
locally acyclic complexes are preserved by Verdier duality, and satisfy Verdier biduality.

This theorem extends many basic notions from representation theory — finitely presented objects,
admissible representations, Bernstein-Zelevinsky duality, smooth duality — to the setting of D(Bung, A).

Parts (i) and (ii) are easy when A is /-power torsion. In general, their proofs invoke the precise definition
of D(Bung, A) = Dj;(Bung, A) and are somewhat subtle. Part (iii) uses that i®* admits a left adjoint, which
will then automatically preserve compact objects (inducing compact generators). Using the diagram

[+/Gy(E)] <= My = Bung,

this left adjoint is defined as 7;,q; . The verification that this is indeed a left adjoint amounts in some sense
to the assertion that M, is “strictly local” along the closed subspace /Gy (E)] C My in the sense that for
all A € D(My, A), the restriction

RI(Mp, A) = RE([+/Go(E)], A)

is an isomorphism. This builds on a detailed analysis of the topological nature of My, in particular that
M, \ * is a spatial diamond, and Theorem below. For part (iv), the constructions in (iii) imply the
existence of Dpz(A) on a class of generators, thus in general, and similar arguments to the ones in (iii)
prove the biduality. Finally, part (v) is essentially a formal consequence.

The key cohomological result for the proof is the following result, applied to M, \ * (or quotients of
it). It plays on the subtle point that the point * is not quasiseparated.

THEOREM 1.5.2. Let X be a spatial diamond such that f : X — x is partially proper, and of finite
dim. trg. Then for any affinoid perfectoid space .S, the base change X5 = X X S naturally admits two
ends. Taking compactly supported cohomology with respect to one end (but no support condition at the
other end), one has

RTy..(Xs,A) =0
forall A € Dg (X, Zy) (resp. all A € Du(X,Zy) if f is f-cohomologically smooth).

As an example, if X = SpaF,((t)), then Xg = D% is an open unit disc over S, whose two ends are the
origin and the boundary, and one has

RTy.c(Dy, Z¢) = 0.
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In particular, the cohomology of Spa F, [t] agrees with sections on the closed point, showing that Spa F,,[]
is “strictly local”. The same phenomenon is at work for Mj,.

I.6. The geometric Satake equivalence

In order to define the Hecke operators, we need to prove the geometric Satake equivalence, taking
representations of the dual group G to sheaves on the local Hecke stack. In order to analyze compositions
of Hecke operators, it will in fact be necessary to analyze modifications at several points.

Thus, for any finite set I, we consider the moduli space (Div')! parametrizing degree 1 Cartier divisors
D; C Xg,i € I. Locally on S, each D; defines an untilt Sf of S over E, and one can form the completion
BT of Ox, along the union of the D;. Inverting the D; defines a localization B of B". One can then
define a positive loop group L?_Divl) ;G and loop group L ;1)1 G, with values given by G(B™) resp. G(B);
for brevity, we will simply write L™ G and LG here. One can then define the local Hecke stack

Hekl, = [LYG\LG/LTG) — (Div})!.
For d = |I|, this is in fact already defined over the moduli space Div? = (Div!)?/%; of degree d Cartier
divisors. We will often break symmetry, and first take the quotient on the right to define the Beilinson-
Drinfeld Grassmannian
Grh = LG/LTG — (Divt)!
so that
Hekl, = LTG\ Grk.

The Beilinson-Drinfeld Grassmannian Grl, — (Div')/ is a small v-sheaf that can be written as an in-
creasing union of closed subsheaves that are proper and representable in spatial diamonds, by bounding the
relative position; this is one main result of [SW20]]. On the other hand, LT G can be written as an inverse
limit of truncated positive loop groups, which are representable in locally spatial diamonds and cohomo-
logically smooth; moreover, on each bounded subset, it acts through such a finite-dimensional quotient.
This essentially reduces the study of all bounded subsets of Hck’ to Artin stacks.

In particular, one can write the local Hecke stack as an increasing union of closed substacks that are qua-
sicompact over (Div!)/, by bounding the relative position. In the following, we assume that the coefficients
A are killed by some power of 4, so that we can use the theory from [Sch17a]. Let

Det(Hekl, AP € Do (HckE, A)

be the full subcategory of all objects with quasicompact support over (Div!). This is a monoidal category
under convolution *. Here, we use the convolution diagram

Hekl x oy Hokly 2220 [AG\LG 270 LG/LTG ™ Hek)
and define
A% B = Rm.,(p;A®Y% p3B).
The map m is ind-proper (its fibres are Gr’,), and in particular proper on any bounded subset; thus, proper
base change ensures that this defines an associative monoidal structure.

On Det(Hckl, AP, one can define a relative perverse ¢-structure (where an object is perverse if and
only if it is perverse over any geometric fibre of (Div')). For this ¢-structure, the convolution x is left



26 I.INTRODUCTION

t-exact (and t-exactness only fails for issues related to non-flatness over A). To prove that there is a well-
defined t-structure, and the preservation of perversity under convolution, we adapt Braden’s theorems
[Brao3]] on hyperbolic localization, and a degeneration to the Witt vector affine Grassmannian [Zhu17]],
[BS17]]. We will discuss hyperbolic localization further below.

We remark that there is no general theory of perverse sheaves in p-adic geometry, the issue being that
it is difficult to unambiguously assign a dimension to a point of an adic space (cf. [Tem21] for what is
known about topological transcendence degrees of points, and the subtleties especially in characteristic p).
In particular, we would not know how to define a notion of perverse sheaf on (Div!)! in general, which
is the reason we revert to asking perversity only in the fibres. Here, we use that all geometric fibres of
the stack Hcks, — (Div')! have only countably many points enumerated explicitly in terms of dominant
cocharacters y;, and one can assign by hand the dimension ) _,(2p, 11;) of the corresponding open Schubert
cells.

REMARK L.6.1. Inspired by this, we realized that for any map f : X — S locally of finite type between
schemes, one can define a relative perverse ¢-structure, with relative perversity equivalent to perversity on

all geometric fibres, cf. [HS23].

Moreover, one can restrict to the complexes A € De(Hcky,, A)P that are universally locally acyclic
over (Div!)!. This condition is also preserved under convolution.

DEFINITION 1.6.2. The Satake category
Sat5(A) C Det(Hckh, A)Pd

is the category of all A € Det(’Hckl ,A)bd that are perverse, flat over A (i.e., for all A-modules M, also
I

A ®% M is perverse), and universally locally acyclic over (Div').
Intuitively, Sat’(A) are the “flat families of perverse sheaves on Hcks, — (Div')!”, where flatness
refers both to the geometric aspect of flatness over (Div')? (encoded in universal local acyclicity) and the

algebraic aspect of flatness in the coefficients A. The Satake category Sat’,(A) is a monoidal category under
convolution. Moreover, it is covariantly functorial in /.

In fact, the monoidal structure naturally upgrades to a symmetric monoidal structure. This relies on
the fusion product, for which it is critical to allow general finite sets /. Namely, given finite sets I, . . ., I,
letting [ = Iy U ... U Ij, one has an isomorphism

k
N - I N
Hcké ><(Div1)1(Dlvl)l’h"'”[’C = H Hceke ><(Di\,1)1(Dlvl)l’h’“"f’c
i=1
where (Div!)/it-Ik  (Div!)! is the open subset where x; # x; whenever i,i’ € I lie in different I}’s.
The exterior tensor product then defines a functor

k
IZ?ZI : H Satg (A) — Satgh""’lk (A)
j=1

where Satgh"“’]k (A) is the variant of Sat’(A) for Hcks, x (Div!)! (Div!) 5111k However, the restriction
functor
Satf;(A) — Satg Tk (A)
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is fully faithful, and the essential image of the exterior product lands in its essential image. Thus, we get a
natural functor

k
by [ Sate (A) — sath(A),

independent of the ordering of the ;. In particular, for any I, we get a functor
SatL(A) x Sath(A) — SatZP(A) — Sath(A),

using functoriality of Sat,(A) in .J, which defines a symmetric monoidal structure * on Sat’,(A), commut-
ing with . This is called the fusion product. In general, for any symmetric monoidal category (C, ) witha
commuting monoidal structure x, the monoidal structure * necessarily agrees with x; thus, the fusion prod-
uct refines the convolution product. (As usual in geometric Satake, we actually need to change * slightly
by introducing certain signs into the commutativity constraint, depending on the parity of the support of
the perverse sheaves.)

Moreover, restricting A € Satl,(A) to Grl, and taking the pushforward to (Div!)’, all cohomology
sheaves are local systems of A-modules on (Div'). By a version of Drinfeld’s lemma, these are equivalent
to representations of W}, on A-modules. This defines a symmetric monoidal fibre functor

FL:sath(A) — RepWé(A),

where Repy;,s (A) is the category of continuous representations of W}, on finite projective A-modules. Us-
E

ing a version of Tannaka duality, one can then build a Hopf algebra in the Ind-category of Repy;, T (A) so

that Sat/,(A) is given by its category of representations (internal in Repy, 1 (A)). For any finite set /, this
is given by the tensor product of I copies of the corresponding Hopf algebra for I = {x}, which in turn is
given by some affine group scheme G over A with Wg-action.

THEOREM 1.6.3. There is a canonical isomorphism G = G with the Langlands dual group, under
which the action of W on G agrees with the usual action of W on G up to an explicit cyclotomic twist.
IfA\/(j € A, the cyclotomic twist can be trivialized, and Sat’,(A) is naturally equivalent to the category of
(G x Wg)! -representations on finite projective A-modules.

This theorem is thus a version of the theorem of Mirkovié¢-Vilonen [MV07], coupled with the refine-
ments of Gaitsgory [Gaio7]] for general I. (We remark that we formulate a theorem valid for any A, not
necessarily regular; such a formulation does not seem to be in the literature. Also, we give a purely local
proof: Most proofs require a globalization on a (usual) curve.) Contrary to Mirkovié-Vilonen, we actually
construct an explicit pinning of G. For the proof, one can restrict to A = Z/{"Z; passing to a limit over
n, one can actually build a group scheme over Z. Its generic fibre is reductive, as the Satake category with
Qy-coefficients is (geometrically) semisimple: For this, we again use the degeneration to the Witt vector
affine Grassmannian and the decomposition theorem for schemes. To identify the reductive group, we ar-
gue first for tori, and then for rank 1 groups, where everything reduces to G = PGLy which is easy to
analyze by using the minuscule Schubert cell. Here, the pinning includes a cyclotomic twist as of course
the cohomology of the minuscule Schubert variety P! of Grpgy,, contains a cyclotomic twist. Afterwards,
we apply hyperbolic localization in order to construct symmetric monoidal functors SatG — Sat)y for any
Levi M of G, inducing dually maps M — G. This produces many Levi subgroups of G@z from which it

is easy to get the isomorphism with G,, including a pinning. As these maps M — G are even defined
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integrally, and G/(Z) C G(Qy) is a maximal compact open subgroup by Bruhat-Tits theory, generated by
the rank 1 Levi subgroups, one can then deduce that G=a integrally, again with an explicit (cyclotomic)
pinning.

We will also need the following addendum regarding a natural involution. Namely, the local Hecke
stack Hckg hasanatural involution sw given by reversing the roles of the two G-torsors; in the presentation
in terms of LG, this is induced by the inversion on LG. Then sw* induces naturally an involution of
Sati;(A), and this involution can be upgraded to a symmetric monoidal functor commuting with the fibre

functor, thus realizing a Wg-equivariant automorphism of G=a.

PROPOSITION 1.6.4. The action of sw* on Satg induces the automorphism of G that is the Chevalley
involution of the split group G, conjugated by p(—1).

Critical to all of our arguments is the hyperbolic localization functor. In the setting of the Beilinson-
Drinfeld Grassmannian, assume that P, P~ C G are two opposite parabolics, with common Levi M. We
get a diagram

GrfM,

~

I
Gry, .

o
N

I
Grp-

1
GrG

We get two “constant term” functors
CT* = Ry )(q")",CT™ = R(p)oR(g™)' : Da(Grlyy AP — Deg(Grly, A,

and one can construct a natural transformation CT~ — CT™". The functor CT ™" corresponds classically to
the Satake transform, of integrating along orbits under the unipotent radical of U ". Hyperbolic localization
claims that the transformation CT~ — CT™ is an equivalence when restricted to L™ G-equivariant objects.
This has many consequences; note that CT is built from left adjoint functors while CT ™ is built from right
adjoint functors, so if they are isomorphic, hyperbolic localization has the best of both worlds. In particular,
hyperbolic localization commutes with all colimits and all limits, preserves (relative) perversity, universal
local acyclicity, commutes with any base change, etc. .

This is in fact a special case of the following more general assertion. Let .S be any small v-stack, and
f + X — S beaproper map that is representable in spatial diamonds with dim. trg f < oco. Assume that
there is an action of G,,, on X /S, where G,,,(R, R™) = R*. The fixed points XY ¢ X of the G,,-action
form a closed substack. We assume that one can define an attractor locus X* C X and a repeller locus
X~ C X, given by disjoint unions of locally closed subspaces, on which the ¢ € G,,,-action admits a limit
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ast — 0 (resp. t — o). We get a diagram

X+
N
X X0,
N
x—

generalizing (bounded parts of) the above diagram if one chooses a cocharacter y : G;,, — G whose dynamic
parabolics are P, P~. One can define

LT = R(p)(g")*, L™ = R(p7):R(q7)" : Det(X, A) = Der( X7, A)
and a natural transformation L~ — L. The following is our version of Braden’s theorem [Brao3], cf. also
[Ric19].
THEOREM L.6.5. The transformation L~ — L isan equivalence when restricted to the essential image
Of Det(X/Gma A) — Det(X7 A).

The proof makes use of the following principle: If Y — S is partially proper with a G,,-action such
that the quotient stack Y /G, is qcgs over S, then again Y admits two ends, and the partially compactly
supported cohomology of Y with coefficients in any A € Det(Y /Gy, A) vanishes identically.

I.7. Cohomology of moduli spaces of shtuka

At this point, we have defined
D(Bung, A),

and using the geometric Satake equivalence and the diagram

q

Hckl

Bung Bung x (Div!)!

Hekl,

one can define the Hecke operator
Ty = Rha.(h} % ¢*Sy) : D(Bung, A) — D(Bung x (Div')?, A)

for any V € Satl(A), where Sy is the corresponding sheaf on Hck’,. This works at least if A is killed by
some power of /. We can in fact extend this functor to all Z,-algebras A. Moreover, its image lies in the full
subcategory of those objects that are locally constant in the direction of (Div')?, thereby giving a functor

Ty : D(Bung, A) — D(Bung,A)BW}IJ

to the category of Wi-equivariant objects in D(Bung, A). The proof is surprisingly formal: One reduces

to I = {*} by an inductive argument, and then uses that Div! = Spd E/o” is still just a point. More
precisely, one uses that

D(Bung, A) — D(Bung x Spdﬁ, A)
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is an equivalence.

REMARK 1.7.1. To define D(Bung, A)BWE, we need to upgrade D (Bung, A) to a condensed co-category;
then it is the notion of W}-equivariant objects for the condensed group W.

A first consequence of our results is that 7}/, forgetting the W1 -equivariance, preserves finiteness prop-
erties. Note that T o Ty = Ty gw as the geometric Satake equivalence is monoidal. This formally implies
that Ty is left and right adjoint to 77+. From here, it is not hard to prove the following result.

THEOREM 1.7.2. The functor Ty : D(Bung, A) — D(Bung, A) preserves compact objects and uni-
versally locally acyclic objects. Moreover, it commutes with Bernstein-Zelevinsky and Verdier duality in
the sense that there are natural isomorphisms Dgz (7 (A)) = Tyy-yvv (Dpz(A)) and R#Zom(Ty (A), A) =
T(sw* V)V R%OIH(A, A)

‘Here sw™ is the involution of Sat}, which by Proposition is induced by the Chevalley involution
of G, conjugated by p(—1).

This theorem has concrete consequences for the cohomology of moduli spaces of shtukas. For simplic-
ity, we formulate it here with coefficients in a A-algebra that is killed by ¢ for some n; for the general
formulation, we would need to discuss more precisely the foundational issues surrounding the derived cat-
egories. In [SW20| Lecture XXIII], for any collection {; }; of conjugacy classes of cocharacters with fields
of definition F;/E and b € B(G), there is defined a tower of moduli spaces of local shtukas

fi : (Shtg k) xcam — | [ Spd Ei
iel

as K ranges over compact open subgroups of G(E), equipped with compatible étale period maps

TK - Sht(GJ, K = GrtY

He G HzEI SpdE,L,<M.

tw
Here, GrG e, Spd
cf. [SW20, Section 23.5]. Let W be the exterior tensor product M7V}, of highest weight representa-

tions, and Sy the corresponding sheaf on Gr'¥ We continue to write Sy for its pullback to

— [Licr Spd E is a certain twisted form of the convolution affine Grassmannian,

GIlier Spd E2;°
Sht(G7b7l"’.)7K

CoROLLARY 1.7.3. The sheaf
RfgiSw € D([x/Gy(E)] x [[ Spd Ei, A)

i€l

is equipped with partial Frobenii, thus descends to an object of
D([/Gy(E)] < [T spd B/, A).
il
This object lives in the full subcategory
D(Gb(E%A)BHiGIWEi CD([ /Gb HSPdE/SDz7 )7

el
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and its restriction to D(Gy(E), A) is compact. In particular, for any admissible representation p of Gy(E),
the object

RHome(E) (RfK!SW, P) € D(A)B [Licr WE,;

is a representation of [ [;.; W, on a perfect complex of A-modules. Taking the colimit over K, this gives
rise to a complex of admissible G(E)-representations

lim R Homg, (i) (Rfk1Sw, p)
K

equipped with a [ [, ; WE,-action.
If p is compact, then so is

lim R Homg, (i) (Rfk1Sw, p)
K
as a complex of G(E)-representations.

Specializing to I = {*} and ;1 minuscule, we get local Shimura varieties, and this proves the finiteness
properties of [RV14) Proposition 6.1] unconditionally, as well as [RV14} Remark 6.2 (iii)]. We note that
those properties seem inaccessible using only the definition of the moduli spaces of shtukas, i.e. without the
use of Bung.

I1.8. The stack of L-parameters

Let us discuss the other side of the Langlands correspondence, namely (the stack of) L-parameters. This
has been previously done by Dat-Helm-Kurinczuk-Moss [DHKM20]] and Zhu [Zhu20]. One wants to
define a scheme whose A-valued points, for a Z,-algebra A, are the continuous 1-cocycles

©: Wg — G(A).

(Here, we endow G with its usual Wg-action, that factors over a finite quotient () of Wg. As discussed above,
the difference between the two actions disappears over Zy[,/q], and we find it much more convenient to use

the standard normalization here, so that we can sometimes make use of the algebraic group G' x Q.)

There seems to be a mismatch here, in asking for an algebraic stack, but continuous cocycles. Interest-
ingly, there is a way to phrase the continuity condition that produces a scheme. Namely, we consider A as
a condensed Z-algebra that is “relatively discrete over Z,”. Abstract Z;-modules M embed fully faithfully
into condensed Z;-modules, via sending M to Myisc ®z, 4, Ze-

THEOREM 1.8.1. There is a scheme Z'(Wg, G’) over Zy whose A-valued points, for a Z,-algebra A, are
the condensed 1-cocycles

0 W — G(A),
where we regard A as a relatively discrete condensed Z-algebra. The scheme Z1(Wg, G ) isa union of open
and closed affine subschemes Z!(Wg/ P, ) as P runs through open subgroups of the wild inertia subgroup
of W, and each Z'(Wg /P, G) is a flat local complete intersection over Z; of dimension dim G.

The point here is that the inertia subgroup of W has a Z,-factor, and this can map in interesting ways
to A when making this definition. To prove the theorem, following [DHKM20] and [Zhu20] we define
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discrete dense subgroups W C W/ P by discretizing the tame inertia, and the restriction Z'(Wg /P, G) —
ZY(W, G) is an isomorphism, where the latter is clearly an affine scheme.

We can also prove further results about the G-action on Z' (W, G), or more precisely each Z' (W /P, G).
For this result, we need to make a very minor assumption on /.

THEOREM 1.8.2. Assume that ¢ does not divide the order of 7y Z(G) (equivalently, ¢ does not divide
the order of 7 (G)tf,r). Then H (G, O(Z*(Wg/P,G))) = 0 for i > 0 and the formation of the invariants

O(Z"(Wg/P,())¢ commutes with any base change. The algebra O(Z!(Wg /P, G))¢ admits an explicit

presentation in terms of excursion operators,
O(Z (Wg/P, @))% = colim, p, w) O(Z! (Fy, G))©

where the colimit runs over all maps from a free group F,, to W C Wg/P,and Z!(F,, G) >~ " with the
simultaneous twisted G-conjugation.

Moreover, the co-category Perf(Z! (Wg /P, G) /@) is generated under cones and retracts by the image
of Rep(G) — Perf(Z'(Wg/P,G)/G), and Ind Perf(Z'(Wg/P,G)) is equivalent to the co-category of
modules over O(Z'(Wg/P,)) in Ind Perf(x /).

All of these results also hold with Qg-coefficients, without the assumption on /.

With Q-coefficients, these results are simple, as the representation theory of G is semisimple. How-
ever, with Z-coefficients, these results are quite subtle, and we need to dive into modular representation
theory of reductive groups. In fact, we give a new perspective on (and provide some new examples of) the
phenomenon that restriction along an embedding H C G of reductive groups preserves representations
admitting a good filtration.

THEOREM 1.8.3. Let G be a reductive group over an algebraically closed field L of characteristic £. Let
P be a finite solvable group of order prime to £ acting on G. The fixed point group H = G? is a smooth
linear algebraic group with H° reductive, and with 7o H of order prime to /.

In this situation, for any representation V' of G admitting a good G-filtration, also V| o admits a good
He°-filtration.

The case of Levi subgroups is a classical theorem, while the case P = Z/27Z was known as Brundan’s
conjecture and proved by exhaustive case-by-case analysis in [Brugg], [vdKoi]. We give a new proof that
works uniformly in all cases.

We also prove that in the situation of the theorem, the image of Perf(x/G) — Perf(x/H) generates
the whole category under cones and retracts. In the first version, we proved this by a very explicit (and
exhausting) analysis of all possible cases, but there is now a uniform proof.

I.9. Construction of L-parameters

Finally, we can discuss the construction of L-parameters. Assume first for simplicity that A = Q, with
fixed \/q € Qy,and let A € D(Bung, Q) be any Schur-irreducible object, i.e. End(A) = Q. For example,

A could correspond to an irreducible smooth representation of G/(E), taking the extension by zero along
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[*/G(F)] < Bung. Then, following V. Lafforgue [Laf18], we can define excursion operators as follows.
For any representation V of (G x Wg)! over Qy, together with maps

a: Q= Vg B:V]|g—Q

when restricted to the action of the diagonal copy GcC (G x Wg)!, and elements y; € W fori € I, we
can define the endomorphism

A Loy ) D2 ) 2 4

of A, defining an element of Q,. With all the formalism in place, the following result is essentially due to
V. Lafforgue [Laf18| Proposition 11.7].

PROPOSITION 1.9.1. There is a unique continuous semisimple L-parameter
pa: Wg = G(Q)
such that for all (1, V, «, 3, (7i)ier) as above, the excursion operator
N T
A Ty 4y Dl 4y 225 4

is given by multiplication with the scalar
Q5V (pa(vi)icr) v 2 Q.

Note that in fact, the excursion operators define elements in the Bernstein center of G(E), as they define
endomorphisms of the identity functor. From this perspective, let us make the following definition.

DEeFINITION [.9.2.

(i) The Bernstein center of G(E) is
Z(G(E),A) = moEnd(idp(g(p),n)) = lim  Z(A[K\G(E)/K])
KCG(E)

where K runs over open pro-p subgroups of G(E), and A[K\G(F)/K] = Endgp) (c-Ind[G((E)A) is the
Hecke algebra of level K.

(ii) The geometric Bernstein center of G is
ZEM(G, ) = moEnd(idp, (Bung,A))-

Inside Z8%°™ (G, A), we let Z5°)" (G, A) be the subring of all endomorphisms f : id — id commuting

with Hecke operators, in the sense that for all V € Rep(G') and A € Dy (Bung, A), one has Ty (f(A)) =
f(Ty(A)) € End(Tv (4)).

(iii) The spectral Bernstein center of G is
PG, A) = O(Z' (W, G)n),
the ring of global functions on the quotient stack Z' (W, G)A/G.
The inclusion D(G(E), A) — Dj;s(Bung, A) induces a map of algebra Z8°™(G,A) — Z(G(E), A).

Now the construction of excursion operators, together with Theorem imply the following. Here
A is a Zy[,/q|-algebra such that the order of 79 Z(() is invertible in A.
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PROPOSITION 1.9.3. There is a canonical map

Z¥(G,A) — ZE00 (G, A) C Z8°™ (G, A),

and in particular a map

Ui Z9<(G, A) — Z(G(E), A).

The construction of L-parameters above is then a consequence of this map on Bernstein centers. The
existence of such an integral map is due to Helm-Moss [HM18] in the case G = GL,,.

REMARK 1.9.4. In the function-field case, a similar construction has been given by Genestier-Lafforgue
[GL17]]. Li-Huerta [LH23] has proved that these constructions agree.

We make the following conjecture regarding independence of /. For its formulation, we note that
there is a natural Q-algebra Z°P*°(G, Q) whose base change to Qy is Z°P*°(G, Q) for any ¢ # p; in fact, one
can take the global functions on the stack of L-parameters that are continuous for the discrete topology
(i-e. trivial on an open subgroup of Wg); see also [DHKM20].

CoNJECTURE 1.9.5. There is a (necessarily unique) map Z%*(G,Q(,/q)) — Z(G(E),Q(,/q)) that

after base extension to any QQ for ¢ # p recovers the composite
ZP(G, Qu(va) = 287G, Qu(va)) = Z(G(E), Qe(va))-

This would ensure that the L-parameters we construct are independent of ¢ in the relevant sense. Fur-
ther conjectures about this map and its relation to the stable Bernstein center have been formulated by
Haines [Hai14] (see also [BKV15], [SS13} Section 6]). In particular, it is conjectured that for G quasisplit,
the map W is injective, and its image can be characterized as those elements of the Bernstein center of
G(FE) whose corresponding distribution is invariant under stable conjugation.

One can also construct the map to the Bernstein center in terms of moduli spaces of local shtukas, as
follows. For simplicity, we discuss this again only if A isa Z /¢{"-algebra for some n. Given I and V asabove,
we can consider a variant Sht(q 1) i of the spaces Sht(g 5, <,,) x considered above, where the bound is
given by the support of V' and we fix the element b = 1. They come with an étale period map

tw

TK - Sht(G’,l,V),K — GrG’H?:l SpdE

and a perverse sheaf Syy. When restricted to the geometric diagonal
T Spdﬁ — HSpdE',
i=1

they become a corresponding moduli space of shtukas with one leg
f;% : Sht(G:17V|@) — SpdE

with the sheaf SV\G' The sheaf SV|c’: admits maps « (resp. 3) from (resp. to) the sheaf i, A, where i :
G(E)/K = Sht(G,L@e) K = Sht(G,l,V|G),K is the subspace of shtukas with no legs. This produces an
endomorphism

cIndZ A % RIRSy, = (RfxiSv)s DD (R Sy ) = RIZSy, 2 c1ndSPA.
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Here, the action of (;);cr is defined by Corollary It follows from the definitions that this is precisely

the previous construction applied to the representation c—Indg(E)A. Note that these endomorphisms are

G(FE)-equivariant, so define elements in the Hecke algebra
A[K\G(E)/K] = Endg g (c-Ind 5 A);

in fact, these elements are central (as follows by comparison to the previous construction). Taking the
inverse limit over K, one gets the elements in the Bernstein center of G(E)f

Concerning the L-parameters we construct, we can prove the following basic results.
THEOREM 1.9.6.

(i) If G = T is a torus, then 7 > ¢ is the usual Langlands correspondence.

(ii) The correspondence 7 — ¢ is compatible with twisting.

(iii) The correspondence 7 + ¢ is compatible with central characters (cf. [Bor79} 10.1]).

(iv) The correspondence 7 — (. is compatible with passage to congradients (cf. [AV16])).

(v)If G’ — G is a map of reductive groups inducing an isomorphism of adjoint groups,  is an irreducible
smooth representation of G(E) and 7’ is an irreducible constitutent of 7|/ (), then ¢ is the image of o
under the induced map G — .

(vi) If G = G x G4 isa product of two groups and 7 is an irreducible smooth representation of G(E), then
7 = m1 X7y for irreducible smooth representations 7; of G;(E), and ¢ = ¢r, X ¢r, under G = Gl X @2.
(vii) If G = Respyp G’ is the Weil restriction of scalars of a reductive group G’ over some finite separable
extension E'|E, so that G(E) = G'(E’), then L-parameters for G|E agree with L-parameters for G’|E’.
(viii) The correspondence 7 — ¢ is compatible with parabolic induction.

(ix) For G = GL,, and supercuspidal 7, the correspondence 7 — ¢ agrees with the usual local Langlands
correspondence [LRS93]], [HTo1l], [Henoo].

Note that parts (viii) and (ix) together say that for GL,, and general 7, the L-parameter o, is what is
usually called the semisimple L-parameter.

L.10. The spectral action

The categorical structure we have constructed actually produces something better. Let A be the ring of
integers in a finite extension of Q;(,/q). We have the stable co-category C = Dj;s(Bung, A)“ of compact

objects, which is linear over A, and functorially in the finite set / an exact monoidal functor Rep A(é X

Q)! — Enda(C)B"E that is linear over Rep, (Q); here, Enda (C) denotes the stable co-category of A-
linear endofunctors of C, and we regard it as being enriched in condensed A-modules via regarding C as
enriched in relatively discrete condensed A-modules. A first version of the following theorem is due to
Nadler-Yun [NY19] in the context of Betti geometric Langlands, and a more general version appeared in the
work of Gaitsgory—Kazhdan-Rozenblyum-Varshavsky [GKRV22]. Both references, however, effectively

5When the second author gave his Berkeley lectures [SW20], this was the construction of excursion operators that we envis-
aged. Note that a key step here is that the cohomology of moduli spaces of local shtukas defines a local system on (Div')’. It is
however not clear how to prove this purely in terms of moduli spaces of shtukas. In the global function field case, this result has
been obtained by Xue [Xue20].
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assume that G is split, work only with characteristic O coefficients, and work with a discrete group in place
of Wg. At least the extension to Zy-coefficients is a nontrivial matter.

Note that Z!(Wg, () is not quasicompact, as it has infinitely many connected components; it can be
written as the increasing union of open and closed quasicompact subschemes Z!(Wg /P, (). We say that
an action of Perf(Z'(Wg, G)/@G) on a stable co-category C is compactly supported if for all X € C the
functor Perf(Z' (Wg, G)/G) — C (induced by acting on X ) factors over some Perf(Z(Wg/P,G)/G).

THEOREM 1.10.1. Assume that ¢ does not divide the order of mpZ(G). Let C be a small A-linear stable
oo-category. Then giving, functorially in the finite set /, an exact Rep , (Q)-linear monoidal functor

Rep(G x Q)7 — Endy (C)PWe
is equivalent to giving a compactly supported A-linear action of
Perf(ZY(Wg, G)a/G).

Here, given a compactly supported A-linear action of Perf(Z' (W, G)s/G), one can produce such an exact
Rep, (Q!)-linear monoidal functor

Rep, (G x Q) — Endy (C)BWe
functorially in I by composing the exact Rep , (Q)-linear symmetric monoidal functor
Rep(G x Q)f — Perf(ZH (W, G)A/G')BWI{J

with the action of Perf(Z'(Wg, G)A/Q).
The same result holds true with A a field over Qy, for any prime /.

Here, the exact Rep, (Q7)-linear symmetric monoidal functor
Rep, (G x Q)T — Perf(Z' (W, G)r/G)PVE
is induced by tensor products and the exact Rep, (@Q)-linear symmetric monoidal functor
Rep, (G x Q) — Perf(Z'(Wg, G)A/G)BVE
corresponding to the universal G % Q-torsor, with the universal T g-equivariance as parametrized by
ZY Wk, G)/G.

The key part of the proof is actually the final part of Theorem [[.8.2]above, which effectively describes
Perf(Z'(Wg/P,G)/G) in terms of generators and relations, as does the present theorem.

In particular, we get an action of Perf(Z' (W, G)s/G) on Dys(Bung, A), suitably compatible with
the Hecke action.

With everything in place, it is now obvious that the main conjecture is the following, cf. [AG15]],
[BZCHN?20), [Zhu20], [Hel23]{

SThe previous version of this manuscript made a seemingly less precise conjecture by asking for the existence of a functor
instead of noting that it must necessarily be realized as a right adjoint and hence is unique if it exists. This uniqueness was pointed
out to us in particular by Hansen [Han24].
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CoNJECTURE 1.10.2. Assume that G is quasisplit and choose Whittaker data consisting of a Borel B C GG
and generic character ¢y : U(E) — O; of the unipotent radical U C B, where L/Q is some algebraic
extension; also fix /g € Oy Let n be the order of 7 Z(G) and let A = O [1]. Let

Ww € D]is(Bung, A)
be the Whittaker sheaf, which is the sheaf concentrated on Bun/, corresponding to the Whittaker repre-
. G(E)
sentation c—IndU( ) 1), and let

Ind Perf®(Z' (W, G)a/G) — Dis(Bung, A) : M — Actpr (W)

be defined as the colimit-preserving extension of the spectral action Act on WV,,. Then the corresponding
right adjoint functor is fully faithful when restricted to the compact objects, and induces an equivalence of

(Perf(Z' (Wg, G) 5 /G)-linear small stable) co-categories
w ~ bqe A A
D(Bung, A)* = D"\ (21 (W, G)a/G).
We inverted the order n of m9Z(G) here, because only then the spectral action has been constructed.

We are not sure what to expect without inverting n. (In fact, we would not be surprised if the notion of
“nilpotent singular support” that we use has to be modified at bad primes.)

Here, we use the notion of complexes of coherent sheaves with nilpotent singular support, see [AG15].
More precisely, Df;%cNﬂp is the co-category of bounded complexes with quasicompact support, coherent

cohomology, and nilpotent singular support. With characteristic 0 coefficients, or at banal primes /, the
condition of nilpotent singular support is actually automatic.

If W, is the Whittaker sheaf and we note * the spectral action, the conjecture thus says that
Perf¥(Z'(Wg, G)A/G) — D(Bung, A)
M — M x Wy

is fully faithful and extends to an equivalence of stable co-categories

b,qc A N\ Av w
Dcoc}ll,Nilp(Zl(WEﬂ G)A/G) = D(BunG7 A) .

Recall that the right-hand side contains D(G(E), A)* fully faithfully, so in particular this co-category
should embed fully faithfully into the left-hand side. This has been conjectured by Hellmann in [Hel23]]
and Ben-Zvi-Chen-Helm-Nadler [BZCHN20]| have proved parts of this (they use Q-coefficients, and
work with split groups and the Bernstein component corresponding to representations with Iwahori fixed
vector).

REMARK 1.10.3. Consider the conjecture with coefficients in Q. Ideally, the conjecture should also
include a comparison of ¢-structures. Unfortunately, we did not immediately see a good candidate for
matching ¢-structures. Ideally, this would compare the perverse ¢-structure on the left (which is well-
defined, for abstract reasons, and appears at least implicitly in [[CS17], [CS19a]; it seems to be the “correct”
t-structure for questions of local-global compatibility) with some “perverse-coherent” ¢-structure on the
right. If so, the equivalence would also yield a bijection between irreducible objects in the abelian hearts.
On the left-hand side, these irreducible objects would then be enumerated by pairs (b, 7,) of an element
b € B(G) and an irreducible smooth representation 7, of G (E), by using intermediate extensions. On the
right-hand side, they would likely correspond to a Frobenius-semisimple L-parameter ¢ : Wx — G(Qy)
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together with an irreducible representation of the centralizer S, of ¢. Independently of the categorical
conjecture, one can wonder whether these two sets are in fact canonically in bijection]]

I.11. The origin of the ideas

Finally, let us give some account of the historical developments of these ideas, from our own biased
perspective. Let us first recall some of our early work in the direction of local Langlands correspondences.
Fargues [Faro4]] has proved that in the cohomology of basic Rapoport-Zink spaces for GL,, (and U(3))
and general minuscule cocharacters, an appropriate version of the local Langlands correspondence is real-
ized. Moreover, Fargues [Faro8|] has proved the duality isomorphism between the Lubin-Tate and Drinfeld
tower. Already at this point Fargues thought of this as an attempt to geometrize the Jacquet-Langlands cor-
respondence, see [Faro8, Theorem 2 of the Préambule]. On the other hand, Scholze [Sch13] has given a new
proof of the local Langlands correspondence for GL,,. His results pointed to the idea that there ought to
exist certain sheaves on the moduli stack of p-divisible groups (which, when restricted to perfect schemes,
can be regarded as a “part” of the stack GL,, -Zsoc considered above), giving a certain geometrization of
the local Langlands correspondence, then formulated as a certain character sheaf property (inspired by the
character formulas in [Sch13]]). Related observations were also made by Boyer (cf. e.g. [Boyog]]) and in un-
published work of Dat. However, Scholze was always uneasy with the very bad geometric properties of the
stack of p-divisible groups.

At this point, both of us had essentially left behind local Langlands to study other questions. Fargues
found the fundamental curve of p-adic Hodge theory in his work with Fontaine [FF18]); an initial critical
motivation for Fargues was a development of “p-adic Hodge theory without Galois actions”, i.e. for fields
like C,. Indeed, this was required in some of his work on Rapoport-Zink spaces. On the other hand,
Scholze developed perfectoid spaces [Schi2], motivated by the weight-monodromy conjecture. After his
talk at a conference in Princeton in March 2011, Weinstein gave a talk about his results on the Lubin-Tate
tower at infinite level, which made it clear that it is in fact a perfectoid space. Scholze at the time was
already eager to understand the isomorphism between Lubin-Tate and Drinfeld tower, and it now became
clear that it should really be an isomorphism of perfectoid spaces. This was worked out in [SW13]. At
the time of writing of [SW13]], the perspective of the Fargues—Fontaine curve had already become central,
and we realized that the isomorphism of the towers simply amounts to two dual descriptions of the space
of minuscule modifications O% — Ox (1) on the Fargues-Fontaine curve, depending on which bundle
is fixed and which one is the modification. This was the first clear connection between local Langlands
(as encoded in the cohomology of Lubin-Tate and Drinfeld space) and the theory of vector bundles on
the Fargues—-Fontaine curve, which Scholze had however not taken seriously enough. Moreover, Fargues
had noted in [FF18]], in the proof of “weakly admissible implies admissible”, that modifications of vector
bundles were playing an important role: the Hodge filtration of a filtered ¢-module allows one to define
a new vector bundle by modifying the vector bundle associated to an isocrystal i.e. by “applying a Hecke
correspondence” as he said in the talk [Far10]] at the conference in honor of Jean-Marc Fontaine.

This duality perspective also put the two dual period morphisms into the center of attention: The
Hodge—de Rham period mapping, and the Hodge-Tate period mapping (which are swapped under the du-
ality isomorphism). Thinking about the Lubin-Tate tower as part of the moduli space of elliptic curves,
Scholze then realized that the Hodge-Tate period map even exists globally on the moduli space of elliptic

7This question has been answered affirmatively by Bertoloni Meli-Oi [BMOz22]. Hansen [Han24]] has moreover made progress
in understanding possibly matching ¢-structures, by introducing the hadal ¢-structure on Bung.
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curves with infinite level (on the level of Berkovich topological spaces, this had also been observed by Far-
gues before). Moreover, Scholze realized that the Hodge—Tate period map gives a substitute for the map
from the moduli space of elliptic curves to the moduli space of p-divisible groups, and that the sheaves
he sought for a geometric interpretation of [[Sch13] have a better chance of existing on the target of the
Hodge-Tate period map, which is simply a projective space over Cp; he sketched these ideas in an MSRI
talk [Schi4]. (Again, Dat has had similar ideas.) Eventually, this perspective was used in his work with
Caraiani [[CS17], [CS194] to study torsion in the cohomology of Shimura varieties. The work with Cara-
iani required the classification of G-torsors on the Fargues—Fontaine curve, which was proved by Fargues
[Far20].

Increasingly taking the perspective of studying all geometric objects by mapping only perfectoid spaces
in, the idea of diamonds emerged quickly, including the possibility of getting several copies of SpecQ,
(the earliest published incarnation of this idea is [Wei17]]), and of defining general moduli spaces of p-adic
shtukas. These ideas were laid out in Scholze’s Berkeley course [SW20] during the MSRI trimester in Fall
2014. The eventual goal was always to adapt V. Lafforgue’s work [Laf18]] to the case of p-adic fields; the
original strategy was to define the desired excursion operators via the cohomology of moduli spaces of
local shtukas. At the beginning of the trimester, Scholze was still very wary about the geometric Lang-
lands program, as it did not seem to be able to incorporate the subtle arithmetic properties of supercuspidal
representations of p-adic groups. It was thus a completely unexpected conceptual leap that in fact the best
perspective for the whole subject is to view the local Langlands correspondence as a geometric Langlands cor-
respondence on the Fargues—Fontaine curve, which Fargues suggested over a coffee break at MSRI (partly
inspired by having thought intensely about the space of G-bundles on the curve in relation to [Far20]).
Fargues was taking the perspective of Hecke eigensheaves then, seeking to construct for any (discrete) L-
parameter ¢ an associated Hecke eigensheaf A, on Bung with eigenvalue ¢. This should define a functor
¢ — A, and thus carry an action of the centralizer group S, C G of ¢, and the corresponding S,-isotypic
decomposition of A, should realize the internal structures of the L-packets. Moreover, the Hecke eigen-
sheaf property should imply the Kottwitz conjecture [RV14) Conjecture 7.3] on the cohomology of local
Shimura varieties. This made everything come together. In particular, it gave a compelling geometric ori-
gin for the internal structure of L-packets, and also matched the recent work of Kaletha [Kal14]] who used
basic G-isocrystals for the fine study of L-packets.

Unfortunately, the conjecture was formulated on extremely shaky grounds: It presumed that one could
work with the moduli stack Bung as if it were an object of usual algebraic geometry. Of course, it also
presumed that there is a version of geometric Satake, etc.pp. On the other hand, we realized that once we
could merely formulate Fargues’ conjecture, enough machinery is available to apply Lafforgue’s ideas [Laf18]
to get the “automorphic-to-Galois” direction and define (semisimple) L-parameters (as Genestier-Lafforgue
[GL17] did in equal characteristic).

Since then, it has been a long and very painful process. The first step was to give a good definition of
the category of geometric objects relevant to this picture, i.e. diamonds. In particular, one had to prove
that the relevant affine Grassmannians have this property. This was the main result of the Berkeley course
[SW20]. For the proof, the concept of v-sheaves was introduced, which has since taken on a life of its own
also in algebraic geometry (cf. [BM21]]). (Generally, v-descent turned out to be an extremely powerful proof
technique. We use it here to reprove the basic theorems about the Fargues-Fontaine curve, recovering the
main theorems of [FF18] and [KL15] with little effort.) Next, one had to develop a 6-functor formalism for
the étale cohomology of diamonds, which was achieved in [Sch17al], at least with torsion coefficients. The
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passage to (Qy-coefficients requires more effort than for schemes, and we will comment on it below. A central
technique of [Sch17al is pro-étale descent, and more generally v-descent. In fact, virtually all theorems of
[Schi7al] are proved using such descent techniques, essentially reducing them to profinite collections of
geometric points. It came as a surprise to Scholze that this process of disassembling smooth spaces into
profinite sets has any power in proving geometric results, and this realization gave a big impetus to the
development of condensed mathematics (which in turn fueled back into the present project).

At this point, it became possible to contemplate Fargues’ conjecture. In this respect, the first result
that had to be established is that Dei(Bun, Z/¢"Z) is well-behaved, for example satisfies Verdier bidual-
ity for “admissible” sheaves. We found a proof, contingent on the cohomological smoothness of a certain
“chart” 1, : M, — Bung for Bung near any b € B(G); this was explained in Scholze’s IHES course
[Schi7b]. While for G = GL,, the cohomological smoothness of 7}, could be proved by a direct attack,
in general we could only formulate it as a special case of a general “Jacobian criterion of smoothness” for
spaces parametrizing sections of Z — Xg for some smooth adic space Z over the Fargues—Fontaine curve.
Proving this Jacobian criterion required three further key ideas. The first is the notion of “formal smooth-
ness”, where liftings to infinitesimal thickenings (that do not exist in perfectoid geometry) are replaced
by liftings to actual small open (or étale) neighborhoods. The resulting notion is closely related to the
notion of absolute neighborhood retracts in classical topology [Bor67]. Through some actual “analysis”, it
is not hard to prove that the space of sections is formally smooth. Unfortunately, this does not seem to
be enough to guarantee cohomological smoothness. The first issue is that formal smoothness does not im-
ply any finite-dimensionality. Here, the second key idea comes in, which is Bhatt’s realization [BS22]] that
Zariski closed immersions are strongly Zariski closed in the sense of [Sch15} Section II.2] (contrary to a claim
made by Scholze there). At this point, it would be enough to show that spaces that are formally smooth and
Zariski closed in a finite-dimensional perfectoid ball are cohomologically smooth. Unfortunately, despite
many tries, we are still unable to prove that even the different notions of dimension of [[Sch17a] (Krull di-
mension, dim. trg, cohomological dimension) agree for such spaces. This may well be the most important
foundational open problem in the theory:

PrROBLEM I.11.1. Let X C IEB% be Zariski closed, where B" is a perfectoid ball. Show that X has a
well-behaved dimension.

In fact, we find it crazy that we are able to prove all sorts of nontrivial geometric results without ever
being able to unambiguously talk about dimensions!

Our attacks on this failing, a third key idea comes in: Namely, the notion of universally locally acyclic
sheaves, that we also developed independently in order to prove geometric Satake. It is easy to see that
formal smoothness plus finite-dimensionality implies that the constant sheaf is universally locally acyclic;
it remains to see that the dualizing sheaf is invertible. This can be proved by a deformation to the normal
cone (using universal local acyclicity to spread the result on the normal cone to a neighborhood). We found
this argument at a conference in Luminy in July 2018; an inspiration to use a deformation to the normal
cone may have been Clausen’s use in the proof of the “linearization hypothesis”.

These results are enough to show that Det(Bung,Z/("7Z) is well-behaved, and are already enough to
prove new finiteness results on the cohomology of Rapoport-Zink spaces (with torsion coefficients). Our
next emphasis was on geometric Satake. This essentially required the theory of universally locally acyclic
sheaves, and a version of Braden’s hyperbolic localization theorem [Brao3]. We were able to find substitutes
for both. Regarding universally locally acyclic sheaves, we were able to prove analogues of most basic
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theorems, however we failed to prove that in general they are preserved under relative Verdier duality (even
while we could check it by hand in all relevant cases). Lu-Zheng [LZ22] then found a new characterization
of universally locally acyclic sheaves, making stability under relative Verdier duality immediate. Their
arguments immediately transport to our setting. Eventually we used a slightly different characterization,
but in spirit the argument is still the same as theirs. Regarding hyperbolic localization, we could not follow
Braden’s arguments that rely on nice coordinate choices. Instead, we reduce all arguments to the following
(simple to prove) principle: If X is a (partially proper) space with a G,,-action such that [X /G,,] is qcgs,
and A € De([X /Gy, A), then the partially compactly supported cohomology of X with coefficientsin A
vanishes. The idea here is that the G,,-action contracts X towards one of the ends. Afterwards, the proof
of geometric Satake largely follows the lines of [MV07]], although there are certain improvements in the
argument; in particular, we give a simple reduction to groups of rank 1, and pin the isomorphism with the

dual group.

Using these results, one has all ingredients in place, but only working with torsion coefficients. One can
formally pass to /-adically complete sheaves, but this leads to studying representations on Banach (Q;-vector
spaces, which is very unnatural. During this time, Clausen came to Bonn, and Clausen and Scholze started
to develop condensed mathematics, and the theory of solid modules [CS|]. They realized that one could also
define solid Z,-sheaves on schemes or diamonds, and that this makes it possible to study representations on
discrete Q- or Q-vector spaces, as desired. We take this up here, and first define solid Z,-sheaves on any
small v-stack, together with some 5-functor formalism (involving relative homology in place of compactly
supported cohomology; its right adjoint is then pullback, so there are only 5 functors), and afterwards pass
to a certain subcategory of “lisse-étale” sheaves to define the desired category Dy (Bung, Q,), with exactly
the desired properties.

In the meantime, there was related work in the geometric Langlands program by Nadler-Yun [NY19]
and Gaitsgory-Kazhdan-Rozenblyum-Varshavsky [GKRV22] that implied that the categorical structures
we have now constructed — D(Bung, Qy) together with the action of Hecke operators — formally induce
an action of the category of perfect complexes on the stack of L-parameters on D(Bung, Qy), giving a
categorical upgrade to the construction of L-parameters based on excursion operators. (We were aware
of some weak form of this, when restricted to elliptic parameters; this was discussed in the last lecture of
[Sch17b], based on some unpublished results of Anschiitz.) Here, we make the effort of proving a result with
Zy-coefficients.
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1.13. Notation

Throughout most of this paper, I denotes a nonarchimedean local field with residue field I, of charac-
teristic p > 0, and we fix an algebraic closure k = F,, of F,,. Then E is the completed unramified extension
of E with residue field k. We also fix a separable closure E of E, with absolute Galois group I' = Gal(E|E),
containing the Weil group W, inertia subgroup /g, and wild inertia Pr. The letter P usually denotes open
subgroups of P, but is occasionally also used to denote a finite p-group (or more generally finite solvable
group of order prime to /).

The group G is usually a reductive group over E; reductive groups are always assumed to be connected.

For any topological space X, we denote by X the sheaf taking any S (in the relevant test category,
usually a perfectoid space) to the continuous maps from |S| to X. This is in the spirit of the passage from
topological spaces to condensed sets, see [CS]. We make occasional use of the condensed language, but do
not make use of any nontrivial results from [[CS]. In particular, our discussion of solid /-adic sheaves is
self-contained.

We will occasionally use the “animated” terminology, see [CS]], [CS19b]. In particular, we use the term
anima for what is variously called spaces in [Lurog], co-groupoids, or homotopy types, and for any ring A4,
the 0o-category of animated A-algebras is the co-category obtained from simplicial A-algebras by inverting
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weak equivalences. Thus, animated A-algebras are freely generated under sifted colimits by polynomial

algebras A[X,..., X,].

If C is an (0o-)category equipped with an action of a group G, we write CB% for the (co-)category of G-
equivariant objects in C. Note that the data here is really a functor BG' — Cato,, and CP% is by definition
the limit of this diagram. (It would be more customary to write CC, but this leads to inconsistent notation.)
Also, we often write classifying stacks as /G instead of BG as the letter B also denotes Borel subgroups
(and we strongly prefer /B to BB), and appears in Kottwitz’ set B(G).






CHAPTER 1II

The Fargues—Fontaine curve and vector bundles

The goal of this chapter is to define the Fargues—Fontaine curve, in its various incarnations, and the cat-
egory of vector bundles on the Fargues—Fontaine curve. Throughout this chapter, we fix a nonarchimedean
local field F with residue field F; of characteristic p. We let O C E be the ring of integers, and 7 a uni-
formizing element in E.

For any perfectoid space S over [Fy, we introduce a curve )g, to be thought of as the hypothetical
product S XspaF, Spa O, together with an open subset Ys C )g given by the locus where 7 7 0. This
carries a Frobenius ¢ induced from the Frobenius on S, and X is the quotient Y/ goZ.

The first results concern the Fargues—Fontaine curve X¢ = Xg when S = Spa C for some complete
algebraically closed nonarchimedean field C'|F,. We define a notion of classical points of X in that case;
they form a subset of | X|. The basic finiteness properties of X are summarized in the following result.

THEOREM Il.0.1 (Proposition Corollary Definition/Proposition[II.1.22). The adic space

V¢ is locally the adic spectrum Spa(B, BT) where B is a principal ideal domain; the classical points of
Spa(B, BT) C )¢ are in bijection with the maximal ideals of B. For each classical point € ), the
residue field of z is an untilt C* of C over O, and this induces a bijection of the classical points of Vo with
untilts C? of C over Op. A similar result holds true for Yo C V¢, and the quotient X¢ = Yo /2.

In the equal characteristic case, this is an immediate consequence of Vo = D¢ and classical results in
rigid-analytic geometry. In the p-adic case, we use tilting to reduce to the equal characteristic case. More
precisely, if F is p-adic and E., is the completion of E(7'/P”), then V¢ Xspa 0y Spa O, is perfectoid,
with tilt given by a perfectoid open unit disc D¢. The corresponding map [D¢| — |Vc| induces a surjective
map on classical points, see Proposition[[[.1.8| At one key turn, in order to understand Zariski closed subsets
of V¢, we use the result that Zariski closed subspaces are invariant under tilting, to reduce to D¢ More
precisely, we recall the following result.

ProrosiTION I1.0.2 ([Schis) Section II.2], [BS22, Remark 7.5], [Sch17a) Definition 5.7, Theorem 5.8]).
Let S = Spa(R, R™") be an affinoid perfectoid space with tilt S” = Spa(R’, R**). Then a closed subspace
Z C |S| is the vanishing locus of an ideal I C R if and only if Z C |S| = |S”] is the vanishing locus of
an ideal J C R’. In that case, there is a universal perfectoid space S; — S such that |S;| — |S| factors
over Z,and Sy = Spa(T, T™) is affinoid perfectoid with |S;| — Z a homeomorphism, R — T surjective,
R*™ — T almost surjective, and T is the integral closure of R* in 7.

A key result is the classification of vector bundles.

THEOREM 11.0.3 (Theorem|I1.2.14). The functor from Isocg to vector bundles on X induces a bijection
on isomorphism classes. In particular, there is a unique stable vector bundle Ox,, () of any slope A € Q,
and any vector bundle £ can be written as a direct sum of stable bundles.

45
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We give a new self-contained proof of the classification theorem, making critical use of the v-descent
results for vector bundles obtained in [Sch17a]] and [SW20], and basic results on the geometry of Banach—
Colmez spaces established here.

Allowing general S € Perqu, we define the moduli space of degree 1 Cartier divisors as Div! =

Spd F/”. Given a map S — Div', one can define an associated closed Cartier divisor Dg C Xg; lo-
cally, this is given by an untilt Dg = S* C X of S over F, and this embeds Div' into the space of closed
Cartier divisors on Xg. Another important result is the following ampleness result, cf. [KL15| Proposition
6.2.4], which implies that one can define an algebraic version of the curve, admitting the same theory of
vector bundles.

THEOREM 11.0.4 (Theorem Proposition Proposition [II.2.9)). Assume that S € Perf is

affinoid. For any vector bundle £ on X, the twist £(n) is globally generated and has no higher cohomology
for all n > 0. Defining the graded ring

pP= @HO(XS’ OXS(”))

n>0

and the scheme X glg = Proj P, there is a natural map of locally ringed spaces Xg — Xglg, pullback along
which defines an equivalence of categories of vector bundles, preserving cohomology.

If S = SpaC for some complete algebraically closed nonarchimedean field C, then X, aclg is a regular
noetherian scheme of Krull dimension 1, locally the spectrum of a principal ideal domain, and its closed
points are in bijection with the classical points of X¢.

We also need to understand families of vector bundles, i.e. vector bundles £ on X g for general S. Here,
the main result is the following, which is originally due to Kedlaya-Liu [KL15].

THEOREM 11.0.5 (Theorem Corollary [[1.2.20). Let S € Perf and let £ be a vector bundle on
Xg. Then the function taking a point s € S to the Harder—Narasimhan polygon of £|x, defines a semi-
continuous function on S. If it is constant, then £ admits a global Harder—Narasimhan stratification, and

7

pro-étale locally on S one can find an isomorphism with a direct sum of Ox(\)’s.

In particular, if £ is everywhere semistable of slope 0, then £ is pro-étale locally trivial, and the category
of such £ is equivalent to the category of pro-étale E-local systems on S.

The key to proving this theorem is the construction of certain global sections of £. To achieve this, we
use v-descent techniques, and an analysis of the spaces of global sections of &; these are known as Banach-
Colmez spaces, and were first introduced (in slightly different terms) by Colmez [Colo2]; see also le Bras’
thesis [LB18].

DEFINITION I1.0.6. Let & be a vector bundle on Xg. The Banach-Colmez space BC () associated with
£ is the locally spatial diamond over S whose T-valued points, for T' € Perfg, are given by

BC(E)(T) = H(Xr, Elxy).

Similarly, if £ is everywhere of only negative Harder—Narasimhan slopes, the negative Banach—-Colmez
space BC(&[1]) is the locally spatial diamond over S whose T'-valued points are

BC(ENT) = H (X1, E|xy).
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Implicit here is that this functor actually defines a locally spatial diamond. For this, we calculate some
key examples of Banach-Colmez spaces. For example, if £ = Ox,(A\) with 0 < X\ < [E : Q] (resp. all
positive A if E is of equal characteristic), then BC(E) is representable by a perfectoid open unit disc (of
dimension given by the numerator of \). A special case of this is the identification of BC(Ox(1)) with
the universal cover of a Lubin-Tate formal group law, yielding a very close relation between Lubin-Tate
theory, and thus local class field theory, and the Fargues—Fontaine curve. This case actually plays a special
role in getting some of the theory started, and we recall it explicitly in Section[[T.2.1, On the other hand, for
larger ), or negative A\, Banach-Colmez spaces are more exotic objects; for example, the negative Banach-
Colmez space

BC(Ox(~1)[1]) = (Agy)® /E
is the quotient of the affine line by the translation action of £ C Aéﬁ.

A key result is Proposition stating in particular that projectivized Banach—Colmez spaces
(BC(E)\{0})/E*

are proper — they are the relevant analogues of “families of projective spaces over S”. In particular, their

image in S is a closed subset, and if the image is all of .S, then we can find a nowhere vanishing section of £
after a v-cover, as then the projectivized Banach-Colmez space is a v-cover of S.

IL.1. The Fargues—Fontaine curve

IL.1.1. The curve Vc. Recall that for any perfect [F-algebra R, there is a unique 7-adically complete
flat Op-algebra R such that R = R/m. There is a unique multiplicative lift [-] : R — R of the identity
R — R, called the Teichmiiller lift. Explicitly, one can take

R =Wo,(R) = W(R)®wE, O

in terms of the ramified Witt vectors; here the completion is the 7-adic completion. (In the case £ =
F,((m)) is of equal characteristic, this becomes simply R[[7]].)

The construction of the Fargues—Fontaine curve is based on this construction on the level of perfectoid
spaces S over [F;. Its construction is done in three steps. First, one constructs a curve )g, an adic space over
Op, which carries a Frobenius action ¢. Passing to the locus Ys = Vg \ {m = 0}, i.e. the base change to E,
the action of ¢ is free and totally discontinuous, so that one can pass to the quotient Xg = Yg/ %, which
will be the Fargues—Fontaine curve.

We start by constructing Vg in the affinoid case. More precisely, if S = Spa(R, R") is an affinoid
perfectoid space over Fy, and @ € R is a pseudouniformizer (i.e. a topologically nilpotent unit of R), we
let

Vs =SpaWo, (R") \ V([=)).
Here Wo, (R") has the (7, [w])-adic topology. These objects do not depend on the choice of @, as for any
choice of w, @’ € R, one has @|w™, @’|w" for some n > 0. The g-th power Frobenius of R" induces an
automorphism ¢ of Vg. To construct the Fargues—Fontaine curve, we will eventually remove V (7) from
Vs and quotient by ¢, but for now we recall some properties of Vg.

PROPOSITION II.1.1. The above defines an analytic adic space Vs over Of. Letting E, be the comple-
tion of F(7!/P™), the base change
Vs Xspaop SpaOp,,
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is a perfectoid space, with tilt given by
S XFq Spa Fq[[tl/poo]] = ]DS,perfa

a perfectoid open unit disc over S.

PROOF. One can cover Vg by the subsets Vg o, := {|7|" < |[@]| # 0} C Vs, which are rational
subsets of Spa W, (R"), where n > 0 is some integer that we assume to be a power of p for simplicity.
Then

Vs,0.n = Spa(Bs 0,0} B g )
where
™

BS,[O,n] = Woy (R+)<@> [H]

and BY 0] © Bsjon) is the integral closure of Wp,, (R+)<%) To see that Vg is an adic space (i.e. the

structure presheaf isa sheaf) and Vs X spa 0, Spa OF,, is perfectoid, it is enough to prove that Bg o ,, ®0; OF..
is a perfectoid Tate algebra. Indeed, the algebra By [ ,,) splits off By [0 ,j®0, OF., asa direct factor as topo-
logical Bg g ,-module, and hence the sheaf property for perfectoid spaces gives the result for Vg | ,,) and

thus all of Vs (cf. the sousperfectoid property of [HK20], [SW20) Section 6.3]). Using the Frobenius auto-
morphism of (R, R"), one can in fact assume that n = 1.

Let us abbreviate
A= Bg 011905 0E.,

and AT C A the integral closure of B [0.1] ®0,OF.,. In particular
A = Woy(RN®0,08.)[(Z) " iy € AT,

(] [«]
and A = AS‘[%] Note that

1/p® m m 1 /p™m ~ 1/po°
A5 [[@] = (RY J@ @x, Op ")/ (17" — (@] 7" 07" = R [l
This implies already that Aj is integral perfectoid by [BMS18, Lemma 3.10 (ii)], and thus necessarily
(cf. [BMS18] Lemma 3.21]) AE)" — AT is an almost isomorphism and AS' [ﬁ] = A is perfectoid. More-
over, one can see that the tilt of A is given by R(ti/ P ), where tﬁ = ﬁ, which corresponds to the subset
{‘t‘ < ’w‘ 7é 0} cs X]Fq Span[[tl/poo]] = ]D)S,perf' 0]

ProposITION IL.1.2. For any perfectoid space T over IFy, giving an untilt 7% of T together with a map
T* — Vs of analytic adic spaces is equivalent to giving an untilt T* together with a map T* — Spa Op,
andamap 7' — S. In other words, there is a natural isomorphism

V¢ ~Spd O x S.

Proor. Changing notation, we need to see that for any perfectoid space 1" over OF, giving a map
T — Vs is equivalent to giving a map 7° — S. Without loss of generality, assume that 7' = Spa(A, A™)
is affinoid. Giving a map 7" — Y is equivalent to giving a map Wp,(R') — A" such that the image
of [@] in A is invertible. By the universal property of Wp, (R") in case R" is perfect, this is equivalent
to giving a map Rt — (A™)” such that the image of w in A is invertible. But this is precisely a map
T" = Spa(A°, A’t) — S = Spa(R, RY). O
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In particular, there is a natural map
Vs| = VS = |Spd O x S| — |S].

The following proposition ensures that we may glue Vs for general S, i.e. for any perfectoid space S
there is an analytic adic space Vg equipped with an isomorphism

V$ =2 Spd O x S

(and in particular a map |Vs| — |S|) such that for U = Spa(R, RT) C S an affinoid subset, the corre-
sponding pullback of Vs is given by V7.

PrOPOSITION IL.1.3. If S’ C S is an affinoid subset, then Jss — )s is an open immersion, with

V| —|Vs|
|5 ——15]
cartesian.

PROOF. Let Z C )s be the open subset corresponding to |Vs| x|g| [S’| C |Vs|. Then by functoriality
of the constructions, we get a natural map of adic spaces Vg — Z. To see that it is an isomorphism, we
can check after base change to Op_, (as the maps on structure sheaves are naturally split injective). The
base change of Vs and Z become perfectoid, and hence it suffices to see that one gets an isomorphism after
passing to diamonds, where it follows from Proposition[[L.1.2} O

Next, we recall the “sections of Vg — 5”.

PropPosITION II.1.4 ([SW20| Proposition 11.3.1]). Let S be a perfectoid space over . The following
objects are in natural bijection.

(i) Sections of yfg = S
(ii) Morphisms S — Spd Op;
(iii) Untilts S* over Of of S.
Moreover, given an untilt # over Of of S, there is a natural closed immersion of adic spaces
S s — Vs
that presents S* as a closed Cartier divisor in Vs.
PrOOF. The equivalence of (i), (ii) and (iii) is a direct consequence of Proposition Thus, let S*

be an untilt of S over Op. We may work locally, so assume S = Spa(R, R™) is affinoid. Then S* =
Spa(R*, R*) is affinoid perfectoid as well, and

R = Wo,(RT)/¢

for some nonzerodivisor ¢ € Wy, (R") that can be chosen to be of the form m — a[w] for some a €
Wo,, (R") and suitable topologically nilpotent @ € R (choose w € R™ a pseudouniformizing element
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such that w'|, and write 7 = @ (a) for some a). To see that S* defines a closed Cartier divisor in Vs,
that is to say the sequence

0 — Oy g@ys —1,0g — 0

is exact with i : S* < )g, we need to see that for any open affinoid U = Spa(A, A*) C Vs with affinoid
perfectoid pullback V = Spa(B, B*) C S¥, the sequence

0545 45B50

is exact. To see this, we are free to localize near S¥ = V(&) C Vs. In particular, replacing S by V?, we can
assume that V' = S¥. In that case, any neighborhood of S* = V(¢) in Vs contains {|¢| < |[w]|"} for some
n > 0, so we can assume that U is of this form.

Endow A with the spectral norm, where we normalize the norm on each completed residue field of Vg
by |[w]| = %. We claim that with this choice of norm, one has

§al = ¢"al

foralla € A. Inparticular, this implies that £ : A — Aisinjective, and has closed image (as the preimage of

any Cauchy sequence in the image is a Cauchy image). On the other hand, R* is the separated completion
of A/¢,s0o B = A/E.

To verify the claimed inequality, it is enough to see that the norm of |a| is equal to the supremum
norm over {|{| = |[w]|"}. In fact, it is enough to consider the points in the Shilov boundary, i.e. those
points Spa(C, O¢) — U that admit a specialization Spa(C, C") — )s whose image is not contained in U;
any such is necessarily contained in {|{| = |[w]|"}. This will in fact hold for all functions on U Xspa 0,
Spa O, for which the claim reduces to the tilt, which is an affinoid subset of Dg ,erf. By approximation, it
then reduces to the case of affinoid subsets of Dg, where it is well-known that the maximum is taken on the
Shilov boundary. (Note that this question immediately reduces to the case that S is a geometric point.) [

REMARK II.1.5. The preceding Cartier divisor satisfies the stronger property of being a “relative Cartier
divisor” in the sense that for all s € S its pullback to Vspa(s(s),x(s)+) is 2 Cartier divisor.

Now let us analyze the case S = Spa C for some complete algebraically closed nonarchimedean field
over [F.

ExaMPLE II.1.6. Assume that £/ = [F((t)) is of equal characteristic. Then ) = D¢ is an open unit disc
over C, with coordinate ¢. In particular, inside | Y|, we have the subset of classical points D}C|°1 C Vel
which can be identified as

Vol ={zeC||z| <1}
Note that these classical points are in bijection with maps O — C (over F,), i.e. with “untilts of C' over
Og".
With suitable modifications, the same picture exists also when E is of mixed characteristic.

DEFINITION/PROPOSITION IL.1.7. Any untilt C* of C over O defines a closed Cartier divisor Spa C* —
Vs, and in particular a closed point of |V¢|. This induces an injection from the set of such untilts to |YV¢/|.

The set of classical points | V¢ C |Vc| is defined to be the set of such points.
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PrROOF. We have seen that any untilt C* defines such a map Spa C* < )s. As it is a closed Cartier
divisor, the corresponding point is closed in | V|- One can recover C* as the completed residue field at the
point, together with the map Wo,(Oc) — Oc, which induces the isomorphism O¢ = (’)bcﬁ and thus
C = (C*), giving the untilt structure on C¥; this shows that the map is injective. O

Recall that V¢ is preperfectoid. In fact, if one picks a uniformizer m € E and lets E be the completion
of E(7/P™), then Y X0, Of., is perfectoid, and its tilt is given by

SpaC' x Spa (9?300 = SpaC X Span[[tl/poc]].
Thus, we get a map
Dl = [SpaC x SpaF,[t]| = |SpaC x SpaFy[t"/"™]| = |¥e X0, Op.| = 1¥cl.

PROPOSITION I1.1.8. Under this map, the classical points [Dc| = {z € C | |2| < 1} C |D¢| are
exactly the preimage of the classical points |Vc| C |Vc|.

Unraveling the definitions, one sees that the map
{zeCllzl <1} = Dc| = Yol

sendsany = € C with |z| < 1 to the closed point defined by the ideal (7 —[x]). In particular, the proposition
shows that any classical point of V¢ can be written in this form.

PRroOF. This is clear as classical points are defined in terms of maps of diamonds, which are compatible
with this tilting construction on topological spaces. O

The formation of classical points is also compatible with changing C in the following sense.

PrOPOSITION IL.1.9. Let C’|C be an extension of complete algebraically closed nonarchimedean fields
over Fy, inducing the map Yo — Y. A point & € |Y¢| is classical if and only if its preimage in [Vcr| is
a classical point. Moreover, if z € || is a rank-1-point that is not classical, then there is some C’|C' such
that the preimage of = contains a nonempty open subset of |V |.

In other words, one can recognize classical points as those points that actually stay points after any base
change; all other rank 1 points actually contain whole open subsets after some base change.

PROOF. It is clear that if z is classical, then its preimage is a classical point. Conversely, if z € |)¢|
is a rank 1 point, and S = Spd K (z), the point z is given by a morphism S — SpaC' x Spd Of. If the
preimage of x is a classical point, the induced morphism S — Spa C' becomes an isomorphism after pullback
via SpaC’ — SpaC. Since S is a v-sheaf ([Sch17a, Proposition 11.9]) and Spa C’ — Spa C' a v-cover, the
morphism S — Spa C'is an isomorphism, and thus z is a classical point.

Now assume that = is nonclassical rank-1-point; we want to find C’|C such that the preimage of x
contains an open subset of |Vcr|. By Proposition it is enough to prove the similar result for D¢,
using that [Dcv| — |Ver| is open[] Thus, assume 2 € [D¢| is a non-classical point. Let C’ be a completed
algebraic closure of the corresponding residue field. Then the preimage of x in |[D¢r| has a tautological

LAny quasicompact open of [D¢| is the base change of a quasicompact open of |Vo/ Xspa 0, Spa Op| for a finite extension
E’|E. Passing to the Galois hull of E’ and taking the orbit of the open subset under the Galois group, the openness of the image
follows from the map being a quotient map, as is any surjective quasicompact map of analytic adic spaces.
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section Z € D¢v(C”) which is a classical point, and the preimage of x contains a small disc B(Z,7) C D¢r
for some r > 0. Indeed, this follows from the description of the rank 1 points of D¢ as being either the
Gauss norm for some disc B(z,r9) C D¢ of radius 79 > 0, or the infimum of such over a decreasing

sequence of balls (but with radii not converging to zero). See Lemma O

LEmMA I1.1.10. Let z € De(C), p € (0,1], and =, € |D¢| be the Gauss norm with radius p centered
at z. The preimage of z, in D¢, )| contains the open disk with radius p centered at z, € D¢ (,,)(C(z)))-

PrOOF. We can suppose x = 0. The point z,, is given by the morphism C(T') — C(x,) that sends T’
tot. Lety € |[Dg(y,)|- This corresponds to a morphism C(z,)(T) — C(z,)(y). Let us note u € C(x,)(y)
the image of T via the preceding map. Suppose y lies in the open disk with radius p centered at x,,. This
means |u — t| < p = |t|. Let us remark that this implies that for any n > 1,

[u™ — " = Ju—t|u" T < Ju -t < "
For f =3 -, a,T" € C(T), one then has

|Zan(un —t")| < sup |an|p" = ]Zantn\.
n>1

n>1 n>1
We deduce that

3 anu = 13 ant"| = ()] O

n>1 n>1

There is in fact another characterization of the classical points in terms of maximal ideals.

PrOPOSITION IL.1.11. Let U = Spa(B, B™) C )¢ be an affinoid subset. Then for any maximal ideal
m C B, the quotient B/m is a nonarchimedean field, inducing an injection Spm(B) — |U|. This gives a
bijection between Spm(B) and |U| := |U| N |Vc|@ C Ve

Proor. First,if z € |U ]Cl, then it corresponds to a closed Cartier divisor Spa C' t < U C Ve, and thus
defines a maximal ideal of B, yielding an injection |U/|! < Spm(B). We need to see that this is a bijection.

Note that using the tilting map |D¢c| — ||, one sees that the preimage of U in |D¢| has only finitely
many connected components (any quasicompact open subset of |D¢| has finitely many connected compo-
nents); we can thus assume that U is connected. In that case, we claim that any nonzero element f € B
vanishes only at classical points of |U|. By Proposition [.1.9} it suffices to see that for any nonempty open
subset U' C U, the map O(U) — O(U’) is injective. In fact, if V(f) contains a nonclassical point, it
also contains a nonclassical rank 1 point as V(f) is generalizing, then after base changing to some C'|C,
V(f) contains an open subset U’, and this is impossible if O(U) < O(U’). For this it suffices to prove that
O(V) = O(V') where V isa connected component of U®¢, Op__,and V' the intersection of U'© 0, Op_,
with this connected component. Now forany g € O(V)\ {0}, V(g) # V, as perfectoid spaces are uniform
(and hence vanishing at all points implies vanishing). We thus have to prove that for any Zariski closed

subset Z C V, V' ¢ Z.

By Proposition [I1.0.2} it suffices to prove the similar property for open subsets V! C V' C D¢ pers,

with V' connected. But then V' = Wéerf and V' = Wi for W C W C D¢, and O(V) — O(V') is

topologically free (with basis #/, i € [0,1) N Z[p~!]) over the corresponding map O(W) — O(W') of
O

classical Tate algebras over C, for which injectivity is classical.
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The previous proposition implies that, once U is connected, the rings B are principal ideal domains

(cf. [Keda6l)).

COROLLARY I1.1.12. Let U = Spa(B,B") C V¢ be an affinoid subset. Then U has finitely many
connected components. Assuming that U is connected, the ring B is a principal ideal domain.

PROOF. We have already seen in the preceding proof that U has finitely many connected components.
Passing to one component, we can assume that U is connected. Each maximal ideal of B is principal, as it
comes from a closed Cartier divisor on U. Now take any nonzero f € B. We have seen (in the preceding
proof) that the vanishing locus of f is contained in ||, and it is also closed in |U]|. It is thus a spectral
space with no nontrivial specializations, and therefore a profinite set. We claim that it is in fact discrete.
For this, let x € V(f) be any point. We get a generator £, € B for the corresponding maximal ideal.
We claim that there is some n > 1 such that f = £]!g where g does not vanish at . Assume otherwise.
Note that the spectral norm on U is given by the supremum over finitely many points, the Shilov boundary
of U (cf. proof of Proposition [[1.1.4). We may normalize &, so that its norm at all of these finitely many
points is > 1. Then for any n, if f = &gy, one has ||g,|| < ||f||. But inside the open neighborhood
Uz = {|&] < |[@]|} of z, this implies that || f||, < |[@]|"||f]|| for all n, and thus || f||y, = 0asn — oo.
Thus, f vanishes on all of U, which is a contradiction.

By the above, we can write f = £'g where g does not vanish at x. But then g does not vanish in a
neighborhood of z, and therefore x € V(f) is an isolated point, and hence V' ( f) is profinite and discrete,

and thus finite. Enumerating these points x1,. .., Z;,, we can thus write f = 1 - - {7 g where g does
not vanish at x1, ..., x;, and thus vanishes nowhere, and hence is a unit. This finishes the proof. ]

REMARK I1.1.13. The main new ingredient compared to [Ked16]] or [FF18| Theorem 2.5.1] that allows
us to shorten the proof is Proposition i.e. the use of the fact (proved in [BS22]) that “Zariski closed
implies strongly Zariski closed” in the terminology of [Sch1g) Section I1.2].

Later (cf. Proposition [IV.7.3), we will also need the following lemma about non-classical points of
Yo = Yo Xspaop Spa E.

LEMMA I1.1.14. There is a point € |Y¢|, with completed residue field K (z), such that the induced

map Gal(K (x)| K (z)) — I is surjective, where I, is the inertia subgroup of the absolute Galois group of
E.

Note that a priori we have a map Gal(K (z)|K(z)) — Gal(E|E), but it is clear that its image is con-
tained in I, as K (2) contains E.

PROOF. In fact, we can be explicit: Looking at the surjection
Dol = |Yel

from the tilting construction, the image of any Gaufpoint (corresponding to a disc of radius 7, 0 < r < 1,
around the origin) will have the desired property. This follows from the observation that this locus of

GauB points lifts uniquely to |Yo XSpa ks Spa E'| for any finite extension E’|E. In fact, this cover admits

a similar surjection from a punctured open unit disc over C, and there is again one Gauf point for each
radius (i.e. the set of GauR points maps isomorphically to (0, 00) viarad : [Yo| — (0, 00)). O
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II.1.2. The Fargues-Fontaine curve. Now we can define the Fargues-Fontaine curve.

DEFINITION II.1.15. For any perfectoid space S over [, the relative Fargues—Fontaine curve is
Xg=Ys/o"

where
Ys = Vs Xspaoy Spa B = Vs \ V(7),
which for affinoid S = Spa(R, R™) with pseudouniformizer t is given by

Ys = SpaWo, (R") \ V(r[=]).

To see that this is well-formed, we note the following proposition, cf. [SW20, Lecture 12].

ProPOSITION I1.1.16. Theaction of ¢ on Y is free and totally discontinuous. In fact,if S = Spa(R, R™)
is affinoid and @ € R is a pseudouniformizer, one can define a map

rad : |Yg| — (0, 00)

taking any point « € Yg with rank-1-generalization Z to log |[ww]|(Z)|/ log |7 (Z)|. This factorizes through
the Berkovich space quotient of |Ys| and satisfies rad 0 ¢ = ¢ - rad.

For any interval I = [a, b] C (0, o) with rational ends (possibly with a = b), there is the open subset
Ysr = {ln’ < |[[@]| < |7|*} € rad™'(I) C Y5
which is in fact a rational open subset of Spa Wy, (R") and thus affinoid,
Ys . = Spa(Bs,1, B ),

and one can form Xg as the quotient of Yg [ ;) via the identification ¢ : Yg 3 1) & Yg 4,4 In particular,
Xg is qegs in case S is affinoid.

PRroOF. This follows directly from the definitions. O

In terms of the preceding radius function, the end 0 corresponds to the boundary divisor (), and oo to
the boundary divisor ([ww]).

For each s € S corresponding to a map Spa(K (s), K(s)*) — S, functoriality defines a morphism
XK (s),k(s)+ — Xs. We way think of X as the collection of curves (X (,) k(s)+)ses, the one defined
and studied in [[FF18], merged in a “family of curves”. Although Xg does not sit over S, the absolute
Frobenius ¢ x ¢ of S x Spd(FE) acts trivially on the topological space and one has

| Xs| 2 [XE] =[S x Spd(E)/¢” x id| = |S x Spd(E) /id x ¢%| — |S].

Thus the topological space | Xg| sits over |S|, and for all S the map | Xg| — |S| is qcgs. Here, we used the
following identification of the diamond.

PROPOSITION II.1.17. There is a natural isomorphism
V¢ = S x Spd(E),
descending to an isomorphism

X& = (S x Spd(E)) /¢ x id.

PROOF. This is immediate from Proposition [[.1.2] O
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Moreover, we have the following version of Proposition
ProPOSITION I1.1.18. The following objects are naturally in bijection.

(i) Sections of YS<> — S
(ii) Maps S — Spd(E);
(iii) Untilts S* over E of S.

Given such a datum, in particular an untilt S % over E of S, there is a natural closed immersion S¥ < Yg
presenting S* as a closed Cartier divisor in Ys. The composite map S* — Ys — Xg is still a closed
Cartier divisor, and depends only on the composite S — Spd(E) — Spd(E)/¢?. In this way, any map
S — Spd(E)/¢? defines a closed Cartier divisor D C Xg; this gives an injection of Spd(E) /¢ into the
space of closed Cartier divisors on Xg.

PRrOOF. This is immediate from Proposition O

DEFINITION II.1.19. A closed Cartier divisor of degree 1 on Xg is a closed Cartier divisor D C Xg
that arises from a map S — Spd(E)/¢”. Equivalently, it arises locally on .S from an untilt S* over E of S.

The quotient Spd(E)/¢? that occurs here is the quotient in the category of v-sheaves; but we note that
it agrees with the quotient computed in the category of sheaves on Perfr, for the topology of open covers.
In particular, “locally on S” in the preceding definition can be taken to mean v-locally, or on open subsets
of |S|.

In particular, we see that the moduli space Div' of degree 1 closed Cartier divisors is given by

Div! = Spd(E)/¢”.

Note that something strange is happening in the formalism here: Usually the curve itself would represent
the moduli space of degree 1 Cartier divisors!

REMARK I1.1.20. In [Far18, Définition 2.6] Fargues gives a definition of a Cartier divisor of degree 1
on Xg equivalent to the preceding one, similar to the definition of a relative Cartier divisor in classical
algebraic geometry.

In the next proposition and elsewhere, we write * for the v-sheaf taking any S € Perff, to a point x;
one could also write % = Spd([F,).

PROPOSITION I1.1.21. The map Div! — x is proper, representable in spatial diamonds, and cohomolog-
ically smooth.

Proor. First, Spd(E) — * is representable in locally spatial diamonds and cohomologically smooth
by [Schi7a) Proposition 24.5] (for E = Q,, which formally implies the case of E finite over Q,, and the
equal characteristic case is handled in the proof). As |Spd(E) x S| = |Yg| — |S|, we see that ” acts
totally discontinuously with quotient | Spd(E)/¢? x S| = | Xg| — |S| being qcgs in case |S| is qcgs; thus,
Spd(E)/@? — x is representable in spatial diamonds, in particular qcgs. Then being proper follows from
the valuative criterion [Schi7a) Proposition 18.3]. O
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In particular, the map
| Xs| = |Div! x S| — | S|
is open and closed. We can thus picture X as being “a proper and smooth family over S”.

Further motivation for Definition is given by the following.

DEFINITION/PROPOSITION I1.1.22. The classical points of X¢ are | X¢| = |Yo|9/¢? C |X¢| =
|Yc|/@F. They are in bijection with (Spd(E)/¢?)(C) = Div!(C), i.e. are given untilts of C over E up to
Frobenius, or by degree 1 closed Cartier divisors on X¢. For any affinoid open subset U = Spa(B, B") C
X, the maximal ideals of B are in bijection with |U|! = |U|N|X¢|<. Any such U has only finitely many
connected components, and if U is connected, then B is a Dedekind domainE]

Proor. This follows immediately from Proposition and Corollary if U liftsto Yo. In
general, Yo — X is locally split, so the result is true locally on Uj; and then it easily follows by gluing in
general. O

II.2. Vector bundles on the Fargues—Fontaine curve

Let us recall a few basic facts about the cohomology of vector bundles. Suppose S = Spa(R, R*) is
affinoid perfectoid. Then Yy is "Stein”, one has Y = U (9 o) Y(r,R+),1 Where
(i) as before I is a compact interval with rational ends
(ii) YR, r+),1 is affinoid sous-perfectoid

(iii) for Iy C Iy, the restriction morphism O(Y{g g+),1,) = O(Y(g,g+),1,) has dense image.

Let F be a vector bundle on Ys. Point (2) implies that H*(Ys y, .7-"|y(R 74 1) = 0 when i > 0. Point (3)
implies that R im, L(Ygrt)F)=0 (IGro61, 0.13.2.4]). We thus have H*(Ys, F) = 0 when i > 0.

Thus, if £ is a vector bundle on Xg, one has
-1
RI(Xg,E) = [H(Ys,Eyy) —— H(Ys,Ey,)]-

In particular, this vanishes in degree > 1.

Moreover, one has the following important (cohomological) descent result.

PrOPOSITION II.2.1. Let S be a perfectoid space over F, and £ a vector bundle on Xg. The functor
taking any T € Perfg to

RT(X1,E|x;)

is a v-sheaf of complexes. In fact, the functor taking any 7' € Perfs to H° (Y7, £|y,.) is a v-sheaf, whose
cohomology vanishes in case 7" is affinoid.

Moreover, sending S to the groupoid of vector bundles on X g defines a v-stack.

2The results on the Picard group of X ¢ proved below actually imply that B is a principal ideal domain - the map Pic(X¢) —
Pic(B) is surjective, the source is Z and generated by any classical point outside of U, so the map is zero and hence Pic(B) = 0.



II.2. VECTOR BUNDLES ON THE FARGUES-FONTAINE CURVE 57

ProoF. By the displayed formula for RI'(Xg, ) as Frobenius fixed points, it suffices to prove the
result about Y. We can assume that S = Spa(R, R") is affinoid, pick a pseudouniformizer w € R, and
one can further reduce to the similar claim for Y7 ; for any compact interval I with rational ends. Then
Elyy., is a retract of O@T’I, so we can reduce to the structure sheaf. We need to see that for any v-cover

T = Spa(R', R'"), the corresponding Cech complex
0— O(YSJ) - O(YTJ) — O(YTXsT,I) — ...

of E-Banach spaces is exact. This can be checked after taking a completed tensor product with Eo, =
E (71’1/ P)A, In that case, all algebras become perfectoid, and Y71 X Eoo — Y51 X Eo is a v-cover of
affinoid perfectoid spaces, so the result follows from [Sch17a, Theorem 8.7, Proposition 8.8].

Similarly, one proves v-descent for the groupoid of vector bundles, cf. [SW20, Lemma 17.1.8, Proposi-
tion 19.5.3]. O

If [, — &) is a complex of vector bundles on Xg sitting in homological degrees [0, 1], such that
HY(X7,&|x,) = 0forall T € Perfg, we let

BC([gl — 50]) T HO(XT, [51 — 50]|XT)

be the corresponding v-sheaf on Perfg. We refer to this as the Banach—-Colmez space associated with [£; —
&o]. We will usually apply this only when either of &; and & is zero.

Let us also recall the basic examples of vector bundles. Already here it is useful to fix an algebraically
closed field k|F,, e.g. k = F,. Let E = Wo, (k)[2], the complete unramified extension of E with residue
field £, equipped with its Frobenius automorphism o. Recall that, functorially in S € Perfy, there is a
natural exact ®-functor

Isoc; — Bun(Xg)
(D, ) — E(D, ¢)

from the category of isocrystals (of a finite-dimensional E-vector space D equipped with a o-linear auto-
morphism ¢ : D =5 D) to the category of vector bundles on X, defined via descending D ® ;. Oy, to Xg

via ¢ ® . We denote by Ox(n) the image of (E,n"0) (note the change of sign — the functor & re-
verses slopes); more generally, if (D), ¢, ) is the simple isocrystal of slope A € Q in the Dieudonné-Manin
classification, we let Ox (—X) = E(Dy, ¢a).

II.2.1. Lubin-Tate formal groups. The claim of this paper is that the Fargues—Fontaine curve enables
a geometrization of the local Langlands correspondence. Asa warm-up, let us recall the relation between
Ox,(1) and local class field theory in the form of Lubin-Tate theory.

Up to isomorphism, there is a unique 1-dimensional formal group G over O ;, With action by Og,
such that the two induced actions on Lie G coincide; this is “the” Lubin-Tate formal group G = Grt of
E. Fixing a uniformizer 7 € FE, we normalize this as follows. First, any Lubin-Tate formal group law
over O is the unique (up to unique isomorphism) lift of a 1-dimensional formal group over k£ whose Lie
algebra has the correct Op-action. Now, if E is p-adic then GJ, is classified by Dieudonné theory by a
finite projective Wo,, (k)-module M equipped with a o-linear isomorphism F' : M[2] = M|[1] such that

1
™
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M c F(M) cC %M Here, we take M = Wy, (k) with F' = —~0o. One can similarly define G in equal
characteristic, but actually we will explain a different way to pm down the choice just below; under our
normalization, G is already defined over Op.

After passing to the generic fibre, G is isomorphic to the additive group G,, compatibly with the
Op-action, and one can choose a coordinate on G = Spf O [X] so that explicitly, the logarithm map is
given by

logG:GE—>GG7E:X»—>X+%Xq+w—12Xq2+...+#Xq"+
Regarding the convergence of log,, we note that in fact it defines a map of rigid-analytic varieties (i.e. adic
spaces locally of finite type over F))
log, : G =Dy — G
from the open unit disc
G% = Spa Op[X] Xspaoy, Spa E
to the adic space corresponding to G,. From the formula, one sees that in small enough discs it defines
an isomorphism, and via rescaling by powers of 7 (which on the level of G3 defines finite étale covers of
degree g, while it is an isomorphism on G*J;,), one sees that one has an exact sequence

0— GH[r™] = GE — G5 — 0

on the big étale site of adic spaces over Spa F, where G3[1r>°] C G3 is the torsion subgroup. This is, in
fact, the generic fibre of G[7™°] = J,, G[7"| over Spa O, and each G[1"] = Spa A, is represented by
some finite O-algebra A,, of degree ¢". Inductively, G[7" ] C G[r"] giving a map A,, — A,,_1; after
inverting 7, this is split, and the other factor is a totally ramified extension £, |E. Then

G U Spa A, | |_| Spa E,.

We also need the “universal cover” of GG, defined as

G =1im G = SpfOR[ X /P™],
“

where the inverse limit is over the multiplication by 7 maps. The isomorphism with SpfOg[X/?™] is
evident modulo 7, but as this gives a perfect algebra, we see that in fact the isomorphism lifts uniquely to
Og. Explicitly, the coordinate X is given by

= lim Xq

n—oo

where X, is the coordinate on the n-th copy of G in the formula G = &iinXW G, in fact, X = X?Ln modulo
7. In particular, the logarithm map

logG : GE — GE — Ga,E
is given by the series
Z X = lim,, 00 m"log - (Xp) = limy,o0log e ([7"]a(Xn)).
1€EZ

3Asin [SW20| p. 99], we renormalize usual covariant Dieudonné theory for p-divisible groups by dividing F by p; and then
in the case of 7-divisible O g-modules as here, we base change along W (k) ®z, Or — Wo, (k).
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Note that for any 7-adically complete Of-algebra A, one has
G(A) = G(A/m) = Homo, (E/Op, G(A/m))[1].

Indeed, the first equality follows from O [ X /7™ ] being relatively perfect over O, and the second equal-
ity by noting that any element of G(A/7) is n"-torsion for some n. A different description based on
G = SpfOp[XY/P™] is
G(A) = lim A% = A*°° C A,
x%P

the subset of topologically nilpotent elements of the tilt.
This is related to the line bundle O x (1) as follows.
ProposITION IL.2.2. Let S = Spa(R, R*) be an affinoid perfectoid space over I, and let S* = Spa(R?, RFT)

be an untilt of S over E, giving rise to the closed immersion S* — Xg. Let Ox(1) be the line bundle on
X corresponding to the isocrystal (E, 7). Then the map

G(R'™") = R — H(Ys,Oyg) : X = Y (X7
€L

)
defines a natural isomorphism
G(R*™) = H(Xg,Ox,(1)) = H'(Ys, Oy, )?~".
Under this isomorphism, the map
H°(Xs,Ox4(1)) = H(S*, Og:) = R*
of evaluation at S* is given by the logarithm map
log. : G(R*™) = G(R*) — R

PROOF. The compatibility with the logarithm map is clear from the explicit formulas. Assume first

that F is of characteristic p. Then H%(Yg, Oy, ), where Y = D7 is a punctured open unit disc over S, can

be explicitly understood as certain power series >, r;7" with coefficients r; € R (subject to convergence
conditions as i — 400). Then

HO(XSa OXs(l)) = HO(Y57 OYS)('D:W

amounts to those series such that r; = 7“? 41 foralli € Z. Thus, all r; are determined by 7, which in turn
can be any topologically nilpotent element of R. This gives the desired isomorphism

H(Xs,0x4(1)) = R = G(R") = G(R*")
(as G = SpaOp[X /7] and R* = R).
If E is p-adic, then we argue as follows. First, as in the proof of Proposition|[I.2.5|below, one can rewrite
H°%(Xg,0x4(1)) as BET;OO} where
Br1,00) = O(Y1,00)), for Y1, = {|[@]| < 7| # 0} C SpaWo, (RT).
By the contracting property of Frobenius, one can also replace Bp 1 o With the crystalline period ring

Bl of R* /7 here, and then [SW13) Theorem A] gives the desired
Bf [ = Homo, (E/Op, G(R* /m))[1] = G(RF /) = G(RF).
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That this agrees with the explicit formula follows from [SW13, Lemma 3.5.1]. O

Recall also that the field E, obtained as the completion of the union of all E,, is perfectoid — in
fact, one has a closed immersion SpfOg_ — G = SpfOp[X'/P™], which induces an isomorphism
Spf 0%, = SpfF,[X'/?]. Over E,,, we have an isomorphism O = (T,G)(Og,,) C G(Og.,). By the
last proposition, if S lives over E.,, we get a nonzero section of Ox (1), vanishing at S* C X.

PRrOPOSITION I1.2.3. For any perfectoid space S with untilt S* over E,, the above construction defines
an exact sequence

0—= Oxg = Oxs(1) > Ogt = 0
of O x4-modules.

PRrOOF. The above constructions show that one has a map Ox, — Z(1) where Z C Ox is the ideal
sheaf of S¥, which by Proposition is a line bundle. To see that this map is an isomorphism, it suffices
to check on geometric points, so we can assume that S = Spa C for some complete algebraically closed

extension C of IF;. We have now fixed some nonzero global section of O (1), which by Proposition[II.2.2]

corresponds to some nonzero topologically nilpotent X € C; explicitly this section is given by
F= "X e H' (Yo, Oy, )"
1</

This is the base change of the function

> X € O((SpaOp[ X T\ V(X))

1€EZ
under the induced map

Yo — Spa Op[X'VP™ )\ V(X),
so it is enough to determine the vanishing locus of this function. But note that under the identification
G = Spf Op[X/P™], this is precisely the logarithm function
logg; : G \ {0} = Gilp;

thus, it is enough to determine the vanishing locus of the logarithm function. But this is precisely
|_| Spa B, C G233\ {0},

with a simple zero at each of these points. This gives exactly the claimed statement. O

CoroLLARY 11.2.4 ([Far18| Propos1t10n 2.12]). There is a well-defined map BC(O(1)) \ {0} — Div*
sending a nonzero section f € H%(Xg, Ox4(1)) to the closed Cartier divisor given by V (f). This descends

to an isomorphism

(BC(O(1))\ {0})/E* = Div'.

ProoF. Note that BC(O(1)) = Spd F,[X'/?™] by Propos1t10n and hence BC(O(1)) \ {0} =
SpaF,(X'/P™)) is representable by a perfectoid space. In fact, it is naturally isomorphic to Spd F
Spa E”_, and the previous proposition ensures that the map to Div' is well-defined and corresponds to the

projection Spd E, — Spd E — Spd E/p” = Div!. Here, the first map Spd E, — Spd E is a quotient
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under %, and the second map Spd E — Spd E/¢” then corresponds to the quotient by 7%, as ¢ = 7 on
BC(O(1)). O

In particular, if one works on Perfy, then Div' = Spd E/¢%, whose 7t is given by the absolute Galois
group of E. On the other hand, the preceding gives a canonical £ -torsor, giving a natural map from the
absolute Galois group of E to the profinite completion of £*. By comparison with Lubin-Tate theory,
this is the usual Artin reciprocity map, see [Far18] Section 2.3] for more details.

II.2.2. Absolute Banach-Colmez spaces. In this section, we analyze the Banach—Colmez spaces in the
case £ = £(D) for some isocrystal D = (D, ¢). We then sometimes write BC(D) and BC(D]1]) for the
corresponding functors on Perfy; or also BC(O(A)), BC(O(A)[1]) for A € Q when D = D_j. These are in
fact already defined for all S € Perfp,.

ProprosITION I1.2.5. Let A € Q.
(1)If A < 0, then H(Xg, Ox4(A)) = 0 forall S € Perfy,. Moreover, the projection from
BC(ON1]) : S — H'(Xs, Ox4(N)

to the point * is relatively representable in locally spatial diamonds, partially proper, and cohomologically
smooth.

(ii) For A = 0, the map
E — BC(O)

is an isomorphism of pro-étale sheaves, and the pro-étale sheafification of S — H'(Xg, Ox,) vanishes. In
particular, for all S one gets an isomorphism

RDpeoet(S, ) — RT(Xg, Ox,).
(iii) For A > 0, one has H* (X, Ox4 (X)) = 0 for all affinoid S € Perff_, and the projection from
BC(O(N)) : S = H"(Xs, Ox(N))

to the point * is relatively representable in locally spatial diamonds, partially proper, and cohomologically
smooth.

(iv)If0 < A < [E : Q) (resp. for all positive ) if F is of equal characteristic), there is an isomorphism
BC(O(N) & Spd k)™, ..., x}/P™]

where A = r/s with coprime integers r, s > 0.

PRrOOF. For all statements, we can reduce to the case A\ = n € Z by replacing E by its unramified
extension of degree s. Regarding the vanishing of H!(Xg, Ox.(n)) for n > 0and S = Spa(R, R")
affinoid, pick a pseudouniformizer & € R. In terms of the presentation of X as gluing Yg 1 , along
¢ Yg 11 = Yg [q,q) it suffices to see that

¢ —7": Brg = Bru

is surjective. Any element of Bp 1 1) can be written as the sum of an element of By, |o 1 [%] and an element
of [w| BR [1,00)- Here therings Br 9,1] = O(Ys[0,1)) and B |1 o] = O(Y[1,c]) correspond to the affinoid
subsets

Ysjo1) = {I7] < |[w]] # 0} C SpaWo, (R)



62 II. THE FARGUES-FONTAINE CURVE AND VECTOR BUNDLES

resp.
Yo 1,000 = {I[@]] < || # 0} C SpaWo,(RT).

(We warn the reader that Y5 0,1 and Y 1 o] are not contained in Y5 = Y (9 ); we hope this clash of

notation will not cause confusion.) If f € B R,[0,1) then the series

9= () + 72 (F) + 7T () +
converges in Bp (g 4| (with its evident definition) and thus in B R,[1,qpand f = ¢(g) — 7" g. The same then
applies to elements of By, | 1) [L]. On the other hand, if f € [@]B R,[1,00)s then the series

g=—m"f = 2o(f) =7 (f) —
converges in B ,and f = ¢(g) — 7"g.

In fact, the same arguments prove that the map

[BR,1.00) = Brj1,00]] = [Br1.q ~—— Br11]
is a quasi-isomorphism. Indeed, we have a short exact sequence
0 = Wou(RM)[2] = Bri,o ® Brjoglz] = Brji,g = 0
(obtained from sheafyness of Wo,,(R™) [%] when endowed with the 7-adic topology on Wp, (R*)), and

similarly
0= Wor(RY)[E] = Bri,00) ® Bryol£] = By, — 0.

Therefore, it suffices to see that the maps

Br0.q[%] S Bro[1]

and
Wo, (RH[L] L5 Wo, (RY)[2]

are isomorphisms. In both cases, this follows from convergence of ¢! + 72 4+ 712" ~3 + ... on these
algebras, giving an explicit inverse.

For part (iv), note that in equal characteristic one can describe O(Ys ;) = Bpg s, for S = Spa(R, R™)
affinoid, explicitly as power series )., riw’ with r; € R, satisfying some convergence conditions as i —
+00. Taking the part where ¢ = 7", we require ¢(r;) = r;yn, and we see that we can freely choose
T1,...,7n. The required convergence holds precisely when all r; are topologically nilpotent, giving the
isomorphism in that case. If E is p-adic, we can reduce to £ = Q,, (but now A rational, 0 < A < 1), taking
a pushforward of the sheaf along X5 p = X5, X@, £ — Xs,g,- In that case, the result follows from the

equality H(Xg, Ox4(N)) = B;; [Ip ] proved above, and [SW13] Theorem A, Proposition 3.1.3 (iii)].

In particular, for affinoid S we can choose a fibrewise nonzero map Ox, — Ox,(1), by taking a map
S — BC(O(1)) = Spd F,['/P™] sending z to a pseudouniformizer. By Proposition foranyn € Z,
we get an exact sequence
0— OXS(TL) — OXS(TL + 1) — Osu — 0.

Applying this for n > 0, we get inductively an exact sequence
0 — BC(O(n))|s = BC(O(n +1))|s = (Ag:)® = 0.
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Starting with the base case n = 1 already handled, this allows one to prove part (iii) by induction, using
[Sch17a| Proposition 23.13].
Now for part (i), we use the sequence for n = 0. In that case, for S = Spa(R, R"), we get an exact
sequence
0 — H°(Xg,0x,) — H(Xs,0x4(1)) = R* = H'(Xg,0x,) — 0
where the map in the middle can be identified with the logarithm map of the universal cover of the Lubin-
Tate formal group. This is pro-étale locally surjective, with kernel given by E, proving (ii).

Finally, for part (i), we first treat the case n = —1, where we get an exact sequence
0— E— (Ag)® = BC(O(-1)[1])]s — 0

showing in particular the vanishing of H%(Xg, Ox4(—1)) = 0. As E — (A}Sﬁ)O is a closed immersion,
the result follows from [Sch17a, Proposition 24.2]. Now for n < —1, the result follows by induction from
the sequence

0 — (AL,)¢ = BC(O(-n)[1])|s — BC(O(—n + 1)[1])|s — 0
and [Sch17a) Proposition 23.13]. ]

I1.2.3. The algebraic curve. We recall the following important ampleness result.

THEOREM 11.2.6 ([KL15| Proposition 6.2.4]). Let S = Spa(R, R") be an affinoid perfectoid space over
[F, and let £ be any vector bundle on Xg. Then there is an integer ng such that for all n > ny, the vector
bundle £(n) is globally generated, i.e. there is a surjective map

0%, — &(n)

for some m > 0, and moreover H'(Xg,&(n)) = 0.

PRrOOF. Pick a pseudouniformizer w € R, thus defining a radius function on Yg. Write Xg as the
quotient of Y [; 4 along the isomorphism ¢ : Yg 1) & Yg 4 Correspondingly, £ is given by some
finite projective Bp |1 ,-module M|; ;, with base changes M(; ;) and M, ,j to Bg |11 and B[4 4, and an
isomorphism ¢ps : Mg g = My 1, linear over ¢ : Bg 4 1 = BRry[1,1]-

For convenience, we first reduce to the case that M|, g is free (cf. [KL15} Corollary 1.5.3]). Indeed,

pick a surjection ¢ : Fjy 4 = B}’%[l’q] — M 4. We want to endow the source with a similar ¢-module

structure pp @ Flg g = F1 (with obvious notation), making ) equivariant. For this, we would like to

find a lift
PF
Flgq == = Iy

A

Mig,q) — M)

such that ¢ is an isomorphism. Let Nj; 4 = ker(v)), with base change NV, [4:q) IV[1,1]- Choosing a splitting
Fliq = Mp g & Np g, we see that we could find ¢ if there is an isomorphism ¢*Nj, 1 = N 1) of
Bp 1,1-modules. But in the Grothendieck group of finite projective By 1 j)-modules, both are given by
(BY i 1}] — [M]; 17]. But equality in the Grothendieck group is the same thing as stable isomorphism; thus,

after possibly adding a free module (i.e. increasing m), they are isomorphic, giving the claim.
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Thus, we can assume that M|, ;) & BELU d is a free Bp [1 4-module, and then

pu=AT
for some matrix A € GLy,(Bpg[1,1]) Actually, repeating the above argument starting with the presentation
of X as the quotient of Yg ;-1 4 Via identifying Vg ;-1 1) with Y |1 ;}, one can ensure that

Ace GLm(BR7[q—171]).
Twisting by Ox(n) amounts to replacing A by An™. Let us choose integers NV and N’ such that

e the matrix A has entries in 7™V W, (R+)<(@)i1>

s

e the matrix A~! has entries in 7~ V' W, (R'*')(ﬁ, [w]ﬂl/q ).

By twisting, we can replace N and N’ by N + n and N’ + n; we can thus arrange that ¢N > N, N > 0.
Fix some rational 7 such that 1 < r < gq. We will now show that there are m elements

Vlyen U € (Bﬁ[Lq})SDZA = H%(Xg,£)

that form a basis of By, ;. Repeating the above analysis for different strips (and different choices of

pseudouniformizers @ € R to get overlapping strips), we can then get global generation of £.

In fact, we will choose v; to be of the form [ww]Me; — v}, for some positive integer M chosen later, where

e; € B}’g[l d is the i-th basis vector and v/ is such that

10311 B, g < @]l = a7

Here, we endow all By ; with the spectral norm, normalizing the norms on all completed residue fields via

||[]|| = L. These v1,..., v, restrict to a basis of B, . since the base change matrix from the canonical
q R,[r.q] &

basis is given by an element of

[](1d + [@] My (B f1.q))) € GLan(Brrq))-

In order to find the v/, it suffices to prove that the map
# =4 BRpg = Br

is surjective (yielding H'(Xg, £) = 0), in the following quantitative way: If, for some positive integer M
chosen later,
w e T Wo, (RM(E)F)™ ¢ BR, 4,

iy
then there is some
m
veB R,[1,q]
such that

(I.2.1) (p — A)v =wand |[v||Bg, , < g M1
Indeed, we can then apply this to w; = (¢ — A)([@]Me;) (since N > 0 and thus A has entries in
Wop (R+)((@)i1>), getting some v] with w; = (¢ — A)(v}) and

M-
HU'ZHBR,[T,q] <q 17

as desired.
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Thus, take any
w e M Wo, (RT)((Zh)F)m.
We can write

w = w1+ wz where wy € [@]¥ 1AM N W, (R ()", ws € @)V n N Wo, (RH)(Z)™,

[w ™

Let
v=g@ (w)— A w, € BR 1,4 so that w = w — @) + Av = (A wy) + Ap~ (wy).
Note that (as N > 0)
gV (w1) € PN Wop (RF) (LY. (] (V- D/ag =N+t (RH) (g © eV, (75 (Lt m

K [w]l/q
and also (as gN > N’)

(A wg) € 7N [ VI M Wo, (RT)(EE)™ € 7M1 Wo,, (RF)(ZD)=)™

s

so that
I e M+l o @]\ £1ym
wf € aM W, (RO,
If one can thus prove the required bounds on v, this process will converge and prove the desired statement.
It remains to estimate v. On the one hand, its norm is clearly bounded in terms of the norm of w (as both
wy and wo are, and ! and A~! are bounded operators), and thus, since when one iterates w goes to zero,
v goes to zero, and the process converges by summing to obtain some v such that (¢ — A)v = w. But

we need an improved estimate over By |,. ;) to obtain (I1.2.1). Note that the norm of ¢ ~!(w1) is bounded
above by the norm of [w](N~V/4xM=N+1 \hich in BR jrq is given by g WV-D/a=rM+rN=r This is at

most g~ ~1 once M is large enough. On the other hand, wy € ™ W, (R+)<[7r£]>m and so the norm of

A~ 1wy is bounded by the norm of g N M , which in B R,[r,q] 1S given by N =M, Again, this is at most
g M~1 once M is large enough. Thus, taking M large enough (depending only on N, N’ and r > 1), the
process above converges, giving the desired result. O

We have the following general GAGA theorem. Its proof is an axiomatization of [KL15| Theorem
6.3.9].

ProPOSITION I1.2.7 (GAGA). Let (X, Ox) bealocally ringed spectral space equipped with a line bundle
Ox (1) such that for any vector bundle £ on X, there is some ng such that for all n > ng, the bundle £(n)
is globally generated. Moreover, assume that for i > 0, the cohomology group H*(X,£(n)) = 0 vanishes
for all sufficiently large n.

Let P = @, >, H(X,0x(n)) be the graded ring and X?8 = Proj(P). There is a natural map
(X,0x) — X8 of locally ringed topological spaces, and pullback along this map induces an equiva-

lence of categories between vector bundles on X8 and vector bundles on (X, Ox). Moreover, for any
vector bundle £48 on X8 with pullback £ to X, the map

HY (X8 £48) - H'(X,E)

is an isomorphism for all 7 > 0.
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Recall that for any graded ring P = €D, ., P, one can define a separated scheme Proj(P) by gluing
Spec P[f~1]o forall f € P, n > 0, where P[f~ ]y = 11_n>12 f'Py, is the degree 0 part of P[f~!]. In
our situation, if n is large enough so that O x (n) is globally generated, then it is enough to consider only
[ € P, for this given n, and in fact only a finite set of them (as X is quasicompact); in particular, Proj(P)
is quasicompact. Moreover, one sees that there is a tautological line bundle Op,q;(p)(n2) for all sufficiently
large n, compatible with tensor products; thus, there is also a tautological line bundle Op,4;p) (1), which is
an ample line bundle on Proj(P). The pullback of Op,4j(p)(1) is then given by Ox (1).

PrOOF. The construction of the map f : (X,Ox) — X8 is formal (and does not rely on any as-
sumptions): if g € P,, then on the non-vanishing locus U = D(g) C X, there is an isomorphism
gu : Ou = Opy(n). Now, for z = g% € Plg Yo, gﬁ]k oa € O(U), and this defines a morphism of
rings P[g~!]o — O(U). One deduces a morphism of locally ringed spaces U — D7 (g), and those glue
when g varies to a morphism of locally ringed spaces (X, Ox) — X?8.

We consider the functor taking any vector bundle £ on X to the quasicoherent O ya-module & as-
sociated to the graded P-module P, -, H°(X,£(n)). This functor is exact as H' (X, E(n)) = 0 for all
sufficiently large n, and it commutes with twisting by O(1). We claim that it takes values in vector bun-
dles on X?8, To see this, take a surjection O% — &(n) with kernel F, again a vector bundle. The map
O — &(n) splits after twisting, i.e. for any f € P, with n’ large enough, thereisamap £(n—n') — O
such that £(n — n') — OF — £(n) is multiplication by f. Indeed, the obstruction to such a splitting is a
classin H'(X,#om (&, F)(n')) which vanishes for n’ large enough. This implies that € is a vector bundle
on Spec P[f 1]y for any such f, and these cover X2,

There is a natural map f*€ — &, and the preceding arguments show that this is an isomorphism (on
the preimage of any Spec P[f ']y, and thus globally). It now remains to show that if £%8 is any vector
bundle on X*?!8, the map

Hi(X%e &) - Hi(X,E)

is an isomorphism for all i > 0. (Indeed, for i = 0 this implies, by passing to internal Hom’s, that £8 +— £
is fully faithful, and we have just seen that this functor is essentially surjective.) By ampleness of Oy (1),
there is some surjection O ya (—n)™ — (£8)V, with kernel a vector bundle F. Dualizing, we get an injec-
tion £28 — Oy (n)™ with cokernel a vector bundle. This already gives injectivity on H° by reduction to
O yag () where it is clear. Applying this injectivity also for F, we then get bijectivity on H°. This already
implies that we get an equivalence of categories (exact in both directions). Finally, picking f1, ..., fm € Py
so that the Spec P| f;l]o cover X?!8, we can look at the corresponding Cech complex. Each term is a filtered
colimit of global sections of vector bundles £(n) along multiplication by products of powers of f;’s. This
reduces the assertion to the case of H” and the vanishing of H'(X, £(n)) for n large enough. O

REMARK I1.2.8. One can check that X?8 is up to canonical isomorphism independent of the choice of
a line bundle Ox (1) satisfying the preceding properties.

In particular, for any affinoid perfectoid space S over I, we can define the algebraic curve

X&® = Proj P H(Xs, Ox,(n)).
n>0
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There is a well-defined map Xg — X glg of locally ringed spectral spaces, pullback along which defines an
equivalence of categories of vector bundles, and is compatible with cohomology.

Notably, this connects the present discussion to the original definition of the Fargues—Fontaine curve
as given in [FF18]], where the case S = Spa(F, Op) is considered, for a perfectoid field F' of characteristic
p. We will restrict ourselves, as above, to the case that /' = (' is algebraically closed.

PRrOPOSITION II.2.9. Let C be a complete algebraically closed nonarchimedean field over ;. Then
X, gg is a connected regular noetherian scheme of Krull dimension 1, and the map | X¢| — | X, 2g| induces
a bijection between | X|?' and the closed points of | X é}g|. Moreover, for any classical point x € | X¢/|, the

complement X 2g \ {x} is the spectrum of a principal ideal domain.

PROOF. Let © € |X¢| be any classical point, corresponding to some untilt C* over E of C. Using
Lubin-Tate formal groups, we see that there is an exact sequence

0— Ox, = Ox,(1) = Oct = 0

on X¢. The corresponding section f € HY(X¢,Ox,. (1)) defines its vanishing locus in X %€ which is
then also given by Spec C*. Indeed, this vanishing locus is affine as it is Zariski closed in the affine scheme
D*(g)forany g € H%(X¢, Ox.(1)) that does not vanish at z;; and one can compute the global sections via
Proposition In particular, = defines a closed point of | X gg|. Now we want to show that P[f~!]pisa
principal ideal domain. Thus, take any nonzero g € H°(X¢, Ox,(n)). This has finitely many zeroes on
X, all at classical points 1, . . . , Z,,. For each z;, we have a section f,,, € H*(X¢, Ox, (1)) as before, and
then g = f'* -+ fmh for some n; > 1,and some h € HY(X¢, Ox,(n')) that is everywhere nonzero. In
particular, h defines an isomorphism Ox,, — Ox, (n’), whence n’ = 0, and h € E*. This decomposition
implies easily that P[f~!], is indeed a principal ideal domain, and it shows that all maximal ideals arise
from classical points of | X |, finishing the proof. O

II.2.4. Classification of vector bundles. At this point, we can recall the classification of vector bundles
over X¢; so here we take S = Spa C for a complete algebraically closed nonarchimedean field C over F,.
First, one classifies line bundles.

PRrOPOSITION II.2.10. The map Z — Pic(X¢), n — Ox,(n), is an isomorphism.

PROOF. By Proposition any line bundle becomes trivial after removing one closed point x €

X, 2g. As the local rings of X 2g are discrete valuation rings, this implies that any line bundle is of the form
Ox,, (n[z]) for some n € Z. But Ox,, ([z]) = Ox,, (1) by Proposition[II.2.2} so the result follows. O

In particular, one can define the degree of any vector bundle £ on X¢ via
deg(€) = deg(det(€)) € Z

where det(&) is the determinant line bundle, and deg : Pic(X¢) = Z is the isomorphism from the propo-
sition. Of course, one can also define the rank rk(€) of any vector bundle, and thus for any nonzero vector
bundle its slope

_ deg(é)

e Q.
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It is easy to see that this satisfies the Harder-Narasimhan axiomatics [FF18} 5.5.1] (for example, rank
and degree are additive in short exact sequences). In particular, one can define semistable vector bundles as
those vector bundles £ such that for all proper nonzero F C &, one has p(F) < u(€). One says that € is
stable if in fact p(F) < p(€) for all such F.

ExampLE II.2.11. Forany A € Q, the bundle Ox,, () is stable of slope A. Indeed, assume that 0 # F C
Ox_ () is a proper nonzero subbundle, and let r = rk(F), s = deg(F). Passing to r-th wedge powers, we
get an injection

det(F) = Ox,(s) = Ox,(rA)™,
using that \" Ox, ()) is a direct sum of copies of Ox (rA). This implies that s < r\. Moreover, if we

have equality, then 7 is at least the denominator of \, which is the rank of Ox (), i.e. F has the same rank
as Ox,,(A). Thus, Ox, () is stable.

PROPOSITION I1.2.12. Any vector bundle £ on X admits a unique exhaustive separating Q-indexed
filtration by saturated subbundles £ 2A < &, called the Harder—Narasimhan filtration, such that

£ =22 /E7A, where £7 = | ] €2
A>A

is semistable of slope A. The formation of the Harder—Narasimhan filtration is functorial in £. O

Asa preparation for the next theorem, we note that the Harder—Narasimhan filtration is also compatible

with change of C.

PRrOPOSITION I1.2.13. Let £ be a vector bundle on X, and let C’|C be an extension of complete al-
gebraically closed nonarchimedean fields, with pullback £ of £ to X¢v. Then (/)2 is the pullback of
E2A.

Similarly, if E'|E is a finite separable extension of degree 7, and £’ is the pullback of £ along X¢ g =
Xcp®p E' = Xo g = Xc, then ()2 is the pullback of E2M/T.

PrOOF. Consider the case of C’|C. By uniqueness of the Harder-Narasimhan filtration, it suffices to
see that pullbacks of semistable vector bundles remain semistable. Thus, assume that £ is semistable, and
assume by way of contradiction that £’ is not semistable. By induction on the rank, we can assume that
the formation of the Harder—Narasimhan filtration of £’ is compatible with any base change. Consider the
first nontrivial piece of the Harder—Narasimhan filtration 0 # F C &’. This is a vector bundle on X
with y¢(F) > p(€’). We claim that F descends to X¢. By Proposition [I.2.1} it suffices to see that the two
pullbacks of F to X agree. This is true as there are no nonzero maps from F to £'/F after base
change to Xy for any perfectoid C’-algebra R: If there were such a nonzero map, there would also be a
nonzero map for some choice of R = C” a complete algebraically closed nonarchimedean field. But then
F is still semistable and all pieces of the Harder—Narasimhan filtration of £’/ F are of smaller slope, so such
maps do not exist.

For an extension E'|E, the similar arguments work, using Galois descent instead (noting that one may
assume that E’|F is Galois by passing to Galois hulls). Note that the pullback of Oxc p(1)is Ox, . (1),
causing the mismatch in slopes. O

The main theorem on the classification of vector bundles is the following. Our proof follows the argu-
ments of Hartl-Pink, [HPo4]], to reduce to Lemma below. However, we give a new and direct proof



II.2. VECTOR BUNDLES ON THE FARGUES-FONTAINE CURVE 69

of this key lemma, which avoids any hard computations by using the geometry of diamonds and v-descent.
We thus get a new proof of the classification theorem [

THEOREM II.2.14. Any vector bundle £ on X is isomorphic to a direct sum of vector bundles of the
form Ox, (\) with A € Q. If £ is semistable of slope ), then & = Ox . (\)" for some m > 0.

PrOOF. We argue by induction on the rank n of £, so assume the theorem in rank < n — 1 (and for all
choices of E); the case n = 1 has been handled already. By the vanishing of H(X¢, Ox.()\)) = 0 for A >
0, the theorem follows for £ if £ is not semistable. Thus assume & is semistable of slope A\ = > with s € Z
and 7 > 0 coprime. It suffices to find a nonzero map Ox, (A) — &: Indeed, by stability of Ox, ()), the map
is necessarily injective (the category of semi-stable vector bundles of slope \ is abelian with simple objects
the stable vector bundles of slope ), and the quotient will then again be semistable of slope ), and thus by
induction isomorphic to Ox, (A\)™~!. One finishes by observing that Extﬁ(c (Ox(N),O0x,(A)) = 0by
Proposition (ii).

Thus, it suffices to find a nonzero map Ox (A\) — £. Let E'| E be the unramified extension of degree r,
and consider the covering f : X¢ g = Xcp ®p E' — X, g = Xc. Then Ox(\) = f*OXC’E/ (s),and
so it suffices to find a nonzero map Ox, ,(s) — f*E. In other words, up to changing F, we can assume
that A € Z. Then by twisting, we can assume A = 0.

Next, we observe that we are free to replace C' by an extension. Indeed, consider the v-sheaf send-
ing S € Perfc to the isomorphisms € = O% . This is a v-quasitorsor under GL,(£) (using Proposi-
tion (ii)). If there is some extension of C' where we can find a nonzero section of £ (and thus also
trivialize £), then it is a v-torsor under GL,,(E). By v-descent of GL,,(F)-torsors, cf. [Sch17a] Lemma

10.13], it is then representable by a space pro-étale over Spa C, and thus admits a section.

Let d > 0 be minimal such that there is an injection Ox, (—d) — &, possibly after base enlarging C;
by Theorem|[II.2.6]some such d exists. We want to see that d = 0, so assume d > 0 by way of contradiction.
By minimality of d, the quotient 7 = £/Ox_ (—d) is a vector bundle, and by induction the classification
theorem holds true for F.

If d > 2, then we can by induction find an injection Ox,, (—d + 2) — F; taking the pullback defines
an extension
OXC(—d) — g — OXC<_d + 2).
so by twisting
Ox.(—1) = G(d—-1) = Ox,(1).
By the key lemma, Lemma [.2.15| below, we would, possibly after enlarging C, get an injection Ox, —
G(d — 1), and hence an injection Ox,(—d + 1) — G — &, contradicting our choice of d.

Thus, we may assume that d = 1. If F is not semistable, then it admits a subbundle 7' C F of degree
> 1 and rank < n — 2. Applying the classification theorem to the pullback

0— Ox.(-1) =& —-F =0

4First, it has been proven for E of equal characteristic in [HPo4]] and for p-adic E by Kedlaya in [Kedo4]}; both of these
proofs used heavy computations to prove Demma A more elegant proof was given by Fargues—Fontaine [FF18] (for all )
by reducing to the description of the Lubin-Tate and Drinfeld moduli spaces of 7-divisible O g-modules, and their Grothendieck-
Messing period morphisms (which arguably also involve some nontrivial computations). Finally, for p-adic E a proof is implicit
in Colmez’ work [Colo2] on Banach-Colmez spaces.
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of F', which is of slope > 0, we then get that £’ C & has a global section.

It remains the case that d = 1 and that J is semistable, thus necessarily isomorphic to Ox,, (ﬁ) This

is the content of the next lemma. O
LEMMA I1.2.15. Let
0= Ox.(—1) = € = Ox,(2) =0

be an extension of vector bundles on X, for some 1 > 1. Then there is some extension C’|C of complete
algebraically closed nonarchimedean fields such that H%(X¢v,&|x,) # 0.

PROOF. Assume the contrary. Passing to Banach—Colmez spaces, we find an injection of v-sheaves
I+ BC(Oxc (7)) = BC(Ox (—1)[1]).

The image cannot be contained in the classical points, i.e. the C-points (as these form a totally disconnected
subset while the source is connected and not reduced to a point), so the image contains some non-classical
point. After base change to some C’|C, we thus find that the image contains some nonempty open subset
of BC(Ox,(—1)[1]), as follows from the presentation

BC(Oxo (-1)[1]) = (Agy)?/E

and the similar behaviour of non-classical points of Aéﬁ, cf. proof of Proposition [[I.1.11} Translating this
nonempty open subset to the origin, we find that the image of f contains an open neighborhood of 0, and
then by rescaling by the contracting action of £, we find that the map f must be surjective, and thus an
isomorphism.

In particular, this would mean that BC(Ox, (—1)[1]) is a perfectoid space. This is patently absurd if
FE is p-adic, as then the given presentation shows that (Alcﬁ ) is pro-étale over a perfectoid space and thus
itself a perfectoid space, but Alcu is clearly not a perfectoid space

In general, we can argue as follows. There is a nonzero map
BC(Oxc (7)) = (Ag)®

as H°(Ox,. (%)) maps nontrivially to its fibre at the chosen untilt Spa C* < X¢. If f is an isomorphism,
we would then get a nonzero map
~ f71
(A)®/E 2= BC(Ox o (—1)[1]) = BC(Oxc () = (Ac) .
On the other hand, one can classify all E-linear maps (Alc,ﬁ)o — (Alcu)o. The latter are the same as
maps Alcﬁ — Aéﬁ if E is p-adic (by [SW20, Proposition 10.2.3]), respectively maps AIC,perf — AlC,perf if
E is of equal characteristic. Thus, they are given by some convergent power series g(X) that is additive,

ie. g(X +Y) = g(X) + g(Y), and satisfies g(aX) = ag(X) forall a € E. (If E is of characteristic p,

then g may a priori involve fractional powers X!/ P') The equation g(7X) = wg(X) alone in fact shows
that only the linear coefficient of g may be nonzero, so g(X) = cX for some ¢ € C¥, and thus g is either
an isomorphism or zero. But our given map is nonzero with nontrivial kernel, giving a contradiction. [

5We believe that also when F is of equal characteristic, BC(Ox,, (—1)[1]) is not a perfectoid space, but we were not able to
settle this easily.
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I1.2.5. Families of vector bundles. Using the ampleness of O(1), we can now prove the following result
on relative Banach—Colmez spaces.

ProPOSITION I1.2.16. Let S be a perfectoid space over ;. Let £ be a vector bundle on Xg. Then the
Banach-Colmez space

BC(g) T — HO(XT,(€|XT)

is a locally spatial diamond, partially proper over S. Moreover, the projectivized Banach—Colmez space

(BC(&) \{0})/E*

is a locally spatial diamond, proper over S.

PROOF. Using Theorem choose a presentation Ox 4 (—n/)™ — Ox4(—n)™ — Y withn,n’ >
0. Dualizing, we get an exact sequence

/

0= & = Oxy(n)™ = Ox, (W)™

This implies that BC(E) C BC(Ox/s(n))™ is a closed subspace, so the first part follows from Proposi-
tion (iii). For the second part, we may assume that S is qcgs. It is also enough to prove the similar
result for (BC(E) \ {0})/n7 as the O -action is free (so one can apply the last part of [Sch17a| Proposition
11.24]). This follows from the following general lemma about contracting group actions on locally spectral
spaces, noting that checking the conditions formally reduces to the case of BC(Ox(n)"™) and from there
to Agu by evaluating sections at some collection of untilts. O

LEmMMA I1.2.17. Let X be a taut locally spectral space such that for any x € X, the set X, C X of

generalizations of 7 is a totally ordered chain under specialization. Let v : X = X be an automorphism
of X such that the subset Xy C X of fixed points is a spectral space. Moreover, assume that

(i) for all z € X, the sequence 7" (z) for n — oo converges towards X)), i.e. for all open neighborhoods U
of Xy, one has v"(z) € U for all sufficiently positive n;

(ii)for all z € X \ X)), the sequence 7"(x) for n — —oo diverges, i.e. for all quasicompact open subspaces
U C X, one hasy"(z) ¢ U for all sufficiently negative n.

Then X C X is a closed subspace, the action of v on X \ X is free and totally discontinuous (i.e. the
action map (X \ Xg) x Z — (X \ Xo) x (X \ Xo) is a closed immersion), and the quotient (X \ Xo)/+*
is a spectral space.

REMARK I1.2.18. For applications of this lemma, we recall the following facts:

(i) If X is any locally spatial diamond, then | X| is a locally spectral space such that all for all z € | X/, the
set of generalizations of x in |X| is a totally ordered chain under specialization. Indeed, this follows from
[Sch17a, Proposition 11.19] and the similar property for analytic adic spaces.

(i) If X is in addition partially proper over a spatial diamond, then |X]| is taut by [Schi7a, Proposition
18.10].

This means that the first sentence of the lemma is practically always satisfied.

PROOF. Let U C X be some quasicompact open neighborhood of Xj. First, we claim that one can
arrange that v(U) C U. Indeed, one has

Uc~y Y U)uy2(U)U...uy™™U)U...,
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asforany x € U C X, also v"(z) € U for all sufficiently large n by assumption, and so z € v~ "(U) for
some n > 0. By quasicompacity of U, this implies that U C 4~ *(U) U ... U~""(U) for some n, and then
U'=UUy Y U)U...Uuy " (U) is a quasicompact open neighborhood of X, with v(U’) C U’.

Now fix a quasicompact open neighborhood U of X with v(U) C U. We claim that
Xo= [ ")

n>0
Indeed, if z € X \ X, then by assumption there is some positive n such that 7" (z) ¢ U, giving the result.

In particular, for any other quasicompact open neighborhood V' of X, there is some n such that
Y™"(U) C V. Indeed, the sequence of spaces v"(U) \ V is a decreasing sequence of spectral spaces with
empty inverse limit, and so one of the terms is empty.

Consider the closure U C X of U in X. As X is taut, this is still quasicompact. Repeating the above
argument, we see that for some n > 0, one has

Uc~y Y (Du...uy™U) =+y"™U).
This implies that the sequences {7"(U)},,>0 and {7"*(U) },,>0 are cofinal. In particular,

Xo= ") = 7@

n>0 n>0
is a closed subset of X.

Next, we check that any point z € X \ X has an open neighborhood V' such that {7"(V')},,cz are
pairwise disjoint; for this it suffices to arrange that V N ~*(V') = () for all i > 0. For this, note that if n is
chosen such that v*(U) C U, then up to rescaling by a power of 7, we can assume that x € U \ 7" *1(U).
Let V C U\7""1(U) be a quasicompact open neighborhood of z. Then (V)NV = (Passoonasi > n+1.
For the finitely many ¢ = 1, ..., n, we can use a quasicompacity argument, and reduce to proving that if X,
is the localization of X at z (i.e., the set of all generalizations of z), then X, Nv*(X,) = 0 fori = 1,...,n.
By our assumption on X, the space X, has a unique generic point n € X, (X, is pro-constructible in a
spectral space thus spectral and by our hypothesis X is irreducible), which must then also be the unique
generic point of /(X)) if X, N~*(X,) # 0. Thus, if X, N~y (X,) # 0, then 7% (n) = n,son € Xo. But
Xy is closed, so that x € X, which is a contradiction.

In particular, the action of 7 on X \ Xy is free and totally discontinuous, and the quotient X = (X \
Xo)/~% is a locally spectral space which is locally isomorphic to X \ Xj. A basis of open neighborhoods
of X is given by the image of quasicompact open subsets V' C X \ X for which {7"(V)},¢z are pairwise
disjoint; it follows that these are quasicompact open subsets of X. Also, the intersection of two such subsets
is of the same form, so the quotient X is quasiseparated. Finally, note that U \ v(U) — X is a bijective
continuous map, and the source is a spectral space (as 7(U) C U is a quasicompact open subspace of the

spectral space U), and in particular quasicompact, and so X is quasicompact. O

The result on properness of the projectivized Banach—Colmez space enables us to give quick proofs of
the main results of [KL15] (including an extension to the case of general E, in particular of equal charac-
teristic).

THEOREM IL.2.19 ([KL15) Theorem 7.4.5, Theorem 7.4.9, Theorem 7.3.7, Proposition 7.3.6]). Let S be
a perfectoid space over [F, and let £ be a vector bundle over Xg of constant rank n.
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(i) The function taking a geometric point SpaC' — S of S to the Harder-Narasimhan polygon of £|x,, is
upper semicontinuous.

(ii) Assume that the Harder—Narasimhan polygon of € is constant. Then there exists a global (separated
exhaustive decreasing) Harder-Narasimhan filtration

E2A €

specializing to the Harder—Narasimhan filtration at each point. Moreover, after replacing S by a pro-étale
cover, the Harder—Narasimhan filtration can be split, and there are isomorphisms

M= Oxy ()™

for some integers ny > 0.

PROOF. Note that the Harder—Narasimhan polygon can be described as the convex hull of the points
(i,d;) fori = 0,...,n, where d; is the maximal integer such that H%(X¢, (A\°€)(—d;)|x.) # 0. To prove
part (i), it therefore suffices to show that for any vector bundle F on X, the locus of all geometric points
SpaC' — S for which H%(X¢, F|x.) # 0 is closed in S. But note that this is precisely the image of

(BC(F)\{0})/EX — 5.

As this map is proper by Proposition its image is closed. To see that the endpoint of the Harder-
Narasimhan polygon is locally constant, apply the preceding also to the dual of the determinant of £.

For part (ii), it is enough to prove that v-locally on S, there exists an isomorphism & = @, Ox(\)"™.
Indeed, the desired global Harder—Narasimhan filtration will then exist v-locally, and it necessarily de-

scends. The trivialization of each £} amounts to a torsor under some locally profinite group, and can thus
be done after a pro-étale cover by [Schi7a, Lemma 10.13]. Then the ability to split the filtration follows

from Proposition (iii).

We argue by induction on the rank of £. Let A be the maximal slope of £. We claim that v-locally on
S, there is a map Ox4(\) — & that is nonzero in each fibre. Indeed, finding such a map is equivalent to
finding a fibrewise nonzero map Ox, — F = om(Ox4(A),£). But then
BC(F)\ {0} — (BC(F)\{0})/EX — S

isa v-cover over which such a map exists: The first map is an £ -torsor and thus a v-cover, while the second
map is proper and surjective on geometric points, thus surjective by [Schi7a] Lemma 12.11]. The dual map
EY — Ox4(—N) is surjective as can be checked over geometric points (using that Ox . (— ) is stable), thus
the cokernel of Ox(\) — £ is a vector bundle £, that again has constant Harder—Narasimhan polygon.
By induction, one can find an isomorphism

By Proposition (i)-(ii), the extension

0= Ox () = €= P Ox,(N)™ =0
N <A
can be split after a further pro-étale cover, finishing the proof. O

Let us explicitly note the following corollary.
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CoRroOLLARY 11.2.20 ([KL15, Theorem 8.5.12]). Let S be a perfectoid space. The category of pro-étale E-
local systems L is equivalent to the category of vector bundles on X g whose Harder—Narasimhan polygon
is constant 0, via L. — L ® g Oxg.

PrOOF. First, the functor is fully faithful, as we can see by pro-étale descent (to assume L is trivial) and
Proposition Now essential surjectivity follows from Theorem O

II.3. Further results on Banach—Colmez spaces

We include some further results on Banach-Colmez spaces.

II.3.1. Cohomology of families of vector bundles. First, we generalize the vanishing results of Propo-
sition to families of vector bundles. A key tool is given by the following result, which is a small
strengthening of [KL15 Lemma 8.8.13].

PrOPOSITION II.3.1. Let S be a perfectoid space over F, and let £ be a vector bundle on Xg such that
all Harder-Narasimhan slopes of £ at all geometric points are nonnegative. Then locally (in the analytic
topology) on S, there is an exact sequence

0= Oxs(-1) 5 F—=E—0

where F is semistable of degree 0 at all geometric points.

PROOF. We may assume that the degree of £ is constant, given by some d > 0. We can assume
S = Spa(R, R") is affinoid perfectoid and pick d untilts Sf = Spa(R?7 R?Jr) over E,i = 1,...,d, such
that S%, e Sfl C Xg are pairwise disjoint; more precisely, choose d maps S — BC(O(1)) \ {0}. (The dis-
jointness can be ensured by defining these maps through suitable fractional powers of a pseudouniformizer
so that each Sf has a fixed image under the radius map Y5 — (0, 00).) Let W; be the fibre of £ over R?,
which is a finite projective R?—module. For any rank 1 quotients W; — R?, we can pull back the sequence

d
0— Oxgs(-1) = 0%, > @0y — 0,
=1

obtained from Proposition along

d d d
5%@5@0% OS? :@Wi ®R§ 053 %@Osg

i=1 i=1 i=1
to get an extension
0— Oxs(—1)4 =& =& —0.

We claim that one can choose, locally on S, the rank 1 quotients so that £’ is semistable of degree 0. For
this, we argue by induction on i = 1, ..., d that one can choose (locally on S) the quotients of W7y, ..., W;
so that the modification

0— Oxg(—1)" =& =& —0,
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invoking only the quotients of W7, ..., W, has the property that the Harder—-Narasimhan slopes of &; at
all geometric points are nonnegative. We treat the case i = 1; the general case uses the same argument, by
looking at the exact sequence

0— OXS(—].) — gi+1 — gz —0
presenting &; 11 as a modification of &; (which, by induction, still has nonnegative Harder—Narasimhan
slopes everywhere) at Sf 1, using the quotient Wy — Rf 1~ (Note that by disjointness of the untilts, the
fibres of £ and &; agree at SEH.)

First, we handle the case that S = Spa(K, K) for a perfectoid field K (not necessarily algebraically
closed). Then & has a Harder—Narasimhan filtration, and look at the subbundle £2* C & of maximal slope,
where necessarily A > 0. Also recall that any nonsplit extension

0= Oxs(—1) =G —EF =0

necessarily has nonnegative Harder—Narasimhan slopes (either by contemplating the Harder-Narasimhan
polygon, which will lie strictly above the —1-line, or by the following direct argument: if G — G is a
quotient of negative degree (so degree < —1), then the quotient of G by Ox(—1) has degree < 0, but £=*
has no such quotients). Thus, it is enough to ensure that the pullback of the extension to £=* is nonsplit.
But if it splits, then the given map £2* — OS? lifts to a map £2* — Ox,; by consideration of slopes,

this map is necessarily trivial. Thus, if we let W] C W be the fibre of £2* C £ at S%, it suffices to pick a

quotient W7 — K % whose restriction to W7 is nonzero.

Going back to general affinoid S, pick any point s € S. By the preceding argument, we can locally on
S find a quotient W; — Rﬁ such that the corresponding extension &£; has the property that the Harder—
Narasimhan slopes at s are still nonnegative. By Theorem[[L.2.19] the same is true in an open neighborhood,
finishing the proof. O

In applications, it is often more useful to have the following variant, switching which of the two bundles
is trivialized, at the expense of assuming strictly positive slopes (and allowing étale localizations in place of
analytic localizations — this is probably unnecessary).

ProPOSITION I1.3.2. Let S be a perfectoid space over I, and let £ be a vector bundle on X5 such that
at all geometric points of S, all Harder—Narasimhan slopes of £ are positive. Then étale locally on S, there
is a short exact sequence

0-GG—->0%, —-&—=0

where § is semistable of slope —1 at all geometric points.

PROOF. We can assume that £ has constant degree d and rank r; we set m = d + r. Inside BC(E)™,
we can look at the locus U C BC(E)™ of those maps O, — & that are surjective and whose kernel is
semistable of slope —1. Thisisan open subdiamond of BC(€)™: Thisis clear for the condition of surjectivity
(say, as the cokernel of the universal map O%  — &|x, is supported on a closed subset of X7, whose image
is then closed in 7'), and then the locus where the kernel is semistable of slope —1 is open by Theorem[[I.2.19]
By Proposition we see moreover that all geometric fibres of U — S are nonempty. It thus suffices
to prove that for any geometric point 7' = Spa(C,C") — S, given as a cofiltered inverse limit of étale
maps S; = Spa(R;, ;") — S, and any section s € BC(E)(T), one can find a sequence of i’s and sections
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si € BC(E)(S;i) such that s;|7 — sasi — oo. Indeed, applying this to £™ in place of £ and some section
of U over T, one of the s; will then lie in U(.S;), giving the desired short exact sequence.

To prove that one can approximate s, we argue in a way similar to the proof of Theorem To
facilitate the estimates, it is useful to assume that all Harder-Narasimhan slopes of £ at T" are integral;
this can always be achieved through pulling back £ to a cover f : Xgp = Xg ®p E' — Xg for some
unramified extension E'|E (as this pullback multiplies slopes by [E’ : E]), noting that & is a direct factor
of f.f*€ = £ @p E'. We analyze £ in terms of its pullback to Y 1 ; and the isomorphism over Y [, 1 =
Ys,(1,1)- Note that as Bc; [ ¢ is a principal ideal domain, the pullback of £ to Y [1 4 is necessarily free, and
by approximation we can already find a basis over some Yy, [1 4; replacing S by S; we can then assume
that the pullback of £ to Y 1 4 is free. The descent datum is then given by A~Lp for some matrix A €
GL,.(Bpg,[1,1))- After pullback to 7', by Theoremand the assumption of integral slopes, one can in fact
choose a basis so that A is a diagonal matrix D with positive powers of 7 along the diagonal. Approximating

this basis, we can assume that A — D € 7rNB(JS12 R[] for any chosen N > 0.

Now the map
v =D Brg = Brp

is surjective by Proposition and in fact there is some M (depending only on D, not on R) such that
for any x € (B(+R,R+),[1,1])T' there is some y € W_M(B(J;%,RJF),[I,q])T with x = (¢ — D)(y). There are
two ways to see the existence of M: Either by an explicit reading of the proof of Proposition or as
follows. Assume no such M exists; then we can find perfectoid algebras Ry, Ry, . . . with integral elements

R} C R; and pseudouniformizers w; € R;, and sections x; € (B(J;%_ R 1})7" such that there is no

Yi € 77_211(3(}, R q])T withz; = (¢ — D)(y;). Let RT be the product of all R;",and R = R [%] where

w = (w;); € RT =[], R. Thenall z; define elements of(B&’Rﬂ’[l’l])’“, andz = xo+721 + 72T+ .
another element. By surjectivity of ¢ — D, there is some y € (B(g r+),1,q)" Withz = (¢ — D)(y). But
theny € 7~ %(B )" for some i, and then projecting along (R, RT) — (R;, R]") contradicts the
choice of z;.

_l’_
(R,R*),[1,q]

Taking N > M above, one sees that also
p—A=p—-D+(D-A): BE,[Lq] - BE,[LH
is surjective, with the same bound (in particular independent of R). But now the section s of £ over X can

be approximated by a section s; of By, [1 4, so that its image under ¢ — A will be small. By the preceding
surjectivity, we can then replace s} by s; = s/ + ¢; for some still small ¢; such that

—A
si€ B o= H(Xs,, €lxg,)-

This gives the desired conclusion. O]
One can prove the following variants.
CoROLLARY II.3.3. Let S be a perfectoid space over I, and let £ be a vector bundle on Xg.

(i) Assume that all Harder—Narasimhan slopes of £ are > % Then locally on S, for some m > 0 there is a
short exact sequence

0— 0%, —F —&—0,
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where F is fibrewise semistable of slope .

(ii) Assume that all Harder—Narasimhan slopes of £ are > % Then locally on S, for some m > 0 thereisa
short exact sequence

0— Oxy(£)" — F — € —0,
where F is fibrewise semistable of slope 1.

(iii) Assume that all Harder—Narasimhan slopes of £ are > % Then étale locally on S, for some m > 0 there
is a short exact sequence

0—G— Oxy(H)" — & —0,
where § is fibrewise semistable of slope 0.

(iv) Assume that all Harder—Narasimhan slopes of £ are > % Then étale locally on S, for some m > 0 there
is a short exact sequence

0—G— Oxy(H)" — & —0,

where G is fibrewise semistable of slope o-.

PrOOF. We can suppose S is affinoid. We start with (i). Let 7, : Xg, = Yg/ ©"? — Xg be the finite
étale cover X5, = X5 p ®p E, — Xg g = Xg, where I, is the unramified extension of degree r of E.
We apply Proposition to (m:E)(—1). We get, locally on S, a short exact sequence

0— O?’S’ET —F =7 =0
where F is fiberwise semistable of slope 1. Thus, applying 7., we get a short exact sequence
0— (’)’;}'; = T F = T € — 0.

Here 7, F' is fiberwise semistable of slope % As € is a direct summand of 7,7 € = £ @ E,, we get via
pullback a similar exact sequence.
Arguing similarly with (73.£)(—2), we get part (ii) of the corollary. Invoking Proposition in-
stead, we get parts (iii) and (iv). 0
PROPOSITION I1.3.4. Let S € Perfy, , and let £ be a vector bundle on Xg.

(i) If at all geometric points of S, all slopes of & are negative, then H°(Xg, &) = 0.

(ii) If at all geometric points of S, all slopes of £ are nonnegative, then there is a pro-étale cover S — S
such that

H' (X35, E|x,) = 0.

(iii) If at all geometric points of S, all slopes of £ are positive, then there is an étale cover S’ — S such that
for any affinoid perfectoid T over ', one has H'(X1, &|x,) = 0.

PROOF. Part (i) can be checked on geometric points, where it follows from Theorem and Propo-
sition (i). For part (ii), we use Proposition to produce locally on S an exact sequence

0— Oxs(—1) =& = E—0

where £’ is everywhere semistable of degree 0. By Theorem we can find a pro-étale cover of .S over
which &' = O _. By the vanishing of H?, this induces a surjection from H!(Xg, Ox,)" onto H'(X, £).
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Since H!(Xgs,0x,) = H;wet(S, E) by Proposition (ii), this vanishes pro-étale locally on S (e.g.,

when S is strictly totally disconnected, by Lemma 6/below).

For part (iii), we use Corollary [II.3.3|(iii) to produce an étale cover of S over which there is an exact
sequence
03— Oxs(H)™ = E—0.

For any affinoid T'|S, this induces a surjection from H' (X7, Ox,(1)™) onto H' (X1, €|x,), so we con-

clude by Proposition (iii). O

II.3.2. Families of Banach—Colmez spaces. We can now prove the following strengthening of Propo-
sition [[1.2.16]

ProPOSITION II.3.5. Let S be a perfectoid space over Fy. Let [£; — &£y] be a map of vector bundles on
X such that at all geometric points of S, the bundle £; has only negative Harder—Narasimhan slopes.
(i) The Banach-Colmez space

BC([gl — 80]) 2T HO(XT, [51 — 50”XT)
is a locally spatial diamond, partially proper over S.
(ii) The projectivized Banach-Colmez space
(BC([&r — &) \ {0})/EX

is a locally spatial diamond, proper over S.

(iii) Assume that all Harder—Narasimhan slopes of & at all geometric points are positive. Then

is cohomologically smooth.

PrOOF. All assertions are étale local (in fact v-local) on S. For parts (i) and (ii), let us first simplify the
form of the complex [£; — &]. By Theorem we can find (for S affinoid) some d > () and a surjection
Oxs(=d)™ — &.

Let &] be the kernel of £; & Ox(—d)™ — &. Then we find a quasi-isomorphism
[E] = Oxo(—=d)™] = [&1 — &)
Note also that &7 still satisfies the assumption on negative slopes. We get an exact sequence
0= BC([€] = Oxs(—d)™]) = BC(1[1]) — BC(Ox(—d)™[1]).

As BC(Ox4(—d)™[1]) is separated by Proposition (i), we see that parts (i) and (ii) reduce to the case
of BC(&1[1]). Now applying Corollary (iv) to the dual of &, we get (étale locally on S) an exact
sequence
0 — BC(E[1]) = BC(Ox4(—1)™(1]) — BC(G[1])
where G is semistable of slope 5= everywhere. In particular, BC(G[1]) is separated over S by pro-étale
descent and Proposition (i). Thus, BC(E([1]) C BC(Ox4(—1)™[1]) is a closed subfunctor, finish-
ing the proof of part (i) by applying Proposition EI (i) again. Part (ii) is then reduced to the similar
1

assertion for BC(Ox4(—;)"[1]). Replacing E by its unramified extension of degree r, this reduces to
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BC(Ox4(—1)™[1]). Now, as in the proof of Proposition this follows from Lemma where
one checks the required contracting property of multiplication by 7 by using the presentation
BC(Ox,(~1)[1]) = (Ag)®/E

for an untilt S of S over E.

It remains to prove part (iii). Note that one has a short exact sequence

0 — BC(&) — BC([E1 — &) — BC(&1[1]) — 0;
by [Schi7a| Proposition 23.13], we can thus handle BC(&1[1]) and BC(&p) individually. For the case of
BC(&y), we use Corollary (iv) to get, pro-étale locally on S, an exact sequence
0= Oxg(E)™ = Oxg ()™ = & — 0,

inducing a similar sequence of Banach~Colmez spaces. Then the result follows from [Sch17a, Proposition
23.13]. For the case of BC(&;[1]), choose a surjection Ox(—d)™ — & for some d > 0; we get an exact
sequence

0—=& — Oxg(d)™ = F—0
where necessarily all Harder—Narasimhan slopes of F are positive everywhere. This gives an exact sequence

0 — BC(Ox4(d)™) — BC(F) — BC(&1]1]) — 0,
so the result follows from [Sch17a, Proposition 23.13] and the case of positive slopes already established. [

II.3.3. Punctured absolute Banach—Colmez spaces. Finally, we analyze punctured absolute Banach-

Colmez spaces. Recall that, in the situation of Proposition (iv), one has
~ 1/p> 1/p>
BC(O(d) = Spd(ky ™™ ... /" ]),

so the v-sheaf BC(O(d)) fails to be a perfectoid space, or even a diamond, as it contains the non-analytic
point Spd k. However, passing to the punctured Banach—-Colmez space

BC(O(d)) \ {0} = Spa(k[z1"™ ..., 2" [an

identifies with the analytic points, which form a perfectoid space; in fact, a qcgs perfectoid space. These
objects first showed up in [Far18]] in the case of positive slopes. It was remarked in [Far18] that the punctured
version BC(O(d)) \ {0} is a diamond for all d > 1, that is moreover simply connected when d > 2. This
plays a key role in [Far18] since after base changing from Spd % to Spa C this is not simply connected
anymore. In the above example,

BC(O(d))\ {0} = Spa(k[zy/”" ...« D\ Va1, -+, zq)

is a qcgs perfectoid space that is simply connected when d > 1. After base changing to Spa(C') thisisa punc-
tured n-dimensional open ball over Spa(C) that is not quasicompact anymore, and not simply connected.
Thus, some new interesting phenomena appear when we consider absolute Banach—Colmez spaces.

Let us first continue the discussion with the case of O(d) for d > 1. In that case, there is a relation to
Cartier divisors. Recall that any closed Cartier divisor D C X is given by a line bundle 7 on X5 together
with an injection Z < Ox with closed image. We will only consider the case of relative Cartier divisors,
so that this map stays injective after base change to any geometric point. Now Theorem|[[.2.19|implies that
after replacing S by an open and closed cover, 7 is of degree —d for some integer d > 0, and that there is an
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E*-torsor of isomorphisms Z = Ox(—d). This shows that the v-sheaf Div sending any S to the closed
relative Cartier divisors is given by
Div = | | Div?, Div’ 2 (BC(O(d)) \ {0})/E*.
d>0

Note that we are implicitly using a different definition of Div' here, but Corollary shows that they

agree.

In particular, the moduli space Div? of degree d Cartier divisors is given by the projectivized Banach-
Colmez space for O(d). On the other hand, in terms of divisors we can see the following proposition. Recall
that one can take sums of Cartier divisors (by tensoring their ideal sheaves).

ProposITION II.3.6. For any d > 1, the sum map
(Divl)d — Din : (Dl,...,Dd) —Di+...4+ Dy
is a quasi-pro-étale cover, identifying
Div? = (Div!)?/%,,

where ¥ is the symmetric group. In particular, Div? is a diamond.

ProOF. By Proposition (ii), all occuring spaces are proper over *. In particular, the sum map is
proper. To check surjectivity as v-sheaves, we can then check on geometric points, where it follows from
Proposition (in whose proof we checked that any element of P is a product of elements of P;). In
fact, we even get bijectivity up to the ¥ -action, and thus the isomorphism

Div? = (Div!)?/%y
as v-sheaves. But the projection (Div!)? — (Div!)?/%, is quasi-pro-étale by [Sch17a, Lemma 7.19, Defini-
tion 10.1 (i)]. As Div! = Spd E/” is a diamond, it follows that Div? is a diamond by [Sch17a Proposition
11.4, Proposition 11.6]. O

Now we can analyze the case of general absolute Banach-Colmez spaces. Here, we abbreviate BC(D) =
BC(E(D)).
PrROPOSITION 11.3.7. Let D be an isocrystal with only negative slopes (resp. with only positive slopes),
and work on Perfy,.
(i) The punctured Banach-Colmez space BC(D) \ {0} (resp. BC(D[1]) \ {0})is a spatial diamond.
(ii) The quotient
(BE(D)\ {0})/E* — « (resp. (BC(DI)\ {0}) /E* — )

is proper, representable in spatial diamonds, and cohomologically smooth.

PRrOOF. Part (ii) follows from Proposition [I1.3.5and (for the cohomological smoothness after taking
the quotient by £*) [Sch17a| Proposition 24.2].
For part (i), we are going to apply Lemma I1.3.8} so we first want to see that BC(D) \ {0} is a spatial

v-sheaf. By the Dieudonné—Manin classification, we can find a basis for D so that ¢ is E-rational and
U = ¢V is a diagonal matrix with entries powers of 7 for some N > 0; this essentially means that

V is decent in the sense of [RZ96), Definition 1.8]. Then BC(D) (resp. BC(D]1])) is already defined on
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Perfr,. In particular, the absolute g-power Frobenius Frob acts on them (as it acts on Perfy, ), but also U
is an endomorphism of D commuting with ¢ and hence acts. Moreover, as U = %, the action of U
agrees with the action of Frob’". Moreover, the action of U~ (resp. U) on | BC(D) xF, SpalF, (£
(resp. | BC(D[1]) xr, SpaFy((#1/7™))|) still satisfies the hypotheses of Lemma This implies that

(BC(D)\ {0})/9™ x5, SpaFy((t/P™))

is a spatial diamond, which can be translated into

(BC(D)\ {0}) xr, SpaFq((t'/77) /o™

being a spatial diamond, as the absolute Frobenius acts trivially on the topological space. But Spa F, (t!/7™)) /o™ —
* is qcgs, even proper, and cohomologically smooth. We can thus apply point (i) of LemmalII.3.8|to conclude
that BC(D) \ {0} (resp. BC(D[1]) \ {0}, for which the same argument applies) is spatial.

It remains to see that it is a diamond. One easily reduces to the case that D is simple, and allowing
ourselves to replace I by a finite unramified extension, to D of rank 1. The case of positive Banach-Colmez
spaces now follows from Proposition as it is an £ -torsor over a diamond (so [Sch17a, Proposition
11.7] applies). It remains to prove that this is a diamond in the case of a negative absolute Banach-Colmez

spaces, i.e. for D = (E, 7" ¢) withn > 0. Then D := BC(D]1]) \ {0} classifies extensions
0 — Ox4(—n) — & — Oxy — 0

that are geometrically fiberwise non split on S (remark that those extensions are rigid). We now apply
point (ii) of Lemma using the Harder—Narasimhan stratification of D defined by £. We can pass to
the subsheaf of D where £ is, at each geometric point, isomorphic to a given rank 2 bundle, necessarily of
the form Ox (—n + 1) ® Ox4(—i) forsome 0 < i < § or to Ox (—7).

On such a stratum D, C D there is a global Harder—Narasimhan filtration by Theorem and
trivializing the graded piece of lowest slope defines a pro-étale morphism D, — D,. For S — D,, there is
a morphism from Ox(—n) to this quotient of £ by composing with the inclusion Ox,(—n) < €. Since
the extension is non-split geometrically fiberwise on .S, this morphism is non-zero geometrically fiberwise.
This defines a morphism f)a — X from Zsa to a punctured positive absolute Banach—-Colmez space X,
which is a diamond by what we have already proved. Thus

15& - f?a x X
where the latter is a diamond as D, — * is representable in diamonds, so [[Sch17a) Proposition 11.10] shows
that D,, is a diamond. O

LEMMA I1.3.8. Let F be a small v-sheaf.

(i) Suppose there exists a surjective qcgs cohomologically smooth morphism D — F where D is a spatial
diamond. Then F is a spatial v-sheaf.

(ii) Suppose moreover there is a family of locally closed generalizing subsets (X, )a, Xo C |F|, such that
for each « the associated subsheaf of F is a diamond. Then F is a spatial diamond.

Proor. For point (i), since D is qcqs and D — F qcgs surjective, F is qcgs. Since cohomologically
smooth implies universally open we can apply [Sch17a, Lemma 2.10] to conclude it is spatial. For point (ii)
we apply [Schi7a, Theorem 12.18]. Let G,, C F be associated to X,,. From [Sch17a Lemma 7.6] we deduce
that G, — F is quasi-pro-étale. This implies the result. O
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REMARK II.3.9. The proof of Proposition |II.3.7| for negative absolute Banach-Colmez space goes the
same way as the proof of the fact that Gr<,, is a spatial diamond, [SW20, Theorem 19.2.4]. One first proves
this is a spatial v-sheaf and then one stratifies it by locally closed generalizing subsets that are diamonds.

REMARK II.3.10. One has to be careful that although the absolute BC(O(d)) \ {0} is a spatial dia-
mond, (BC(O(d)) \ {0})/7% is not spatial anymore since not quasiseparated, [Far18, Remarque 2.15]). In
this context the good object is the morphism (BC(O(d)) \ {0})/7% — * that is representable in spatial

diamonds.

REMARK IL.3.11. In the equal characteristic case, £ = (7)), the structure of punctured positive
absolute Banach-Colmez spaces is much simpler since they are perfectoid spaces. Nevertheless the structure
of the punctured negative one is not, they are only spatial diamonds. We will see below that BC(O(—1)[1])
is stratified into the open part, which can be written as the quotient of Spd k((¢)) by the action of a profinite
group, and a point Spd k. However, the degeneration to the point happens at the boundary of the open unit
disc as |[t| — 1, not as |t| — 0 as in Spa k[t]. Thus BC(O(—1)[1]) is a rather strange geometric objectE]

ExampLE I1.3.12. The absolute BC(O(—1)[1]) \ {0} classifies extensions
0— Ox4(—-1) — & — Ox, — 0

that are non-split fiberwise on S. Any such extension is, at each geometric point, isomorphic to Ox ¢ (—3).
Parametrizing isomorphisms € & Ox(—1) defines a D*-torsor, where D is the quaternion algebra over
E; here we use Theorem Remark that if 0 — Ox,(—1) = Oxg4(—%) — £ — 0 is an extension,

then taking the determinant automatically fixes an isomorphism £ = Ox,, and thus the £*-torsor of
isomorphisms between Ox and L is trivial. From this we deduce that

BC(O(=1)[1]) \ {0} = (BC(O(3)) \ {0})/SL1(D)
with
BC(O(3)) \ {0} ~ Spa(k (/")

the punctured universal cover of a 1-dimensional formal 7-divisible Og-module of height 2.
Let us compare this with our previous description of BC(O(—1)[1]) after pullback to Spa(C), fixing an
untilt C* over £ andt € H%(X¢, Ox. (1)) \ {0}: the exact sequence
0— OXC(*l) =+ Oxy =+ Oct — 0
induces an isomorphism
BC(O(—1)[1]) xk Spa(C) = (Ag:)°/E.
We thus have
BC(O(=1)[1]) \ {0} x Spa(C) = ()¢ /E
where Q = AL \ E is Drinfeld’s upper half plane over E.

We deduce an isomorphism

1 [a¥)
((BC(O(3)) \ {0}) x4 Spa(C)) /SLi(D) = (Qc4) ¢ /E-
©This example was critical in convincing us to not try to develop a version of the theory of diamonds that would allow non-
analytic test objects like Spa k[t*/?” ] and would thus make BC(O(1)) itself representable: After all, in the context of absolute
Banach-Colmez spaces, BC(O(1)) = Spd k[t'/?” ] and BC(O(—1)[1]) play very similar roles, so the formalism should also treat

them similarly.
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This isomorphism is in fact deduced from the isomorphism between Lubin—Tate and Drinfeld towers. In
fact, [SW13], the Lubin-Tate tower in infinite level, LT+, over Spd(Cﬁ), is the moduli of modifications
O_%(S < Ox (%) at the point of the curve defined by the untilt C*. From this one deducesa D* -equivariant
isomorphism

L /(5 ) = BOOW) (0D e Spa(C),

Dividing this isomorphism by SL; (D) one obtains the preceding isomorphism.

ExampLE I1.3.13. The absolute BC(O(—2)[1]) \ {0} classifies extensions
0 — Ox4(—1) — & — Ox4(1) — 0

that are non-split fiberwise on S. There is only one Harder—Narasimhan stratum and geometrically fiber-
wise on S, € is a trivial vector bundle. The moduli of surjections O_%{S — Ox,(1) is the open subset

U c (BC(O(1)) \ {0}) xx (BC(O(1)) \ {0})
equal to
U = (BC(O(1))\ {0})*\ (B x 1).A
where A is the diagonal of (BC(O(1)) \ {0})?, that is to say couples (z, ) of sections of H%(Xs, Ox4(1))
that are fiberwise/S non-zero and linearly independent over E. Here (E* x 1).A is a locally profinite
union of copies of A.

Again, by consideration of determinants, ker((’)g(s — Ox4(1))is canonically identified with O x (—1).
This implies that
BC(O(=2)[1]) \ {0} = U/SLa(E).






CHAPTER III

BunG

Throughout this chapter, we fix a reductive group G over the nonarchimedean local field E. As it will
be important to study Bung over a geometric base point, we fix from now on an algebraical closure £ of IF,
and work with perfectoid spaces S over Spd k; write Perf}, for the category.

DEFINITION IIL.0.1. Let Bung be the prestack taking a perfectoid space S € Perfy, to the groupoid of
G-bundles on Xg.

The main results of this chapter are summarized in the following theorem.

THEOREM I11.0.2 (Proposition IH.1.3¥ Theorem ‘ Theorem [III.2.3| and Theorem [[11.2.7; Theo-

rem [[I1.4.5; Proposition [III.5.3)). The prestack Bun satisfies the following properties.

(i) The prestack Bung; is a small v-stack.

(ii) The points | Bung | are naturally in bijection with Kottwitz' set B(G) of isomorphism classes of G-
isocrystals.

(iii) The map
v:|Bung| — B(G) — (X*(T)ig)F
is semicontinuous, and
k:|Bung| — B(G) — m(Gg)r
is locally constant. Equivalently, the map | Bung | = B(G) is continuous when B(G) is equipped with the
order topology.
(iv) The semistable locus Bunf, C Bung; is open, and given by
Bung = | | [+/Gy(E)).
beB(G)basic
(v) For any b € B(G), the corresponding subfunctor
i’ : Bun% = Bung X|Bung |10} C Bung

is locally closed, and isomorphic to [ /G}), where G is a v-sheaf of groups such that G, — * is representable
in locally spatial diamonds with moGj, = G},(E). The connected component G C G}, of the identity is
cohomologically smooth of dimension (2p, 14).

The hardest part of this theorem is that  is locally constant. We give two proofs of this fact. If the
derived group of G is simply connected, one can reduce to tori, which are not hard to handle. In general,
one approach is to use z-extensions G' — G to reduce to the case of simply connected derived group. For
this, one needs that Bunz — Bung is a surjective map of v-stacks; we prove this using Beauville-Laszlo

85



86 III. Bung

uniformization. Alternatively, at least for p-adic E, one can use the abelianized Kottwitz set of Borovoi
[Borg8], which we prove to behave well relatively over a perfectoid space S.

II1.1. Generalities

There is a good notion of G-torsors in p-adic geometry:

DEFINITION/PROPOSITION I11.1.1 ([SW20, Proposition 19.5.1. Let X be a sousperfectoid space over
E. The following categories are naturally equivalent.

(i) The category of adic spaces T" — X with a G-action such that étale locally on X, there is a G-equivariant
isomorphism 7' = G x X.
(ii) The category of étale sheaves Q on X equipped with an action of G such that étale locally, Q = G.

(iii) The category of exact ®-functors
Rep,G — Bun(X)

to the category of vector bundles on X.

A G-bundle on X is an exact ®-functor

Rep,G — Bun(X);

by the preceding, it can equivalently be considered in a geometric or cohomological manner.

In particular, G-torsors up to isomorphism are classified by HZ (X, G). By Proposition the fol-
lowing defines a v-stack.

DEFINITION III.1.2. Let Bung be the v-stack taking a perfectoid space S € Perf, to the groupoid of
G-bundles on Xg.

By the GAGA results from the previous chapter, we are free to replace Xg by X;lg here, when S is
affinoid.

Our goal in this chapter is to analyze this v-stack. Before going on, let us quickly observe that it is small,
i.e there are perfectoid spaces S, R with a v-surjection S — Bung and a v-surjection R — S Xgyn,, S.

ProposITION II1.1.3. The v-stack Bung; is small.
ProOF. It is enough to prove that if S; = Spa(R;, R;), i € I, is an wy-cofiltered inverse system of
affinoid perfectoid spaces with inverse limit S = Spa(R, R™), then
Bung(S) = 1i_n>1Bung(Si).

Indeed, then any section of Bung over an affinoid perfectoid space S = Spa(R, R") factors over S’ =
Spa(R’, R'") for some topologically countably generated perfectoid algebra R’. But there is only a set
worth of such R up to isomorphism, and then taking the disjoint union 7" = | |5/ acBunc(S") S’ gives a
perfectoid space that surjects onto Bung. Moreover, the equivalence relation 7" X pun, T satisfies the same
limit property, and hence also admits a similar surjection.

1The reference applies in the case of Zj, but it extends verbatim to Og.
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To see the claim, note first that R = lim R; as any Cauchy sequence already lies in some R;. The same
applies to Bp 1 for any interval I, and hence one sees that

Bun(Xg) = h_n>1 Bun(Xg,).

Now the definition of G-torsors gives the claim. O

This proof uses virtually no knowledge about Bun and shows that any reasonable v-stack is small.

III.2. The topological space |Bung|

III.2.1. Points. As a first step, we recall the classification of G-bundles on the Fargues-Fontaine curve
over geometric points. This is based on the following definition of Kottwitz, [Kot85].

DEFINITION II.2.1. A G-isocrystal is an exact ®-functor
Rep, G — Isocg .

The set of isomorphism classes of G-isocrystals is denoted B(G).

By Steinberg’s theorem, the underlying fibre functor to E-vector spaces is isomorphic to the standard
fibre functor; this shows one can identify B(G) with the quotient of G(£) under o-conjugation.

Composing with the exact ®-functor
Isocg — Bun(Xg) : D — &£(D)

any G-isocrystal defines a G-bundle on X, for any S € Perfy,. In particular, for any b € B(G), we denote
by &, the corresponding G-bundle on Xg.

THEOREM I1L.2.2 ([Far20], [Ans19]). For any complete algebraically closed nonarchimedean field C'
over k, the construction above defines a bijection

B(G) = Bung(C)/=:b— &.

PRrROOF. For the convenience of the reader, and as some of the constructions will resurface later, we
give a sketch of the proof in [Ans19]. Any G-bundle on X has its Harder—Narasimhan filtration, and the
formation of the Harder—Narasimhan filtration is compatible with tensor products. This implies that any
exact ®@-functor Rep, G — Bun(X() lifts canonically to an exact ®-functor Rep,, G — FilBun(X¢) to
Q-filtered vector bundles. To check exactness, note that if I is p-adic, the category Rep,, G is semisimple
and thus exactness reduces to additivity, which is clear. If E is of equal characteristic, one needs to argue
more carefully, and we refer to the proof of [Ans19, Theorem 3.11].

We can now project Rep, G — FilBun(X() to the category GrBun(X¢) of Q-graded vector bundles,
and note that the essential image of this functor is landing in the category of bundles ), £* such that each
EX is semistable of slope \. This category is in fact equivalent to Isoci; by Theorem and Proposi-
tion (ii). Thus, it suffices to see that the filtration on the exact ®-functor Rep, G — FilBun(X¢)

can be split. By GAGA, we are free to work with X gg in place of X¢.

Looking at splittings (fpqc, but also Zariski) locally on ng, they exist, and form a torsor under a

unipotent group scheme U over X, 2g, where U is parametrizing automorphisms of the filtered fibre functor
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that are trivial on the graded pieces. One can then filter U by vector bundles of positive slopes, and using
the vanishing of their H', we get the desired splitting. O

In particular, using [Schi17a| Proposition 12.7] it follows that the map
B(G) — |Bung|

is a bijection.

II1.2.2. Harder—Narasimhan stratification. Now we need to recall Kottwitz’s description of B(G), fol-
lowing [Kot97]. This relies on two invariants there, the Newton point and the Kottwitz point. Let £ be
a separable closure of £ and fix a maximal torus inside a Borel subgroup 7' C B C G; the set of dom-
inant cocharacters X, (7)" is naturally independent of the choice of 7" and B, and acquires an action of
I' = Gal(E|E) via its identification with

Hom(G,, z, Gz)/G(E)—conjugacy.
The Newton point is a map
v:B(G) — (X(T)H)"
br— Vp.

When G = GL,, then X, (T') = Z" and the target is the set of nonincreasing sequences of rational numbers,
which are the slopes of the Newton polygon of the corresponding isocrystal. The Kottwitz point is a map

K: B(G) — 7T1(G)F
b— k(b),
where 711 (G) := 71 (Gg) = X«(T)/(coroot lattice) is the Borovoi fundamental group. For G = GL,, this

is naturally isomorphic to Z, and in this case x(b) is the endpoint of the Newton polygon. In general, this
compatibility is expressed by saying that the images of x(b) and v} in

Wl(G)&

agree (using an averaging operation for (b)). However, this means that in general x(b) is not determined
by 14, as 1 (G)r may contain torsion.

The definition of & is done in steps. First, one defines it for tori, where it is actually a bijection. Then
one defines it for G’ whose derived group is simply connected; in that case, it is simply done via passage to
the torus G/ G 4o Which does not change 7. In general, one uses a z-extension G — G such that G has

simply connected derived group, observing that B(G) — B(G) is surjective.

Borovoi, [Bor98]|, gave a more canonical construction of  as an abelianization map that does not use the
choice of a z-extension, at least in the case of p-adic &/. We will recall the construction in Section[[II.2.4.2

Finally, recall that (v, k) : B(G) — (X*(T)é)F x 71 (G)r is injective.

It is possible to define the Harder—Narasimhan polygon and first Chern class of a G-bundle on X (at
least for G = GL,,). This matches the invariants (v, k) up to sign (which results from D + (D) reversing
slopes): Let v — v* = wo(—v) be the involution of the positive Weyl chamber X *(T)& where wy is the
longest element of the Weyl group. Then the Harder-Narasimhan polygon of &, is 1/, and its first Chern
class is —r(b). For general G, we may take this as the definition of the Harder—-Narasimhan polygon of &,
and its first Chern class.
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We need to understand how v and « vary on B(G). The following result follows from Theorem
and [RR96, Lemma 2.2].

THEOREM I11.2.3 ([SW20| Corollary 22.5.1]). The map
v* : |Bung| & B(G) — (X*(T)a)F

is upper semicontinuous.
We will later prove in Theorem [III.2.7|that & is locally constant on Bung.

II1.2.3. Geometrically fiberwise trivial G-bundles. Let
[+/G(E)]

be the classifying stack of pro-étale G(E)-torsors, and

Bun/; C Bung
be the substack of geometrically fiberwise trivial G-bundles. One has H(Xg, Ox ) = E(S) and thus
G(F) acts on the trivial G-bundle. From this we deduce a morphism
[*/G(E)] — Bun(, .

We are going to prove that this is an isomorphism. Let us note that, although this is an isomorphism at the
level of geometric points, we can not apply [SW20, Lemma 12.5] since it is not clear that it is qcgs.

Theorems|I11.2.3{and [II1.2.7/(to follow) taken together imply that the locus

Bun}, C Bung

is an open substack. One of our proofs of Theorem [III.2.7| will however require this statement as an input.
Of course, when 71 (G)r is torsion free, that istosay H* (E, G) = {1}, Theorem|lII.2.3|is enough to obtain

the openness.
THEOREM I11.2.4. The substack Bun}, C Bun is open, and the map
[*/G(E)] = Bun,

defined above is an isomorphism.

PROOF. Let S € Perfy, be qcgs with a map to Bung. We need to see that the subset of |.S| over which
this map is trivial at any geometric point is open; and that if this is all of S, then the data is equivalent to a
pro-étale G(E)-torsor.

Let us check the openness assertion. If 7' — S is surjective with T" qegs then | 7| — |.S|isa quotient map.
We can thus assume that S is strictly totally disconnected. The locus where the Newton point is identically
zero is an open subset of S by Theorem|[II.2.3} so passing to this open subset, we can assume that the Newton
point is zero. In that case, for any algebraic representation p : G — GL,, the corresponding rank n vector
bundle on X is trivial (by functoriality of the Newton map). Now, geometrically fiberwise on S trivial
vector bundles on X are equivalent to E-local systems on S by Corollary On the other hand, as
S is strictly totally disconnected, all E-local systems on S are trivial (Lem for H = GL,(E)),
and their category is equivalent to the category of finite free modules over C°(|S|, E). Thus, the preceding
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discussion defines a fibre functor on Rep(G) with values in C°(|S|, E) = C%(mo(S), E), i.e. a G-torsor
over Spec(C%(my(S), E)). Note that for all s € m(.S), the local ring lim, CO(|U|, E) is henselian as the
local ring of the analytic adic space mo(S) x Spa(E) at s. This implies that if this G-torsor is trivial at some

point of S, then it is trivial in a neighborhood. This concludes the openness assertion.

Moreover, the preceding argument shows that the map * — Bun/, is a pro-étale cover. As * X Bunl, * =
G(FE), as automorphisms of the trivial G-torsor are given by G(E), we thus get the desired isomorphism.
o S O

REMARK I1L.2.5 ([Sch17al Lemma 10.13]). If S is a perfectoid space, and T' — S is a pro-étale G(E)-
torsor then 7' is representable by a perfectoid space. In fact, T' = @ x Z\T" where K goes through the set

of compact open subgroups of G(E). By descent of étale separated morphisms ([Sch17a) Proposition 9.7]),
for each such K, K\T isrepresented by a separated étale perfectoid space over S. The transition morphisms
in the preceding limit are finite étale.

LEMMA III.2.6. Let S be a strictly totally disconnected perfectoid space, and let H be a first-countable
locally profinite group. Then any pro-étale H-torsor on S is trivial.

PROOF. Let T — S be such a torsor. Fix a compact open subgroup K C H; by first-countability, this
is a countable limit of finite groups. Since K'\T" — S is an étale cover of perfectoid spaces it has a section
and we can assume 7" — S is in fact a K -torsor. Now, T' = &lnn K, \T where K,, C K is a cofinal system
of open subgroups (with Ky = K). Each map K, 1\T — K,\T is a finite étale cover and hence split.
Inductively choosing splittings, we get the result. O

II1.2.4. Local constancy of the Kottwitz invariant. A central result is the following.

THEOREM III.2.7. The map
K :|Bung| = B(G) — m(G)r

is locally constant.

Let us note the following corollary. We give a new proof (and slight strengthening) of a result of
Rapoport-Richartz (when p | |71(G)| the original proof used p-adic nearby cycles and relied on a finite
type hypothesis).

CoroLLARY II1.2.8 ([RR96, Corollary 3.11]). Let S be an F,-scheme and £ an G-isocrystal on S. The
map |S| — 71 (G)r that sends a geometric point 5§ — S to r(&;) is locally constant.

PROOF. We can suppose S = Spec(R) is affine and defined over k. We get a small v-sheaf Spd(R, R),
and £ definesa morphism Spd(R, R) — Bung. Theinduced map & : |Spd(R, R)| — |Bung | — m1(G)ris
locally constant by Theorem[[II.2.7] As open and closed subsets of Spd(R, R) are in bijection with open and
closed subschemes of Spec(R) (by [SW20)] Proposition 18.3.1] applied to morphisms to * LI ), we can thus
assume that x : |Spd(R, R)| — |Bung | — m1(G)r is constant. But now for any geometric point § — S,
the element k(&) € 7 (G)r agrees with the image of * = |Spd(s,5)| — |Spd(R, R)| — |Bung| —
71(G)r, giving the desired result. O

REMARK II1.2.9. There is a natural map |Spd(R, R)| — |Spa(R, R)|, the latter of which admits two
natural maps to | Spec(R)| (given by the support of the valuation, or the prime ideal of all elements of norm

< 1). However, with either choice of map | Spa(R, R)| — | Spec(R)|, the resulting map | Spd(R, R)| —
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| Spec(R)| does not commute with the x maps. Still, there is also the map | Spec(R)| — |Spd(R, R)|, used

in the proof, and this commutes with the x maps.

We give two different proofs of Theorem [I11.2.7

II1.2.4.1. First proof. For the first proof of Theorem I1I.2.7, we also need the following lemma that we

will prove in the next section.

LEMMA I11.2.10. Let G — G be a central extension with kernel a torus. Then
Bun; — Bung

is a surjective map of v-stacks.

In fact, up to correctly interpreting all the relevant structure, if Z C G is the kernel, then Buny is
a Picard stack (as for commutative Z one can tensor Z-bundles) which acts on Bung, and Bung is the
quotient stack. It is in fact clear that it is a quasitorsor, and the lemma ensures surjectivity.

FIRST PROOF OF THEOREM Picking a z-extension, we can by Lemma [I.2.10|reduce to the case
that G has simply connected derived group. Then we may replace G by G/ G 4., and so reduce to the case
that G is a torus. By a further application of Lemma|[II.2.10] we can reduce to the case that G is an induced
torus. In that case 71 (G)r is torsion-free, and so the Kottwitz map is determined by the Newton map, so the
result follows from Theorem noting that in the case of tori there are no nontrivial order relations
so semicontinuity means local constancy. O

It remains to prove Lemma This will be done in the next section, using Beauville-Laszlo uni-

formization.

I1I.2.4.2. Second proof. For this proof, we assume that E is p-adic (otherwise certain non-étale finite
flat group schemes may appear). We define

Bu(G) = H (Wi, [Goo(E) = G(E))),

the abelianized Kottwitz set (cohomology with coefficient in a crossed module, see [Bor98] and [Labgog,
Appendix B]). There is an abelianization map

B(G) — Bay(G)
deduced from the morphism [1 — G| — [Gs. — GJ. If T is a maximal torus in G with reciprocal image
Tse in G4 then
Tse = T — [Gse = G
is a homotopy equivalence. If Z, resp. Z, is the center of G, resp. G s, there is a homotopy equivalence
(Zse = Z] — [Gse — G].
LEmMA III.2.11. There is an identification
Bap(G) = m(G)r
through which Kottwitz map « is identified with the abelianization map B(G) — B (G).
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ProoF. Choose a maximal torus 7" in (G. One has
Bab(G) - Hl(WEv [TSC(E) - T(E)D
= coker (B(Ts.) — B(T))
since H2(Wg, TSC(E)) = 0 (use [Ser94) Chapter 11.3.3 example (c)] and [Ser94) Chapter 111.2.3 Theorem
1']). The result is deduced using Kottwitz description of B(T%.) and B(T) = X..(T)r. O

For S € Perfy, there is a morphism of sites

T (Xg)et — Set

deduced from the identifications

(Xs)et = (X&)t = (Divh)er
and the projection Divy = Div! x S — S. Equivalently, 7* takes any étale T — S to X7 — X, which
is again étale.

We now interpret some étale cohomology groups of the curve as Galois cohomology groups, as in
[Far20] where this type of computation was done for the schematical curve attached to an algebraically
closed perfectoid field. Below, we abbreviate X¢ o+ := Xgpa(c,c+)-

ProrosITION I11.2.12. Let S € Perf;..

(i) Let F be a locally constant sheaf of finite abelian groups on Spa(E)et. One has
RroFixs = RT'(Spa(E), F)

as a constant complex on Sg.

(ii) If D is a diagonalizable algebraic group over E, the pro-étale sheaf associated to
T/S — HY(X7,D)
is the constant sheaf with value H!(Wpg, D(E))

PROOF. Let us note G = F|x,. There is a natural morphism RI'«(Spa(E), F) — Rr.G. The mor-

phism Divy — S is proper and applying [Sch17a) Corollary 16.10 (ii)], we are reduced to prove that
H(Spa(E), F) = H&(Xc,c+, )
when C'is an algebraically closed field. Since X o+ is quasicompact quasiseparated
Hy(Xco+®pE,G) = lim H*(Xgo+ ®p E',G),
E'’|E finite

and, using Galois descent, it thus suffices to prove that the left member vanishes in positive degrees, and
equals 7| in degree 0.

Let K = Fy((T)) and X (¢ c+), ik the equal characteristic Fargues-Fontaine curve over Spa(K). Identi-
b A
fying £ with K%, one has
(X(c,ot),p®EE) = X004k OKP.
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Using this we are reduced to prove that for any prime number n, for i > 0
H(X (c,c+), kK K, Z,/nZ) = 0.
This is reduced, as above, to prove that any class in H., (X (C,c+),Ks Z/nZ),i > 0, is killed by pullback to a
finite separable extension of K.
When n # p one has
RT(X(c,0+) 50, Z/nZ) = RT (9", RT (D}, o4 , Z/1Z))
where T’ is the coordinate on the open punctured disk
D, o+ = Spa(C, CT) Xgpa(r,) Spa(K).
One has H* (D, o4, Z/nZ) = 0 for k > 1, and this is equal, via Kummer theory, to Z/nZ(—1) for
k = 1. The Kummer covering of D, ., induced by T' — T kills any class in H*(D, .., Z/nZ). Also
HO (D Z/nZ) = 7Z/nZ and the class in H'(p?,Z/nZ) = Z/nZ is killed by passing up along an

C,Cct+>
unramified extension of K of degree n.

When n = p we use Artin-Schreier theory. Since C'is an algebraically closed field we have H*(X c,ct),K>O) =
0 when i > 0. Since the adic space X c+) i is noetherian we deduce that H, (X (¢ o+ x, O) = 0 for
i > 0. Thus, H, (X (c,c+), i, Z/n'Z) is 0 for i > 1 and coker(K L£old, K) when i = 1, which is killed by
pullback to an Artin-Schreier extension of K. This finishes the proof of point (1).

For point (2). There is a natural morphism

H'(Wg,D(E)) — H'(Xg, D)

(see just after the proof of this proposition). Suppose first that D is a torus. Then point (2) is the computa-
tion of the coarse moduli space of Bunp as a pro-étale stack. This itself is a consequence of Theorem [I11.2.4]

using a translation argument from 1 to any [b] € B(D) (use the Picard stack structure on Bunp).
For any D we use the exact sequence
1—D"— D — ny(D) — 1,

where DY is a torus as F is of characteristic 0. For T'/S there is a diagram

H(E, ny(D)) ——— B(D°) —— HY(Wg, D(E)) —— HY(E,ny(D)) — 0

HO(Xp,10(D)) —— He(Xp, D) —— Hy(Xp, D) —— Ho(Xr, (D))

since H2(Wg, DO(E)) = 0and H*(Wg,my(D)(E)) = H*(Wg, 75(D)(E)). The result is then deduced
from part (1) and the torus case. O
For S € Perf}, there is a natural morphism of groups
Bup(G) — Hy(Xs, [Gse — G)).
This is deduced from the natural continuous morphism of sites

(Xs)et —> {discrete Wg-sets}.
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PROPOSITION III.2.13. For S € Perfy, the pro-étale sheaf on S associated with
T/S — HLY(X7,[Gse — G])

is the constant sheaf with value By, (G).

PrROOF. We use the homotopy equivalence [Z;. — Z] — [Gsc — G]. There is a diagram

H' (Wg, Zyo(E)) —— H'(Wp, Z(E)) —— H (W, [Gse(E) = G(E)]) — HX(Wg, Zso(E))

N | -

Helt(XTv ZSC) Helt(XTv Z) Helt(XTu [Zsc — ZD Hzt(XT’ ZSC)

H2 (W, Z(E))( H(E,my(2)))

| 5

HE (X, 2) HE(Xr1,m(2))).

Using Proposition and some diagram chasing we conclude. O

SECOND PROOF OF THEOREM The theorem is now deduced from the preceding Proposition|I11.2.13
and the abelianization map HL (X5, G) — HL(Xs, [Gsc — G)). O

REMARK II1.2.14. Let X gg be the schematical curve associated to C|F, algebraically closed. The results
of [Far20] for the étale cohomology of torsion local systems, [Far20, Theorem 3.7] and the vanishing of the
H?(X¢,T) foratorus T, [[F ar20, Theorem 2.7], can be stated in a more uniform way; if D is a diagonalizable

group over E then H(Wg, D(E)) = Hi(Xc, D) for 0 < i < 2. Weil cohomology of E is the natural
cohomology theory that corresponds to étale cohomology of the curve. For example Theorem can

be restated as H' (W, G(E)) = HL(X¢, G) for a reductive group G.

II1.2.5. The explicit description of | Bun¢ |. Theorem [III.2.3|and Theorem [II1.2.7|imply that the map
| Bung | — B(G)

is continuous when the target is endowed with the topology induced by the order on (X, (T)a)F and the

discrete topology on 71 (G)r.

ConJECTURE II1.2.15. The map | Bung | — B(G) is a homeomorphism.

In other words, whenever b, b’ € B(G) such that b > b/, there should be a specialization from b to b’ in
| Bung |-

The conjecture is known for G = GL,, by work of Hansen, [Han17]], based on [BFEH"22]. The argument
has been extended to some other classical groups in unpublished work of Hamann. While finishing our
manuscript, a proof for general G has been given by Viehmann [[Vie21].
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We will later prove some weak form of the conjecture in Corollary determining the connected
components of Bung using simple geometric considerations.

I11.3. Beauville-Laszlo uniformization

Recall from [SW20) Lecture XIX] the BIR—afﬁne Grassmannian
Grg

of G over Spd E, sending an affinoid perfectoid S = Spa(R, R™) over Spd E to the G-torsors over Spec( B (R*))
with a trivialization over Bgr(R*); here Rf/F is the untilt of R given by S — Spd(E). In [SW20] this

was considered over Spa(C”) for some C|F algebraically closed but we want now to consider it in a more
“absolute” way over Spd(E).

Since any G-torsor over Spec(B (R)) is trivial locally on Spa(R, R")., this coincides with the étale
sheaf associated to the presheaf (R, R") — G(Bar (R*))/G(Bj (R?)).

This has an interpretation as a Beilinson-Drinfeld type affine Grassmannian. If £,&’ € Bung(S) and
D € Div}(S), a modification between £ and &' at D is an isomorphism

5|XS\D — 5/|XS\D
that is meromorphic along D. The latter means that for any representation in Rep,(G), the associated

isomorphism between vector bundles, F|x,\p — F'|x,\p extends to a morphism F — F'(kD) for
k> 0 via F' — F'(kD). Beauville-Laszlo gluing then identifies

Grg /¢” — Div!

with the moduli of D € Div!(S), £ € Bung(Xg), and a modification between the trivial G-bundle and £
at D, cf. [SW20| Proposition 19.1.2]. This defines a morphism of v-stacks

GrG — BunG .
ProOPOSITION III.3.1. The Beauville-Laszlo morphism
GI‘G — BunG

is a surjective map of v-stacks; in fact, of pro-étale stacks.

PrROOF. Pick any S = Spa(R, R") € Perf}, affinoid perfectoid with a map to Bung, given by some G-
bundle £ on X. Fix an untilt S* of S over Spa(F). To prove surjectivity as pro-étale stacks, we can assume
that S is strictly totally disconnected. By [Far20, Théoréme 7.1] (in case G quasisplit) and [Ans19, Theorem
6.5] (for general G), for any connected component Spa(C, C") C S of S, the map Grg(C) — Bung(C)
is surjective, so in particular, we can pick a modification & of £|x, , at Spa(C*, C*+) < X o+ such

that £, is trivial.

+

Now, since S is strictly totally disconnected, we can trivialize € at the completion at S*%; as Grg(S) —
Grg/(C) is surjective (Lemma , we can lift £/, to a modification £’ of £. Now Theorem im-
plies that &’ is trivial in a neighborhood of the given point, and as S is strictly totally disconnected, the
corresponding G (E)-torsor is trivial (LemmallII.2.6)), so we can trivialize £’ in a neighborhood of the given

point. This shows that locally on S, the bundle £ is in the image of Grg — Bung, as desired. O
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LEMMA I11.3.2. For S = Spa(R, R") astrictly totally disconnected perfectoid space over Spa(F), and
s € S, the map Grg(R) — Grg(K(s)) is surjective.

PRrOOF. Set C' = K (s). First note that R — C' is surjective, as any connected component of S is an
intersection of open and closed subsets, and thus Zariski closed.

Since C is algebraically closed, Gr(C) = G(Bgr(C))/G(BF;(C)). For any finite degree extension
F'|E in C, since S @ E' — S is étale and S strictly totally disconnected, E’ can be embedded in R. Fix
such an E' C R that splits G and a pair 7' C B inside Gpr. Let £ € Wo, (R>T) be a generator of the
kernel of f. The Cartan decomposition

GBr()= [ GBREONEOGCBRC))
peX*(T)+

shows then that we only need to prove that G(Bj; (R)) — G(Bj;(C)) is surjective.

Let us first remark that G(R) — G(C) is surjective. In fact, since S is totally disconnected it suffices
to check that G(Og s) — G(C) is surjective. But this is a consequence of the smoothness of G and the fact
that Og s is Henselian (with residue field C).

Moreover G(B; (R)) = lim G(Bjz (R)/ Fil"). Using the surjectivity of Lie(G)® R — Lie(G)®C

the result is then deduced by an approximation argument. g

REMARK II1.3.3. In the “classical case” of the moduli of G-bundles over a proper smooth algebraic
curve over a field k, G/k, Proposition [[11.3.1]is true only when G is semi-simple ([DSo5]]). Typically this

is false for GL,, in general. The main reason why it is true in our situation is that PicO(XC7C+) is trivial,

equivalently that X Z}g \ {«} is the spectrum of a principal ideal domain in Proposition
LEmMA III.3.4. If G is split then

GI‘G = h_n>1 GrG,Su
pEXL(T)*

as a v-sheaf, where the index set is a partially ordered set according to the dominance order (1 < /' if ' — p
is a nonnegative integral sum of positive coroots).

Proor. Consider a morphism S — Grg with S quasicompact quasiseparated. Fix an embedding G —
GL,, such that the image of T lies in the standard maximal torus of GL,,. This induces an embedding
X, (T)* < Z". One checks easily that the image of |S| — |GrgL,, | lies in a finite union of affine Schubert
cells. Since the fibers of X,(T)" — Z"/&,, are finite we deduce that there is a finite collection (u;);,
pi € X.(T)7, such that the image of |S| — |Grg| lies in U;|Grg <y, | By [SW20| Proposition 19.2.3],
S; =S XGrg Gra, <y, is closed in S and thus quasicompact. Since the morphism [ [, S; — S is surjective
at the level of points with quasicompact source it is quasicompact and thus a v-cover. This allows us to
conclude. O

LEMMA I11.3.5. Suppose G — G is a central extension with kernel a torus. Then
Gré — Grg

is a surjective map of v-sheaves.
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ProoF. Up to replacing E by a finite degree extension we can suppose G and G are split. Fix T' — T
inside G — G. According to Lemmal|lIl.3.4]it is enough to prove that forany ji € X, (T)",if p € X,.(T)"

is its image in G, then Grg, _;, — Grg, <y is surjective. This is clearly surjective at the level of points since,
if D is the kernel of G — G, then HL(Spec(Bgr(C)), D) = 0, and thus G(Bgr(C)) — G(Bg(C)) is
sutjective. Since Grg, _;, is quasicompact over Spd(E) and Grg <, quasiseparated over Spd(E) (both are
proper according to [SW20, Proposition 19.2.3]), Grg o — Gra,<y is quasicompact and thus a v-cover by
[Sch17al Lemma 12.11]. O

Using Proposition |I11.3.1} we thus have now a proof of Lemma

Let us record a few facts we can deduce from the preceding results. Here, 1 € 71(G) denotes the image
of u € X.(T)" under the quotient map X, (7) — m1(G).

ProposITION II1.3.6. Suppose G is split.

(i) There is a locally constant map |Grg| — 71 (G) inducing a decomposition in open/closed subsheaves

Grg = H Grgy
aeni(G)

. #
characterized by Grg,, C Gr, .

(ii) The composite

|GI‘G‘ Beauville-Laszlo | BunG ‘ L> - (G)

is the opposite of the preceding map.
(iii) For each a € m(G),

as a filtered colimit of v-sheaves.

PrOOF. Point (1) is reduced to the case when G, is simply connected using Lemma [[I1.3.5/and a z-
extension. Now, if Gy, is simply connected, for p1, 2 € X. (T, < e implies uji = ,u. The result is
then deduced from the fact that Grg <, C Grg is closed for any p.

Point (2) is can be similarly reduced first to the case that Gy, is simply connected by passage to a z-
extension; then to the case of a torus by taking the quotient by G/4,; then to the case of an induced torus
by another z-extension; and then to G, by changing E. In that case, it follows from Proposition[[I.2.3]

Point (3) is deduced from Lemma [[I1.3.4] and the fact that for a € m1(G), {p € X.(T)* | pf = a}

is a filtered ordered set. (Indeed, to see that this is filtered, note that if x; and s satisfy ,uji =a = ,ug,
then 11 — p2 lies in the coroot lattice, so is a sum of coroots with integer coefficients. Rearranging terms,
it follows that one can add sums of positive coroots to 11 and to po so that they become equal, giving a
common majorization.) u

When G is not split, choosing E’| E Galois of finite degree splitting G, using the formula Grg Xspq(r)
Spd(E') = Grg,,, one deduces:
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(i) There is a decomposition Grg = || aeM\m (G) Grl, and a formula Grg + Grg < such

= lim rxe )

#
that Grg, < C Grls.

(ii) The composite |Grg| B, |Bung | = 71(G)r is induced by the opposite of T'\71(G) — 71(G)r and
the preceding decomposition.

This description of the Kottwitz map, together with Proposition [I1I.3.1} in fact gives another proof of
Theorem [I11.2.7

I11.4. The semistable locus

III.4.1. Pure inner twisting. Recall the following. In the particular case of non abelian group coho-
mology this is called “torsion au moyen d'un cocycle” in [Ser94) 1.5.3].

PROPOSITION I11.4.1. Let X be a topos, H a group in X and 7" an H-torsor. Let HT = Aut(T) as a
group in X. Then:

H
1 1s the "pure 1nner twisting” o , = A where acts conjugation on /1. In
i) HT is the “pure i isting” of H by T, HT = H A T where H acts by conjugati H. 1
particular [HT] € H'(X, H,q) is the image of [T via HY(X, H) — H'(X, H,q).
1 e morphism of stacks on X, [* — |* , that sends an /1 -torsor S to Isom(.O, £ ), 1s an equiva-
(ii) Th phism of stacks on X, [x/H|] — [*/H?'], th dsan H S to Isom(S, T), i qui
lence.

In the following we use the cohomological description of G-bundles on the curve as G-torsors on the
étale site of the sous-perfectoid space Xg (here G is seen as an E-adic group, for (R, R") a sous-perfectoid
E-algebra its Spa(R, R1)-points being G(R)).

For the next proposition, recall (cf. [Kot97, 3.3], where G}, is denoted by .J) that for any b € B(G), the
automorphism group of the corresponding G-isocrystal defines a reductive group Gy, over F, via

Gy(R) = {g € G(R®E E) | gb = ba(g)}.

If G is quasisplit, then G is an inner form of a Levi subgroup of . More generally Gy, is an inner form of
a Levi subgroup of the quasisplit inner form of G It is an inner form of G precisely when b is basic, i.e. the
Newton point is central. Recall from [Far20] that a G-bundle over X, o+ is semistable if and only if it
corresponds to some basic element of B((G); the reader may also take this as the definition of semistability

for G-bundles.

PROPOSITION II1.4.2. Let S € Perfy, b € B(G) basic and &, — X the associated étale G-torsor. Then
the étale sheaf of groups G, X spa(E) X5 Over Xg is the pure inner twisting of G' x Spa(E) XS by &.

PrOOF. One has

Ey = (G Xgpa(iny Ys)/((b0) x 9)F — X5
where bo acts on G, by translation on the right. The G X gy () X5 = (G X (B) Ys)/(Id x )%-torsor

structure is given by multiplication on the left on G j,. The group Gy, Xgpa(r) Xs = (Gp X Ys)/(Id % ©)”
acts on this torsor on the right via the morphism G, — G, which gives a morphism

Spa

Gy Xspa(B) X5 — Aut(&p).
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After pullback via the étale cover Y — Xg and evaluation on 7' = Spa(R, R*) — Yg affinoid sous-
perfectoid, this is identified with the map

Gy(R)={9€ GE®ER)|g-(bo®1)=(bo®1) g} — G(R)
deduced from the E-algebra structure of R. But as b is basic, the natural map
GyxpE—GxpkE

is an isomorphism, cf. [RZ96, Corollary 1.14]. O

Thus, extended pure inner forms, as defined by Kottwitz, become pure inner forms, as defined by Vogan,
when pulled back to the curve.

CoROLLARY III.4.3. For b basic there is an isomorphism of v-stacks

Bung ~ Bung,

that induces an isomorphism Bun?, ~ Bunéb.

ExaMPLE I11.4.4. Take G = GL,, and (D, ¢) an isoclinic isocrystal of height n. Let B = End(D, )
be the associated simple algebra over E. Since (D, ¢) is isoclinic the action of B on £(D, ¢) induces an

isomorphism B ®p Ox, — End(E(D,¢)) for any S € Perf;. The stack Bunpx is identified with the
stack S +— {rank 1 locally free B ® g Ox-modules}. There is then an isomorphism (Morita equivalence)

Bungp, —~ Bun Bx
E— Homg (&,E(D,p)).

III.4.2. Description of the semi-stable locus. As recalled in the previous section, a G-bundle on X ¢ o+
is semistable if the corresponding Newton point is central. A family of G-bundles is semistable if all of its
geometric fibres are.

THEOREM III.4.5. The semistable locus
Bung C Bung
is open, and there is a canonical decomposition as open/closed substacks
Bung, = H Bun,.
beB(G)basic

For b basic there is an isomorphism

[%/Gy(E)] = Bun%.

PrROOF. Theorem [II1.2.3implies that Bung; is open, using that the condition that 4 is central is a min-
imality condition in the dominance order. Recall that the basic elements of B(G) map isomorphically to

71 (G)r via the Kottwitz map [Kot97, 4.9, (4.4.1)]. Thus Theorem |II1.2.7|gives a disjoint decomposition

Bung = H Bun’,.
bEB(G)basic

The result is then a consequence of Proposition [II1.4.2}and Theorem [III.2.4 O



100 III. Bung

ExampLE I11.4.6. For a torus 7', Buny = Bun7’ and there is an exact sequence of Picard stacks

0 — [*/T(E)] — Buny — X, (T)r — 0,

where we recall that X, (T)r = B(T). The fiber of Buny — B(T') over 3 is a gerbe banded by T'(E) over
% via the action Bunk.. This gerbe is neutralized after choosing some b such that [b] = . In case there is
a section of T'(E)) — B(T), for example if B(T) is torsion free, then Buny ~ [x/T(E)] x X.(T)r asa
Picard stack.

II1.4.3. Splittings of the Harder—Narasimhan filtration. We can also consider the following moduli
problem, parametrizing G-bundles with a splitting of their Harder—Narasimhan filtration.

ProposITION II1.4.7. Consider the functor Bul’lg}\l_Spllt taking each S € Perf, to the groupoid of exact
®-functors from Rep, G to the category of Q-graded vector bundles £ = @, £* on X such that £ is
everywhere semistable of slope A for all A € Q. For any b € B(G), the bundle &, naturally refines to a
Q-graded bundle Sfr, using the Q-grading on isocrystals, and for .S affinoid the natural map

alg gr
Gy XEg XS —>Aut(gb )
lg . . . .
of group schemes over X;g is an isomorphism. In particular, we get a natural map

|_| [x/Gy(E)] — BungN_Spht,
beB(G)

and this is an isomorphism.

PROOF. Recall that the natural map Gy Xz E — G X E, recording the map of underlying F-vector
spaces, is a closed immersion identifying G}, X g E with the centralizer of the slope homomorphism v, :
D — G x g E, cf. [RZ96| Corollary 1.14]. This implies that the natural map

Gy XEg X;lg — M(ggr)

is an isomorphism.

We get the evident functor from | |,c () [*/Go(£)] to this moduli problem, and it is clearly fully
faithful. To see that it is surjective, take any strictly totally disconnected S and an exact ®-functor £8"
from Rep, G to such Q-graded vector bundles. For any point s € S, note that Q-graded vector bundles
of the given form on X (,) are equivalent to Isocg, so at s € S there is an isomorphism with some Ex.
The type of the Q-filtration is locally constant, so after replacing S by an open neighborhood of s, we can
assume that

Isom(&F, £8)

defines an M(Sfr)-torsor over Xglg, i.e.a Gy-torsor over Xg. This definesamap S — Bung,, taking s into
Buanb, and by Theorem|III.2.4{and LemmalIII.2.6|it follows that after replacing S by an open neighborhood,

we can assume that the torsor is trivial. This concludes the proof of surjectivity. O
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III.5. Non-semistable points

IIL5.1. Structure of Aut(&,). Next, we aim to describe the non-semi-stable strata Bun,. Before dis-

cussing the general case, consider the case G = GLy, with b corresponding to the vector bundle O & O(1).
The functor
(S S Perfk) — AutXS(OXS D OXS(l))
is given by the group v-sheaf
E*BC(O(1))
(5 )
This is an extension of the locally profinite group G,(E) = E* x E* by a “unipotent group”, namely a
Banach-Colmez space BC(O(1)).

In general, fix any b € B(G) and consider the associated G-bundle &, on Xg. For any algebraic rep-
resentation p : G — GL,, the corresponding vector bundle p.&, has its Harder—Narasimhan filtration
(pxEp)2" C i, A € Q. IEG is quasisplit and we fix a Borel B C G, then this defines a reduction of &, to
a parabolic P C G containing B.

Now inside the automorphism v-sheaf
Gy = Aut(&) : (S € Perfy) — Autx,(Epxs)
(which necessarily preserves the Harder—Narasimhan filtration of p.&, for any p € Repy(G)) one can
consider for any A > 0 the subgroup
ébz)\ C éb
of all automorphisms vy : & — &, such that
(v = D(p:E)> C (po&)=

~ ~ ’
forall \' and all representations p of G. Wealsoset G;* = J, /- sz’\ ,noting that this union is eventually
constant.

As Gy(E) is the automorphism group of the isocrystal corresponding to b, and H°(Xg, Ox,) = E(S),
we have a natural injection

Gb(E) — éb.

Now, for any automorphism 7 of £, and any representation p, v induces an automorphism of the Q-graded

vector bundle
@ Gr)\ (,0* gb) .
AEQ

Using Proposition [I11.4.7, we deduce that the preceding injection has a section and
Gy = G70 % Gy(E).

For a G-bundle € on X g we note ad £ for its adjoint bundle deduced by pushforward by the adjoint repre-
sentation G — GL(Lie(G)). This is in fact a Lie algebra bundle.

ProprosITION III.5.1. One has 3 3
Gb = Gb>0 X Gb(E>,

and for any A > 0, there is a natural isomorphism

GG = BC((ad &)/ (ad £)72),
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the Banach—-Colmez space associated to the slope —\ isoclinic part of (Lie(G) @5 E, Ad(b)o).

In particular, G}, is an extension of G (F) by a successive extension of positive Banach-Colmez spaces,

and thus G, — * is representable in locally spatial diamonds, of dimension (2p, 14,) (where as usual p is the
half-sum of the positive roots).

We refer to [SR72, Section IV] and [Zie15]] for some general discussion of filtered and graded fibre
functors.

PrOOF. We already saw the first part. For the second part, suppose S = Spa(R, R") is affinoid. Let

X?%lg be the schematical curve. We use the GAGA correspondence, Proposition II.2.7I Now, we apply
Proposition [IIL.5.2] to X;lg and the G-bundle &, associated to b on X;lg. Let H be the inner twisting of
GxpX ;Ig by & as areductive group scheme over X ;lg. It is equipped with a filtration (H =), > satisfying

o HZ0/H>0 = Gy x5 X3,
o for A\ > 0, HZ)/H>* = (ad &,)2*/(ad &),
o G(S) = H2\(X3),

functorially in (R, R*); the first part uses Proposition [[11.4.7, Since H! (X;%lg, O(u)) = Oassoonas i > 0,
we deduce by induction on p > 0, starting with ;z > 0 and using the computation of H=*/H>", that

Helt(ng, HZ") = 0 for yu > 0. From this we deduce that
al al al
HNXEE)HANXRE) = (H=H)(X55).

Finally, it remains to compute the dimension. This is given by

> dim ((ad &)/ (ad€)7)

A>0
which is given by (2p, v). O

ProPOSITION III.5.2. Let G be a reductive group over a field K, and let X be a scheme over K. Let
& be a G-bundle on X with automorphism group scheme H /X (an inner form of G X i X, cf. Proposi-
tion . Consider a Q-filtration on the fibre functor Rep, (G) — {Vector bundles on X'} associated
with . Defining groups H=* C H for A > 0 as before, they are smooth group schemes, H=" is a parabolic
subgroup with unipotent radical F/>°, the Lie algebra of H>" is given by (ad £)=* C Liead £ = Lie H,
and for \ > 0 the quotient H=*/H > is a vector group, thus

H2H = (ad €)>* /(ad )

PrROOF. The Lie algebra of H is ad£. All statements can be checked étale locally on X. According
to [Zie15, Theorem 1.3] the Q-filtration on the fiber functor is split locally on X. Moreover & is split
étale locally on X. We can thus suppose that £ is the trivial G-bundle and the filtration given by some
v :D/x = G Xg X, where D is the pro-torus with character group Q. Then the statement is easily
checked, see [SR72]. O
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II1.5.1.1. The quasi-split case. Suppose now that G is moreover quasi-split. Fix A C T'C B with Aa
maximal split torus and 7" a maximal torus of G inside a Borel subgroup B. Up to o-conjugating b one can
suppose that 1, : D — Aand 1, € X *(A)é, where D is the pro-torus over F with character group Q. Let
M, be the centralizer of 1, and P;' the parabolic subgroup associated to v, the weights of v, in Lie(P;")
are > 0. One has B C P,', P, is a standard parabolic subgroup with standard Levi subgroup Mj. Let P,

v

be the opposite parabolic subgroup, the weights of v, in Lie(P,”) are < 0. One has b € M, (£) and we

v

denote it by as an element of M, (F).
Then, if

M,
Q= ng X Pb )
My
R,Q = ng X Rube
as X;lg-group-schemes, one has
= al
Gb(Rv R+) = Q(XRg)
G7O(R, RY) = RUQ(X}3Y).

For GL; and the bundle O @ O(1), the group @ is the upper triangular subgroup of the group scheme
GL(O® O(1)) over X 25;, and accordingly

G — ( B Bcgn) )

II1.5.2. Description of Harder—Narasimhan strata. Now we can describe the structure of the stratum
Bun’..
G

ProrosITION II1.5.3. Let b € B(G) be any element given by some G-isocrystal. The induced map
Tyt * — Bunlé is a surjective map of v-stacks, and X Bun?, * >~ (4}, so that

Bun?, 2 [/G]

is the classifying stack of G-torsors. In particular, the map Gy, — Gy Gp(F) induces a map

Buan — [%/Gp(E)]

that admits a splitting.

PROOF. Let S = Spa(R, RT) € Perfy, be strictly totally disconnected and let £ be a G-bundle on
X ?%lg, the schematical curve, all of whose geometric fibers are isomorphic to &,. In particular, the Harder—
Narasimhan polygon of p,£ is constant for all representations p : G — GL,, and thus by Theorem [I.2.19}
the vector bundle p,£ admits a relative Harder—Narasimhan filtration. This defines a Q-filtration on the
fiber functor Rep,(G) — {vector bundles on X;%lg } defined by &, and exactness can be checked on geo-
metric points where it holds by the classification of G-bundles. Since for any p, the Harder—Narasimhan
polygon of p.&, and the one of p,& are equal, the two filtered fiber functors on Rep;(G) defined by £ and
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&p are of the same type. Thus, étale locally on X;%g those two filtered fiber functors are isomorphic. Let
H = Aut(&,) and H=? = Autgier0q(Ep) as group schemes over X;%g, cf. Proposition |[I1.5.1 Now, look at
T= Isﬂﬁltered(é‘bv g) .

This is an H="-torsor over X;Ig that is a reduction to H=? of the H-torsor Isom (&, £). Let us look at
the image of [T] € Helt(X;%g, H=%) in Helt(X;%g, H=°/H>9), that is to say the H="/H> -torsor 7'/ H>".
This parametrizes isomorphisms of graded fiber functors between the two obtained by semi-simplifying the

filtered fiber functors attached to & and £. By Proposition [II1.4.7} this torsor is locally trivial. Now the
triviality of T follows from the vanishing of H' (ng, H>Y). In fact, for A > 0, H! (X;%g, H>*H>") =0
since H'! (X?,%g, O(\)) =0.

It is clear that * x Bun?, * 18 given by Gy, so the rest follows formally. O

REMARK I11.5.4 (Followup to Remark|IIL.2.5)). From the vanishing of H} (S, éb>0) for S affinoid per-
fectoid one deduces that for such S, any G)-torsor is of the form 7" x éb>0 where T' — S'isa G},(E)-torsor.

Here the action of g1 X g2 € Gp(F) X éb>0 onT x éb>0 isgivenby (z,y) — (g1, glggygfl). In particular

any G)-torsor is representable in locally spatial diamonds.



CHAPTER 1V

Geometry of diamonds

In this chapter, we extend various results on schemes to the setting of diamonds, showing that many
advanced results in étale cohomology of schemes have analogues for diamonds.

In Section[[V.1} we introduce a notion of Artin v-stacks, and discuss some basic properties; in particular,
we show that Bung is a cohomologically smooth Artin v-stack. Moreover, we can define a notion of dimen-
sion for Artin v-stacks, which we use to determine the connected components of Bung. In Section we
develop the theory of universally locally acyclic sheaves. In Section we introduce a notion of formal
smoothness for maps of v-stacks. In Section we use the previous sections to prove the Jacobian crite-
rion for cohomological smoothness, by establishing first formal smoothness, and universal local acyclicity.
In Section we prove a result on the vanishing of certain partially compactly supported cohomology
groups, ensuring that for example Spd k[z1, ..., z4] behaves like a strictly local scheme for De;. In Sec-
tion we establish Braden’s theorem on hyperbolic localization in the world of diamonds. Finally, in
Section we establish several version of Drinfeld’s lemma in the present setup. The theme here is the
idea 71 ((Div!)!) = W. Unfortunately, we know no definition of 7r; making this true, but for example it
becomes true when considering A-local systems for any A.

IV.1. Artin stacks

IV.1.1. Generalities.

IV.1.1.1. Definition and basic properties. In this paper, we consider many small v-stacks like Bung as
above. However, they are stacky in some controlled way, in that they are Artin v-stacks in the sense of the
following definition.

DEFINITION IV.1.1. An Artin v-stack is a small v-stack X such that the diagonal Ax : X — X x X
is representable in locally spatial diamonds, and there is some surjective map f : U — X from a locally
spatial diamond U such that f is separated and cohomologically smooth.

REMARK IV.1.2. We are making the assumption that f is separated, because only in this case we have
defined cohomological smoothness. This means that we are imposing some (probably unwanted) very mild
separatedness conditions on Artin v-stacks. In particular, it implies that Ax is quasiseparated: Let f :
U — X be as in the definition, and assume without loss of generality that U is a disjoint union of spatial
diamonds (replacing it by an open cover if necessary), so in particular U is quasiseparated. As f is separated,
themap U x x U — U is separated, and in particular U x x U is again quasiseparated. This is the pullback
of Ax : X — X x X along the surjection U x U — X x X, so Ax is quasiseparated.

REMARK IV.1.3. The stack Bung is not quasiseparated. In fact, [*/G(E)] is already not quasiseparated
since the sheaf of automorphisms of the trivial G-bundle, G(E), is not quasicompact. This is different from

105
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the “classical situation” of the stack of G-bundles on a proper smooth curve, this one being quasiseparated
(although not separated). In the “classical schematical case” of Artin stacks it is a very mild assumption to
suppose that Artin stacks are quasiseparated. In our situation this would be a much too strong assumption,
but it is still a very mild assumption to suppose that the diagonal is quasiseparated.

REMARK IV.1.4. By Remark[[V.1.2} for any Artin v-stack X, the diagonal Ay is quasiseparated. Con-
versely, let X be any small v-stack, and assume that there is some surjective separated map U — X from a
small v-sheaf. Then:

(i) If U is quasiseparated, then A is quasiseparated, by the argument of Remark[[V.1.2}

(i) If U is a locally spatial diamond and U — X is representable in locally spatial diamonds, then Ay is
quasiseparated (as we may without loss of generality assume that U is quasiseparated, so that (i) applies),
and to check that A x is representable in locally spatial diamonds, it suffices to see that A x is representable
in diamonds. Indeed, [Sch17a, Proposition 13.4 (v)] shows that if Ay is quasiseparated and representable
in diamonds, then representability in locally spatial diamonds can be checked v-locally on the target. But
the pullback of Ax along U x U — X x X isU x x U, which is a locally spatial diamond as we assumed
that U — X is representable in locally spatial diamonds.

(iii) Finally, in the situation of (ii), checking whether Ay is representable in diamonds can be done after
pullback along amap V' — X x X that is surjective as a map of pro-étale stacks, by [Sch17a, Proposition

13.2 (iii)].

In particular, if there isamap f : U — X from a locally spatial diamond U such that f is separated,
cohomologically smooth, representable in locally spatial diamonds, and surjective as a map of pro-étale
stacks, then X is an Artin v-stack. If one only hasamap f : U — X from a locally spatial diamond such
that f is separated, cohomologically smooth, representable in locally spatial diamonds, and surjective as a
map of v-stacks, then it remains to prove that A x is representable in diamonds, which can be done after
pullback along amap V' — X X X that is surjective as a map of pro-étale stacks.

REMARK IV.1.5. Since cohomologically smooth morphisms are open, to prove that a separated, repre-
sentable in locally spatial diamonds, cohomologically smooth morphism U — X is surjective, it suffices to
verify it on geometric points.

REMARK IV.1.6. If X is a small v-stack with a map g : X — S to some “base” small v-stack .S, one
might introduce a notion of an “Artin v-stack over S”, asking instead that Ay, : X — X xg X is
representable in locally spatial diamonds; note that the condition on the chart f : U — X will evidently
remain the same as in the absolute case. We note that as long as the diagonal of S is representable in locally
spatial diamonds (for example, S is an Artin v-stack itself), this agrees with the absolute notion. Indeed, if
Ax /s and Ag are representable in locally spatial diamonds, then also A y is representable in locally spatial
diamonds, as X xg X — X x X is a pullback of Ag and thus representable in locally spatial diamonds,
so Ax is the composite of the two maps X — X xg X — X x X both of which are representable in
locally spatial diamonds. Conversely, assume that X and S are such that their diagonals are representable
in locally spatial diamonds. Then both X and X x g X are representable in locally spatial diamonds over
X x X, thus any map between them is.

ExampLE IV.1.7. Any locally spatial diamond is an Artin v-stack.

Before giving other examples let us state a few properties.



IV.1. ARTIN STACKS 107

ProprosiTION IV.1.8.

(i) Any fibre product of Artin v-stacks is an Artin v-stack.

(ii) Let S — x be a pro-étale surjective, representable in locally spatial diamonds, separated and cohomo-
logically smooth morphism of v-sheaves. The v-stack X is an Artin v-stack if and only if X x S isan Artin
v-stack.

(iii) If X is an Artin v-stack and f : Y — X is representable in locally spatial diamonds, then Y is an Artin
v-stack.

ProOF. For point (i), if X = X3 xx, X3 is such a fibre product and f; : U; — X are separated,
representable in locally spatial diamonds, and cohomologically smooth surjective maps from locally spatial
diamonds U;, then U = (Uy x x, Us) Xy, (U2 X x, Us) is itself a locally spatial diamond (using that Ay,
is representable in locally spatial diamonds), and the projection f : U — X is a separated, representable in
locally spatial diamonds, and cohomologically smooth surjection. For the diagonal, since A x, and A x, are
representable in locally spatial diamonds, A x, X Ax, : Xox X3 — (X2 x X3) x (X2 x X3) isrepresentable
in locally spatial diamonds. Since A, is representable in locally spatial diamonds, its pullback by Xa x
X3 = X x Xy, thatistosay u : Xo xx, X3 = X2 x X3, is representable in locally spatial diamonds.
Thus, Ax,x y, x; is a map between stacks that are representable in locally spatial diamonds over (X3 x
X3) % (X2 x X3), and thus is representable in locally spatial diamonds.

For point (ii), suppose X x S is an Artin v-stack. If U is a locally spatial diamond and U — X x S
is separated, representable in locally spatial diamonds, cohomologically smooth, and surjective, then the
composite U — X x S — X is too. It remains to see that A x is representable in locally spatial diamonds.
By Remark[[V.1.4)it suffices to prove that the pullback of Ax by X X X x § — X x X isrepresentable in
locally spatial diamonds. But this pullback is the composite of Ax g with X x X x Sx § = X x X x S,
and we conclude since the projection S x S — S is representable in locally spatial diamonds for evident
reasons.

For point (iii), if U is a locally spatial diamond and U — X is surjective, separated, representable in
locally spatial diamonds, and cohomologically smooth, then V' = U x x Y is a locally spatial diamond, and
V — Y is surjective, separated, representable in locally spatial diamonds, and cohomologically smooth. It
remains to see that Ay is representable in locally spatial diamonds. By Remark[[V.1.4] it suffices to see that
Ay is representable in diamonds. But we can write Ay as the composite Y — Y xx Y — Y x; Y. The
first map is O-truncated and injective and thus representable in diamonds by [Sch17a, Proposition 11.10],
while the second map is a pullback of Ax. O

We can now give more examples.
ExampPLE IV.1.9.

(i) According to point (ii) of Proposition the v-stack X is an Artin v-stack if and only if X x Spd F,
resp. X x Spa(FF,((t!/7™))), is an Artin v-stack. To check that X is an Artin v-stack we can thus replace
the base point * by Spd E, resp. Spa F,,(t'/7™)).

(ii) For example, any small v-sheaf X such that X — x is representable in locally spatial diamonds is an
Artin v-stack; e.g. X = *.

(iii) Using point (iii) of Propositionand [Sch17a, Proposition 11.20] we deduce that any locally closed

substack of an Artin v-stack is an Artin v-stack.
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(iv) Let G be a locally profinite group that admits a closed embedding into GL,,(E) for some n. Then the
classifying stack [*/G] is an Artin v-stack. For this it suffices to see that [Spd E/G] = Spd E X [x/G] is
an Artin v-stack. Now let H = GLY My then there is a closed immersion G x Spd £ < H. The map
H — Spd E is representable in locally spat1al diamonds, separated, and cohomologically smooth; hence so
is H/G — [Spd E/G] (by [Sch17a, Proposition 13.4 (iv), Proposition 23.15]), and H /G is a locally spatial
diamond (itself cohomologically smooth over Spd E by [Sch17a| Proposition 24.2] since this becomes coho-
mologically smooth over the separated étale cover H/K — H /G for some compact open pro-p subgroup
K of G). It is clear that the diagonal of [x/G] is representable in locally spatial diamonds.

REMARK IV.1.10. If G is a smooth algebraic group over the field k then Spec(k) — [Spec(k)/G] is
a smooth presentation of the Artin stack [Spec(k)/G]. However, in the situation of point (4) of Exam-
plethe map f : x — [x/G] is not cohomologically smooth (unless G is finite) since for its pullback

f : G — *, the sheaf f'A is the sheaf of distributions on G with values in A.

IV.1.1.2. Smooth morphisms of Artin v-stacks. Notions that can be checked locally with respect to
cohomologically smooth maps can be extended to Artin v-stacks (except possibly for subtleties regarding
separatedness). In particular:

DEFINITION IV.1.11. Let f : Y — X be a map of Artin v-stacks. Assume that there is some separated,
representable in locally spatial diamonds, and cohomologically smooth surjection g : V' — Y from a locally
spatial diamond V' such that f o g : V' — X is separated. Then f is cohomologically smooth if for any
(equivalently, one) such g, the map f o g : V' — X (which is separated by assumption, and automatically
representable in locally spatial diamonds) is cohomologically smooth.

In the preceding definition the “equivalently, one” assertion is deduced from [Sch17a| Proposition 23.13]
that says that cohomological smoothness is “cohomologically smooth local on the source”. More precisely,
if checked for one then for all g : V' — X separated cohomologically smooth (not necessarily surjective)
from a locally spatial diamond V, f o g is separated cohomologically smooth.

CoNVENTION IV.1.12. In the following, whenever we say that amap f : Y — X of Artin v-stacks is
cohomologically smooth, we demand that there is some separated, representable in locally spatial diamonds,
and cohomologically smooth surjection g : V' — Y from a locally spatial diamond V' such that fog: V —
X isseparated. Note that this condition can be tested after taking covers U — X by separated, representable
in locally spatial diamonds, and cohomologically smooth surjections; i.e. after replacing Y by Y x x U and
X by U. If X and Y have the property that one can finda cover U — X,V — Y, as above with U and V'
perfectoid spaces, and A x is representable in perfectoid spaces, then the condition is automatic, as all maps
of perfectoid spaces are locally separated. That being said there is no reason that this is true in general since
there are morphisms of spatial diamonds that are not locally separated.

We will not try to give a completely general 6-functor formalism that includes functors R f and R
for stacky maps f (this would require some co-categorical setting). However, we can extend the functor
Rf' to cohomologically smooth maps of Artin v-stacks. Let A be a ring killed by some integer n prime to
p, or an adic ring as in [Sch17a| Section 26].

DEFINITION IV.1.13. Let f : Y — X be a cohomologically smooth map of Artin v-stacks. The dualiz-
ing complex Rf'A € D¢ (Y, A) is the invertible object equipped with isomorphisms

Rg'(Rf'A) = R(fog)'A
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for all separated, representable in locally spatial diamonds, and cohomologically smooth maps g : V' — Y
from a locally spatial diamond V/, such that for all cohomologically smooth maps i : V/ — V between
suchg' : V' — Y and g : V — Y, the composite isomorphism

R(¢)' (Rf'A) = R(fog)'A = R(fogoh)'A= Rh(R(fog)'A) = Rh'(Rg (Rf'A)) = R(¢') (Rf'A)
is the identity.

As Rf'A islocally concentrated in one degree, it is easy to see that R f'A is unique up to unique isomor-
phism. Let us be more precise. Let C be the category whose objects are separated cohomologically smooth

morphisms V' — Y with V alocally spatial diamond, and morphisms (V" EN Y) — (V2 Y) are couples
(h,a) where h : V! — V is separated cohomologically smooth and v : g o h = ¢’ is a 2-morphism. Then
the rule

(V2% Y) — Ri#omp(Rg'A, R(f o g)'A)
defines an element of

2- lim {invertible objects in Det(V, A)} = {invertible objects in Det(Y, A)}.
(V=Y)ec

REMARK IV.1.14. If g : V — Y isa compactifiable representable in locally spatial diamonds morphism
of small v-stacks with dim.trgg < oo such that f o g satisfies the same hypothesis, it is not clear that
Rg'(Rf'A) = R(f o g)'A. This is a priori true only when V is a locally spatial diamond and g is separated
cohomologically smooth, the only case we will need.

DEFINITION IV.1.15. Let f : Y — X be a cohomologically smooth map of Artin v-stacks. The functor
Rf': Det(X,A) = Der(Y, A)
is given by Rf' = Rf'A ®I/L\ fr.

REMARK IV.1.16. Checking after a cohomologically smooth cover, one sees that R f' preserves all limits
(and colimits) and hence admits a left adjoint R ).

DEFINITION IV.1.17. Let f : Y — X be a cohomologically smooth map of Artin v-stacks and let £ # p
be a prime. Then f is pure of (-dimension d € 3Z if Rf'Fy sits in homological degree 2d.

As Rf'Fy is invertible, it is v-locally (and thus, a posteriori, étale locally) isomorphic to IF;[n] for some
n € Z (this can be deduced from Proposition (ii)), so any cohomologically smoothmap f : Y — X
of Artin v-stacks decomposes uniquely into a disjoint union of f; : Y; — X that are pure of /-dimension d.
A priori this decomposition may depend on ¢ and include half-integers d, but this will not happen in any
examples that we study.

IV.1.2. The case of Bung.

IV.1.2.1. Smooth charts on Bung. One important example is the following. We use Beauville-Laszlo
uniformization to construct cohomologically smooth charts on Bung. More refined charts will be con-
structed in Theorem For ji € X.(T)" /T wenote Grg for the subsheaf of Grg such that Grg ; Xgpa(r) Spd(E') =
I,= #.C?r(; . where E'|E is a finite degree Galois extension splitting ;. We will use the following simple
proposition.
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PrOPOSITION IV.1.18. Forany ;1 € X, (7)™, the open Schubert cell Gr¢; ;, / Spd E’ is cohomologically
smooth of (-dimension (2p, ).

We defer the proof to Proposition as we do not want to make a digression on Gr here.

THEOREM IV.1.19. The stack Bung is a cohomologically smooth Artin v-stack of ¢-dimension 0. The
Beauville-Laszlo map defines a separated cohomologically smooth cover

[T [G(E)\Grau — Bung .

peX,(T)*t/T

PROOF. We check first that Apyy,, is representable in locally spatial diamonds. For this, it suffices to
see that for a perfectoid space S with two G-bundles &1, & on Xg, the functor of isomorphisms between
&1 and &, is representable by a locally spatial diamond over S. By the Tannakian formalism, one can
reduce to vector bundles. For example, according to Chevalley, one can find a faithful linear representation
p : G — GL,, a representation p’ : GL,, — GL(W), and a line D C W such that G is the stabilizer of
D inside GL,,. Then G-bundles on Xg embed fully faithfully into rank n vector bundles £ together with
a sub-line bundle £ inside p/,£. In terms of those data, isomorphisms between (1, £1) and (&2, L2) are
given by a couple (o, 3) where ov : £, = &, and 8 : L1 — Ly satisfy (p,,ct)|z, = . Since the category
of locally spatial diamonds is stable under finite projective limits we are reduced to the case of the linear

group. Now the result is given by Lemma[[V.1.20

It remains to construct cohomologically smooth charts for Bung. We first prove that the morphism

m:  J[I [G(E)\Grez — Bung x4 Spd E

peX.(T)*t/T

is separated cohomologically smooth. Since this is surjective at the level of geometric points we deduce that
it is a v-cover, cf. Remark [[V.1.5

To verify this, note that for a perfectoid space S mapping to Bung Xy, Spd E corresponding to a G-
bundle £ on X as well as a map S — Spd F inducing an untilt $*/E and a closed immersion i : S* —
Xg, the fibre of 7 over S parametrizes modifications of £ of locally constant type that are trivial at each
geometric point. This is open in the space of all modifications of £ of locally constant type, which is v-

locally isomorphicto| |, Gr¢,z,p Xspa &S — S. Thus, Proposition gives the desired cohomological

smoothness.

Moreover, the preceding argument shows that when restricted to [G(F)\Grg,z], the map 7 has (-
dimension equal to (2p, i1). Thus, it now suffices to see that [G(£)\Grg, ;] is an /-cohomologically smooth

Artin v-stack of /-dimension equal to (2p, 11). But the map
[G(E)\Grg.p] = [Spd E/G(E)]

is representable in locally spatial diamonds and ¢-cohomologically smooth of /-dimension equal to (2p, 1),
as Grg — * is by Proposition We conclude by using that [*/G(E)] — * is an Artin v-stack,

cohomologically smooth of /-dimension 0, by Example (4). O]

LEMMA IV.1.20. For &1, & vector bundles on Xg, the sheaf 7'/S +— {surjections &1|x, — &|x, }
resp. T'/S — Isom(&1|x,, 2| x; ), is representable by an open subdiamond of BC(£Y ® &2). In particular,
those are locally spatial diamonds.
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PROOF. The case of isomorphisms is reduced to the case of surjections since a morphism u of vector
bundles is an isomorphism if and only if u and u" are surjective. For any morphism g : £&; — &, the support
of its cokernel is a closed subset of | X g|, whose image in | S| is thus closed; this implies the result. O

REMARK IV.1.21. It would be tempting to study Det(Bung, A) using the preceding charts. But, con-
trary to the sheaves coming from the geometric Satake correspondence, the sheaves on Gr¢ obtained via
pullback from Bung are not locally constant on open Schubert strata. We will prefer other smooth charts

to study Det(Bung, A), see Theorem

Moreover, each Harder—Narasimhan stratum Bun% gives another example.

PROPOSITION IV.1.22. For every b € B(G), the stratum BunY, is a cohomologically smooth Artin v-
stack of /-dimension —(2p, 13).

PROOF. Under the identification Bun?, 2 [%/G})], note that we have a map [x/Gy] — [¥/Gy(F)] where
the target is a cohomologically smooth Artin v-stack of dimension 0, while the fibre admits a cohomo-
logically smooth surjection from x (as positive Banach-Colmez spaces are cohomologically smooth) of /-
dimension (2p, vp). This gives the result. O

IV.1.2.2. Connected components of Bung. A consequence is that we can classify the connected com-
ponents of Bung.

CorOLLARY IV.1.23. The Kottwitz map induces a bijection

K : mo(Bung) — m1(G)r.

PROOF. The Kottwitz map is well-defined and surjective. It remains to see that it is injective. To see this,
recall that the basic elements of B(G) biject via  to 71 (G)r. Thus, it suffices to see that any nonempty open
subsheaf U of Bun¢ contains a basic point. Note that the topological space (X (T)(?SE)F x m1(G)r equipped
with the product topology given by the order on (X, (T)a)F and the discrete topology on 71 (G)r, is (T0),
and an increasing union of finite open subspaces; and | Bung | maps continuously to it. Pick some finite
open V C (X*(T)(S)F x 71 (G)r such that its preimage in U is a nonempty open U’ C U. Then U’ isa

nonempty finite (T0) space, and thus has an open point by Lemma

Thus, there is some b € B(G) such that Bun?, C U C Bung is open. Combining Theorem and
Proposition this forces —(2p, 1) = 0, i.e. 1 is central, which means that b is basic. O

LEMMA IV.1.24. If X is a nonempty finite spectral space, that is to say a finite (T0) topological space,
there exists an open point € X.

ProoOF. Take ﬂnaximal for the specialization relation, i.e. « is a maximal point. Then, since X is (TO),
X\ {z} = Uyx.{y}, a finite union of closed spaces thus closed. O

IV.2. Universally locally acyclic sheaves

IV.2.1. Definition and basic properties. In many of our results, and in particular in the (formulation
and) proof of the geometric Satake equivalence, a critical role is played by the notion of universally locally
acyclic (ULA) sheaves. Roughly speaking, for a morphism f : X — S of schemes, these are constructible
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complexes of étale sheaves A on X whose relative cohomology is constant in all fibres of .S, even locally.
Technically, one requires that for all geometric points T of X mapping to a geometric point 5 of S and a
generization ¢ of 5 in .S, the natural map

RT(Xz, A) — RT(Xz xg. I, A)

is an isomorphism, where X7 is the strict henselization of X at Z (and S5 is defined similarly). Moreover,
the same property should hold universally after any base change along S’ — S| By [Illo6] Corollary 3.5],
universal local acyclicity is equivalent to asking that, again after any base change, the map

RT(Xz, A) — RT(Xz xgs. Sp, A)

is an isomorphism; we prefer the latter formulation as strict henselizations admit analogues for adic spaces,
while the actual fibre over a point is only a pseudo-adic space in Huber’s sense [Hubg6]].

In the world of adic spaces, there are not enough specializations to make this an interesting definition;
for example, there are no specializations from Grg,, into Grg, <, \ Grg,,. Thus, we need to adapt the
definition by adding a condition on preservation of constructibility that is automatic in the scheme case
under standard finiteness hypothesis, but becomes highly nontrivial in the case of adic spaces. Here, for a
diamond X with a geometric point T, we let Xz = Spa(C(Z), C(Z)™") be the strict localization of X at T
(which is the initial diamond pro-étale over X with a lift of T).

DEFINITION IV.2.1. Let f : X — S be a compactifiable map of locally spatial diamonds with locally
dim. trg f < coand let A € D¢t (X, A) for some A with nA = 0 with n prime to p.

(i) The sheaf of complexes A is f-locally acyclic if

(a) For all geometric points T of X with image 5 in S and a generization f of 5, the map
RI'(Xz, A) — RI'(Xz xg, 57, A)
is an isomorphism.

(b) For all separated étale maps j : U — X such that f o j is quasicompact, the complex R(f o j)1(A|y) €
Det(S, A) is perfect-constructible.

(ii) The sheaf of complexes A is f-universally locally acyclic if for any map S’ — S of locally spatial
diamonds with base change f': X’ = X xg 5" — S’ and A’ € D¢ (X', A) the pullback of A, the sheaf of

complexes A’ is f’-locally acyclic.

Recall that if (K, K*) is an affinoid Huber field, S = Spa(K, K1), then |S| = |Spec(K*/K")|
as a topological spectral space, that is identified with the totally ordered set of open prime ideals in K.
Forany s € S, S; C S is pro-constructible generalizing. For example, the maximal generalization is

Spa(K, OK) = maGOK{|a| < 1}'

REMARK IV.2.2. In the setup of condition (a), note that Xz is a strictly local space, i.e. of the form
Spa(C, CT) where C is algebraically closed and C* C C'is an open and bounded valuation subring; thus,
RT'(Xz, A) = Agzisjust the stalk of A. Moreover, S; C Sz isa quasicompact pro-constructible generalizing
subspace, and thus Xz xg_ S; C Xz is itself a quasicompact pro-constructible generalizing subset that is
strictly local. Its closed point ¥ is the minimal generization of T mapping to ¢, and RT'(Xz xg_ S;, A) =
Ay is the stalk at §. Thus, condition (a) means that A is “overconvergent” along the horizontal lifts of
generizations of .S.

"Recently, Gabber proved that this is automatic when S is noetherian and f is of finite type, cf. [LZ19} Corollary 6.6].
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REMARK IV.2.3.

(i) Another way to phrase the “relative overconvergence condition” (a), is to say that if 5 is a geometric
point of S, ¢ a generization of 5, j : X x g S; — X Xg S5, a pro-constructible generalizing immersion, and
B = A|x 45, then B = Rj,j* B (use quasicompact base change).

(ii) Still another way to phrase it is to say that for any Spa(C,C") — S, if B = Alx, sspa(c,c+), and
J: X xsSpa(C,0¢) — X xgSpa(C,CT), then B = Rj.j*B.

(iii) Still another way is to say that if Z + sand f;z : Xz — Ss then Rfz.A|x, is overconvergent
i.e. constant.

In fact, asking for condition (a) universally, i.e. after any base change, amounts to asking that A is
overconvergent.

PROPOSITION IV.2.4. Let f : X — S be a compactifiable map of locally spatial diamonds with locally
dim.trg f < oo and let A € Dy (X, A) for some A with nA = 0 with n prime to p. The condition (a)
of Definition holds after any base change S’ — S if and only if A is overconvergent, i.e. for any

specialization § ~» T of geometric points of X, the map Az — Ay is an isomorphism.

PrOOF. The condition is clearly sufficient. For necessity, take the base change along Xz — S. Then =
lifts to a section 7’ : Xz — X X g X3, and applying the relative overconvergence condition to 7’ — T and
the generization ¥ of T, we see that Az — Ay is an isomorphism. O

PROPOSITION IV.2.5. Local acyclicity descends along v-covers of the target. More precisely, in the setup
of Definition if S’ — Sisav-cover and A’ is f’-locally acyclic, then automatically A is f-locally

acyclic.

Proor. Condition (a) follows by lifting geometric points, and condition (b) descends by [Sch17a, Propo-
sition 20.13]. O

PROPOSITION IV.2.6. Let Y be a spatial diamond.
(i) If F is a constructible étale sheaf of A-modules on Y, then F is locally constant if and only if F is

overconvergent.

(ii) If A € Detpe(Y, A), then A is overconvergent if and only if it is locally a constant perfect complex of
A-modules.

PROOF. For a geometric point § of Y, writing Y5 = Spa(C,C™") = &iing_)U U as a limit of the étale
neighborhoods, according to [Sch17a, Proposition 20.7],
2- h_n>1 Cons(U, A) = Cons(Yy, A).
y—U
An étale sheaf on Y; = Spa(C,C™) is locally constant if and only if it is constant if and only if it is
overconvergent. This gives point (1). Point (2) goes the same way using [Schi7a) Proposition 20.15]. O

REMARK IV.2.7. The preceding argument shows that if 7 is constructible on Y then F is locally con-
stant in a neighborhood of any maximal point of Y. For example, if Y = X< with X a K -rigid space, then
any constructible sheaf on Y is locally constant in a neighborhood of all classical Tate points of X. Thus,
the difference between constructible and locally constant sheaves shows up at rank > 1 valuations.
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ExampLE IV.2.8. Let j : BL \ {0} — Bl be the inclusion of the punctured disk inside the disk.
Then j1A is not constructible since not locally constant around {0}. Nevertheless, if R € |K*| and z
is the coordinate on B, jr : {R < |z| < 1} < B, jriA is constructible and jiA = @R—w JrA.
The category of étale sheaves of A-modules on a spatial diamond is the Ind-category of constructible étale
sheaves, cf. [Sch17a, Proposition 20.6].

PROPOSITION IV.2.9. Assume that f : S — S is the identity. Then A € D¢ (S, A) is f-locally acyclic
if and only if it is locally constant with perfect fibres.

PrOOF. Applying part (b) of the definition, we see that A is perfect-constructible. On the other hand,
part (a) says that A is overconvergent. This implies that A is locally constant by Proposition O

Let us finish with a basic example of universally locally acyclic sheaves relevant to the smooth base
change theorem. A more general result will be given in Proposition

PROPOSITION IV.2.10. Assume that f : X — S is a separated map of locally spatial diamonds that is
¢-cohomological smooth for all divisors ¢ of n, where nA = 0. If A € D¢(X, A) is locally constant with
perfect fibres, then A is f-universally locally acyclic.

PROOF. Itis enough to show that A is f-locally acyclic, as the hypotheses are stable under base change.
Condition (a) follows directly from A being locally constant. Condition (b) follows from the preserva-
tion of constructible sheaves of complexes under R f) if f is quasicompact, separated and cohomologically
smooth, see [Sch17a, Proposition 23.12 (ii)]. O

IV.2.2. Proper push-forward, smooth pull-back. In the “classical algebraic case”, if Y’ END'¢ i) S are
morphisms of finite type between noetherian schemes, using proper and smooth base change:

(i) if g is proper and A € D2(Y, A) is f o g -locally acyclic then Rg. A is f-locally acyclic;
(ii) if g is smooth and A € D2(X, A) is f-locally acyclic then g* A is f o g-locally acyclic. Moreover if g is
surjective then A € D2(X, A) is f-locally acyclic if and only if g* A is f o g-locally acyclic.

We are going to see that the same phenomenon happens in our context. The fact that local acyclicity is
smooth local on the source is essential to define local acyclicity for morphisms of Artin v-stacks, cf. Defini-
tion[IV.2.31

PropPOSITION IV.2.11. Let g : Y — X, f : X — S be maps of locally spatial diamonds where ¢
is proper and f is compactifiable and locally dim. trg g, dim. trg f < oco. Assume that A € D (Y, A) is
f o g-locally acyclic (resp. f o g-universally locally acylic). Then Rg.A € De(X,A) is f-locally acyclic
(resp. f-universally locally acyclic).

PROOF. It is enough to consider the locally acyclic case, as the hypotheses are stable under base change.
For condition (a), we use Remark (2). Let 5 be a geometric point of S, with S5 = Spa(C, C'"). Let us

look at the cartesian diagram

Y ><Spal(C,C”f) Spa(Cv OC’) (L Y

l J

X X Spa(C,C+) Spa(C, OC) —

Q
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one has by local acyclicity of f o g, A = Rk.k*A. Applying Rgs., this gives the desired
Rg.A = Rj.j*(Rg.A).

For condition (b), take any separated étale map j : U — X such that f o j is quasicompact, and set
j':V =U xxY — Y, which is an étale map such that f o g o j is quasicompact. Let ¢’ : V' — U denote
the pullback of g. Using proper base change and Rg. = Rgi, we see that

R(foj)j"Rg.A = R(foj)Rgj"A=R(fogoj"A,
which is perfect-constructible by the assumption that A is f o g-locally acyclic. O

In particular we have the following that generalizes the “proper and smooth case”.

CorROLLARY IV.2.12. Let f : X — S be a proper map of locally spatial diamonds with dim. trg f < oo
and A € Dt (X, A) thatis f-locally acyclic. Then R f, A islocally a constant perfect complex of A-modules.

Next proposition says that local acyclicity is “cohomologically smooth local” on the source.

PROPOSITION IV.2.13. Let f : X — S be a compactifiable map of locally spatial diamonds with locally
dim. trg f < oo. For the statements in the locally acyclic case below, assume that S is spatial and that the
cohomological dimension of U, for all quasicompact separated étale U — S is < N for some fixed integer

N.

Let A € Dgt(X,A) where nA = 0 for some n prime to p and let g : Y — X be a separated map of
locally spatial diamonds that is /-cohomologically smooth for all ¢ dividing n.

(i) If A is f-locally acyclic (resp. f-universally locally acyclic), then g* A is f o g-locally acyclic (resp. f o g-
universally locally acyclic).

(ii) Conversely, if g* A is f o g-locally acyclic (resp. f o g-universally locally acyclic) and g is surjective, then
Ais f-locally acyclic (resp. f-universally locally acyclic).

PROOF. It is enough to handle the locally acyclic case with the assumption on S; then the universally
locally acyclic case follows by testing after pullbacks to strictly totally disconnected spaces, using Propo-
sition Let us treat point (i). We can assume that X and Y are qcqs, i.e. spatial. In fact, this is clear
for condition (a). For condition (b),if j : V' — Y is separated étale such that f o g o j is quasicompact, up
to replacing .S by an open cover we can suppose that .S is spatial and thus V' is spatial (since f, g, and j are
separated, f o g o j is separated quasicompact, and thus S spatial implies X spatial). Then one can replace
Y, resp. X, by the quasicompact open subsets j(V'), resp. (g o j)(V), that are separated over S and thus
spatial too.

Condition (a) follows as pullbacks preserve stalks. For condition (b), let j : V' — Y be any quasicom-
pact separated étale map. Then by the projection formula for g o j, one has
R(fogojni'g"A=RA(A®K R(go ).

Asgoj:V — X isa quasicompact separated /-cohomologically smooth map, it follows that R(go j)iA €
Det(X, A) is perfect-constructible by [Schi7a) Proposition 23.12 (ii)]. Thus, the desired result follows from

Lemma

In the converse direction, i.e. for part (ii), condition (a) of A being f-locally acyclic follows by lifting
geometric points from X to Y and noting that stalks do not change. For condition (b), we may replace
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X by U to reduce to the assertion that RfiA € De(S, A) is perfect-constructible. Consider the thick
triangulated subcategory C of Det(X, A) of all B € Det(X, A) such that Rfi(A ®% B) € De(S,A) is
perfect-constructible. We have tosee that A € C. We know that for all perfect-constructible C' € De (Y, A),
the perfect-constructible complex RgiC lies in C. Indeed, using [Schi7a| Proposition 20.17], this reduces to
the case C' = jiA where j : U — Y is a quasicompact separated étale map, and then

RA(A®X R(goi)iA) = R(f o gh(g" A Rjh),
which is perfect-constructible as g*A is f o g-locally acyclic. Thus, it is enough to show that the set
of RgiC € Dg(X,A) with C' € Dg(Y,A) perfect constructible form a set of compact generators of
Det(X, A). Equivalently, for any complex B € De(X,A) with RHomp, (x a)(Rg:C, B) = 0 for all
perfect-constructible C' € De(Y, A), then B = 0. The hypothesis is equivalent to R Homp, (v, (C, Rg'B)
0 for all such C. By [Sch17a, Proposition 20.17] and the standing assumptions on finite cohomological di-
mension (on S, f and g), this implies that Rg' B = 0. As g is /-cohomologically smooth, this is equivalent
to g* B = 0, which implies B = 0 as g is surjective. O

LEMMA IV.2.14. Let f : X — S be a compactifiable map of locally spatial diamonds with locally
dim. trg f < 0o. Suppose there exists an integer NV such that the cohomological dimension of Uy is bounded
by N forall U — X separated étale. Let A € D¢t (X, A) be f-locally acyclicand B € D¢ (X, A) be perfect-
constructible. Then A ®H[§ B satisfies condition (b) of Deﬁnition forany j : U — X separated étale

such that f o j is quasicompact, R(f o j)17*(A ®H/§ B) is perfect-constructible.

PrOOF. We can suppose X is spatial. According to [Sch17a, Proposition 20.17], B lies in the triangu-
lated subcategory generated by j/A where j’ : U’ — X is separated quasicompact étale. For such a B, using
the projection formula, A ®@% Rj/A = Rj{j"* A. Thus,if V = U x x U’ with projection k : U x x U’ — U,

J*Rjij*A = Rk*j*A.
We thus have
R(f o )" (AGK RjiB) = R(f o j o k)(j o k)" (A)

and we can conclude. O

IV.2.3. Local acyclicity and duality. In this section, we prove that universal local acyclicity behaves
well with respect to Verdier duality.

IV.2.3.1. Compatibility with base change. We note that for f-ULA sheaves, the formation of the (rel-
ative) Verdier dual

Dy/s(A) :== Ri#omy (A, Rf'A)

commutes with base change in S.

PROPOSITION IV.2.15. Let f : X — S be a compactifiable map of locally spatial diamonds with locally
dim. trg f < coandlet A € D(X, A) be f-universally locally acyclic. Let g : S — S be a map of locally
spatial diamonds with pullback f’ : X' = X xg S’ — ', g : X’ — X. Then the composite

G Dx/s(A) = Dxr/s(g*A)
of the natural maps
G RAomp (A, Rf'A) — Rtom(§* A, G Rf'A) — R#tomy(§* A, Rf"A)

is an isomorphism.
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More generally, for any B € D (.S, A), the map
§*RAomp (A, Rf'B) — Ritomy (5" A, Rf"g*B)

is an isomorphism.

PROOF. The assertion is local, so we may assume that X, S and S’ are spatial. By choosing a strictly
totally disconnected cover S” of S/, one reduces the result for S’ — S to the cases of S” — S’ and S” — S,
so we may assume that S’ is strictly totally disconnected. In that case, by [Sch17a, Proposition 20.17], whose
hypothesis apply as X’ — S’ is of finite dim. trg and S is strictly totally disconnected, it suffices to check
on global sections over all quasicompact separated étale maps V' — X’. According to Lemma([[V.2.16| we
can write S’ as a cofiltered limit of quasicompact open subsets S/ of finite-dimensional balls over S. Then V'
comes via pullback from a quasicompact separated étale map V; — X x g S for i large enough by [Schi7a
Proposition 11.23]. We thus have a diagram with cartesian squares

L]

s’ s/ S,

The result we want to prove is immediate when S’ — S is cohomologically smooth. Up to replacing
X — Sby V' — S/ we are thus reduced to prove that RI'(X’, 5*Dx /5(A)) = RI(X', Dy /g/(3*A)).

Thus, it suffices to check the result after applying Rf,. In that case,
Rf§*R#omp (A, Rf'B) = g*Rf.R#omy (A, Rf'B)
= g*RAomy (RfiA, B),

using [Sch17a| Proposition 17.6, Theorem 1.8 (iv)], using that f satisfies dim. trg f < 0o and hence R, has
finite cohomological dimension. On the other hand,

Rf!R#omp(§* A, Rf" B) = R#omp(Rf|§* A, B)
= Ritomy(g*"RfiA, B)
using [Sch17a) Theorem 1.8 (iv), Theorem 1.9 (ii)]. But by condition (b) of being f-locally acyclic, the com-

plex RfiA € Dg(S, A) is perfect-constructible, and thus the formation of R.7omu (R fiA, B) commutes
with any base change by Lemma O

LEMMA IV.2.16. Let S be a spatial diamond and X — S be a morphism from an affinoid perfectoid
space to S. Then one can write X = 'mZ, U; where Uj is a quasicompact open subset inside a finite dimen-
sional ball over S, and the projective limit is cofiltered.

Proor. If I = O(X)™, one has a closed immersion over S defined by elements of I, X — BL where
BL is the spatial diamond over S that represents the functor 7/S +— (O(T)*)! (an “infinite dimensional
perfectoid ball over S” when S is perfectoid). Now,

B§ = lim B
JCI
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where J goes through the set of finite subsets of I and BL, — B is the corresponding projection. For
each such J the composite X < B, — B is a spatial morphism of spatial diamonds. Its image is a pro-
constructible generalizing subset of B and can thus be written as ), A, Ua where U, is a quasicompact
open subset of B. Then one has
X = &ln m U,. ]
JCIa€Ay

LEMMA IV.2.17. Let X be a spatial diamond and A € D¢ (X, A) perfect-constructible, and let B €
Det(X, A) be arbitrary. Then the formation of R.7omy (A, B) commutes with any base change.

ProoF. Using [Sch17a Proposition 20.16 (iii)] this is reduced to the case when A = j(£|z) where
j + U — X is separated quasicompact étale, Z C U closed constructible, and £ € De(U, A) locally
constant with perfect fibres. If j : U \ Z — X, that is again quasicompact (since Z is constructible inside
U) separated étale, using the exact sequence 0 — j{L£ — jiL — ji (£z) — 0, this is reduced to the case of
A of the form 5 £. In this case R.#omy (A, —) is given by Rj.(LY ®Y% j*—), and this commutes with any
base change by quasicompact base change, [[Sch17a, Proposition 17.6]. O

One has to be careful that, in general, the naive dual of a perfect constructible complex is not con-
structible. The following lemma says that in fact it is overconvergent, so never constructible unless locally
constant.

LEMMA IV.2.18. For X aspatial diamond and A € D¢ (X, A) perfect constructible, R.7Zomp (A, A) is
overconvergent.

Proor. Using Lemma this is reduced to the case when X = Spa(C, C"). Moreover, one can
assume that A = jA for some quasicompact open immersion j : U — X. Then R7%omy (A, A) = Rj. A =
A, which is overconvergent. O

IV.2.3.2. Twisted inverse images. Also, if A is f-ULA, then one can relate appropriately A-twisted
versions of f* and Rf".

PROPOSITION IV.2.19. Let f : X — S be a compactifiable map of locally spatial diamonds with locally
dim. trg f < coandlet A € D¢t (X, A) be f-universally locally acyclic. Then for all B € D¢(S, A), the

natural map
Dx/s(A) @ f*B — RAomy(A, Rf'B)
given as the composite

Ritomp (A, Rf'A) @Y% f*B — R#omp (A, Rf'A @Y% f*B) — R#omy (A, Rf'B)

is an isomorphism.

PRroOF. First, we note that both sides commute with any base change, by Proposition

It suffices to check that we get an isomorphism on stalks at all geometric points Spa(C, C") of X.
For this, we may base change along the associated map Spa(C, Ct) — S to reduce to the case that S =
Spa(C, C") is strictly local, and we need to check that we get an isomorphism at the stalk of a section
5 : 8 — X. Wemay also assume that X is spatial, in which case X is of bounded cohomological dimension,
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so [Sch17a, Proposition 20.17] applies, and perfect-constructible complexes are the same thing as compact

objects in Det(X, A) = D(Xet, A).
Next, we note that the functor B +— R.#omy (A, Rf'B) is right adjoint to A’ — Rfi(A ®% A’). The

latter functor preserves perfect-constructible complexes, i.e. compact objects, by condition (b), see Lemma

Thus, B — Rs#omp (A, Rf'B) commutes with arbitrary direct sums, see Lemma Obvi-
ously, the functor B — Dy /g(A) ®% f* B also commutes with arbitrary direct sums, so it follows that it suf-

fices to check the assertion for B = jj A for some quasicompact open immersion j : S’ = Spa(C,C'") — S
(the shifts of those compact objects generate Dt (S, A)). If S" = S, then B = A and the result is clear. Oth-
erwise, the stalk of jiA at the closed point is zero, and thus the stalk of the left-hand side Dx/5(A) % f*B
at our fixed section is zero. It remains to see that the stalk of

R#omp (A, Rf'ji1A)

at the (closed point of) the section s : S — X is zero. This stalk is given by the filtered colimit over all
quasicompact open neighborhoods U C X of s(.5) of

RHomp,,a)(Alv, Rf jiAly) = RHomp,(s2)(RfuiAlu, jiA),

where fi; : U — S denotes the restriction of f (the possibility to use only open embeddings in place of
general étale maps results from the observation that the intersection of all these open subsets is the strictly
local space S already; the set of open neighborhoods of s(S) is cofinal among étale neighborhoods of s(.9)).

Now we claim that the inverse systems of all such U and of the compactifications U'® are cofinal. Note

that the intersection of all T (taken inside X/ S) is simply s(5): Indeed, given any point = € x/* \ s(S),
there are disjoint open neighborhoods € V and s(S) C U. In fact, the maximal Hausdorff quotient

|Y/S|B is compact Hausdorff by [Sch17a| Proposition 13.11] and its points can be identified with rank 1

points of X/ S, which are the same as rank 1 points of X. But as s(5) C X% i closed, no point outside
s(S) admits the same rank 1 generalization, so  and s(S) define distinct points of the Hausdorff spaces

|Y/S|, so that the desired disjoint open neighborhoods = € V' and s(S) C U exist. Then x ¢ ", Thus,

Now given any open neighborhood U of s(.5), the complement ]Y/ S\ \ U is quasicompact, which then
implies that there is some U’ such that "%  U. 1t follows that the direct systems of

RfunAlu

and

R fﬁ/s*Rz’!U/sA

. . /S +=/S . .
are equivalent, where I/ U S x and fU/S : U/ — S are the evident maps. Now observe that if
Jx + Xy = X xgSpa(C,O¢) — X denotes the proconstructible generalizing immersion, then condition
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() in being f-locally acyclic implies that A = Rj’y, A|x, (see Remark[IV.2.3), and then
RfU/S*Ri!U/SA - RfU/S*Ri!U/s Rjx. Alx,
= RJ”U/S*RJJU/S*113%7/75141)(,7
= Rjs.Rfy/s RiosAlx,
" "

with hopefully evident notation; in particular, j§ : Spa(C, O¢) — S = Spa(C, C") denotes the pro-open
immersion of the generic point on the base.

In summary, we can rewrite the stalk of R.7Zomy (A, Rf'jiA) at s(S) as the filtered colimit of
RHomp,(s2)(Ris. Rfp/s Rizys A, jib),
" "

and we need to prove that this vanishes. This follows from the observation that forall M € D¢ (Spa(C,O¢),A) =
D(A), one has
R HomDet(&A) (ijg*M, _]uA) = 0
For this, note that Rjg, M = M is just the constant sheaf given by the complex of A-modules )/, and one
has a triangle

RHomp,s4)(M, jiA) = RHomp,51)(M, ) = RHomp, (s ) (M, i),

where ¢ denotes the complementary closed immersion. Both the second and last term are given by R Homy (M, A),

finishing the proof. O

We used the following classical lemma, cf. [Nee96) Theorem 5.1].

LEMMA IV.2.20. Let C and D be triangulated categories such that C is compactly generated. Let F' :
C — Dand G : D — C be such that G is right adjoint to F'. If F' sends compact objects to compact objects
then G commutes with arbitrary direct sums.

PROOF. Since C is compactly generated it suffices to prove that for any compact object A in C and
any collection (B;); of objects of D, Hom(A, ®;G(B;)) — Hom(A,G(®;B;)). By compactness of A,
Hom(A, ®;G(B;)) = &; Hom(A, G(B;)), by adjunction this is equal to &; Hom(F'(A), B;), since F'(A) is
compact this is equal to Hom(F'(A), @;B;), and by adjunction this is Hom(A, G(®;5;)). O

REMARK IV.2.21.

(i) In fact, outside of the overconvergence condition (a) in Definition the property of Proposi-
tion characterizes locally acyclic complexes under the assumption that locally on X the exists
an integer /N such that for any U — X quasicompact separated étale the cohomological dimension of
Ue is bounded by N. More precisely, if j : U — X is separated étale with f o j quasicompact then
RHomy (R(f o j)1A, B) = RT'(U, R#omy (A, Rf'B)). Thus, if for all B one has Dy /s(A) @ f*B =
Rs#omp (A, Rf'B) then R(f o j)1A is compact since RT'(U, —) commutes with arbitrary direct sums.

(i) Outside of the overconvergence condition (a) in Definition[IV.2.1} the property of Proposition

universally on S characterize universally locally acyclic objects. In fact, using [Sch17a, Proposition 20.13],
the constructibility property is reduced to the case when the base is strictly totally disconnected, in which
case we can apply point (i).
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Finally, let us note that all the previous results extend to the setting where the base .S is a general small
v-stack, taking the following definition.

DEFINITION IV.2.22. Let f : X — S beamap of small v-stacks that is compactifiable and representable
in locally spatial diamonds with locally dim.trg f < oco. Let A € D¢ (X,A). Then A is f-universally
locally acyclic if for any map S’ — S from alocally spatial diamond S” with pullback f/ : X' = X x g5’ —
S’, the complex A|x/ € Det(X', A) is f'-locally acyclic.

IV.2.3.3. Dualizability. From the previous two propositions, we can deduce an analogue of a recent
result of Lu-Zheng, [LZ22]], characterizing universal local acyclicity in terms of dualizability in a certain
monoidal category. We actually propose a different such characterization closer to how dualizability will
appear later in the discussion of geometric Satake. In terms of applications to abstract properties of universal
local acyclicity, such as its preservation by Verdier duality, it leads to the same results.

Fix a base small v-stack .S, and a coefficient ring A (killed by some integer prime to p). We define a
2-category Cg as follows. The objects of Cg are maps f : X — S of small v-stacks that are compactifiable,
representable in locally spatial diamonds, with locally dim. trg f < oco. Forany X,Y € Cg, the category
of maps Func, (X, Y') is the category Det(X x g Y, A). Note that any such A € Det(X xgY, A) defines in
particular a functor

Det(X,A) = Dt(Y,A) : B — Ry (A% 71 B)
with kernel A, where 71 : X xgY — X, m : X XgY — Y are the two projections. The composition in
Cs is now defined to be compatible with this association. More precisely, the composition

Fune, (X,Y) x Funey (Y, Z) — Funey (X, Z)
is defined to be the functor
Det(X x5 Y,A) x Det(Y x5 Z,A) = Dee(X x5 Z,A) : (A, B) — A% B = Ruy3(n},A @Y% 75, B)
where 7;; denotes the various projections on X x gY X g Z. It follows from the projection formula that this
indeed defines a 2-category Cs. The identity morphism is given by RA|A = RAA € Dt (X xg X, A),
where A : X < X xg X isthe diagonal (which is a closed immersion, as the morphism X — S is assumed
to be compactifiable, in particular O-truncated and separated). We note that Cg is naturally equivalent to

C;p. Indeed, Det(X X gY, A) is invariant under switching X and Y, and the definition of composition (and
coherences) is compatible with this switch.

Recall that in any 2-category C, there is a notion of adjoints. Namely, a morphism f : X — Y isaleft
adjoint of g : Y — X if there are maps o : idx — ¢f and 3 : fg — idy such that the composites

8
FI% raf 2L 5 g 2% grg 2 g

are the identity. If a right adjoint g of f exists, it is (together with the accompanying data) moreover
unique up to unique isomorphism. As is clear from the definition, any functor of 2-categories preserves
adjunctions. In particular, this applies to pullback functors Cs — Cgs for maps S’ — S of small v-stacks,
or to the functor from Cg to triangulated categories taking X to D¢t (X, A) and A € Func,(X,Y) to the
functor Ry (A ®% 77 —) with kernel A.

THEOREM IV.2.23. Let S beasmall v-stackand X € Cg,and A € D¢ (X, A). The following conditions

are equivalent.

(i) The complex A is f-universally locally acyclic.
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(i) The natural map
PiDx/s(A) @K p3A — RAomy(pi A, Rpy A)
is an isomorphism, where p1,p2 : X Xg X — X are the two projections.
(iii) The object A € Func (X, S) is a left adjoint in Cg. In that case, its right adjoint is given by

Dy ,5(A) € De(X, A) = Fung, (S, X).

ProoF. That (i) implies (ii) follows from Propositionand Proposition For (ii) implies
(iii), we claim that A € Func, (X, S) is indeed a left adjoint of Dy /5(A) € Func, (A). The composites are
given by

AxDy,5(A) = Rfi(Dx,s(A) ®% A) € Der(S, A) = Funey (S, S)
and
Dy /s(A) x A= piA®y psDx/s(A) € Der(X x5 X, A) = Funey (X, X).
Then we take 8 : A x Dy /g(A) — idg to be given by the map Rfi(Dy,s(A) ®% A) — A adjoint to the
map Dy /g(A) ®% A — Rf'A which is just the tautological pairing. On the other hand, for « : idxy —
Dx/s(A) x A, we have to produce a map

RAA — pfA @ psDy/s(A).
Using (ii), the right-hand side is naturally isomorphic to R7Zom (p; A4, Rp!QA). Now maps from RAA

are adjoint to sections of

RA'Rtomy (pi A, RpyA) = Ritomy (A, A)
(using [Sch17a, Theorem 1.8 (v)]), which has the natural identity section. It remains to prove that certain
composites are the identity. This follows from a straightforward diagram chase.

Finally, it remains to prove that (iii) implies (i). We can assume that S is strictly totally disconnected.
It follows that the functor Rfi(A ®% —) admits a right adjoint that commutes with all colimits. This
implies that condition (b) in Definition is satisfied. In fact, more precisely we see that the right
adjoint R#omy (A, Rf'—) is given by A’ ®% f*— for some A’ € Det(X, A), and by using the self-duality
of C%¥, we also see that R.#omy(A’, Rf'~) is given by A ®% f*—. Applied to the constant sheaf, this
shows in particular that A = R.Zomy (A, Rf 'A) is a Verdier dual. For condition (a), we can assume
that S = Spa(C,C™") and reduce to checking overconvergence along sections s : S — X. In fact, using
part (2) of Remark let j : Spa(C,O¢) — Spa(C,C™) be the pro-open immersion, with pullback
Jx 1 X Xgpa(o,oy Spa(C, Oc) — X, and f; : X Xgpac,0+) Spa(C, Oc) — Spa(C, O¢) the restriction of
f. To see the overconvergence, it is enough to see that A = Rjx, Ay for some Ay. But
A~ Ritomp (A", Rf'A) = Rtomp (A, Rf' Rj.\)
= RAfomp (A, Rjx.Rf,A) = Rjx.RAomp (3 A, Rfy; ),

giving the desired overconvergence. O

Before moving on, let us observe the following relative variant.

PROPOSITION IV.2.24. Let S beasmall v-stackand X,Y € Cg. If Y /Sisproperand A € Func (X,Y) =
Det(X x5 Y, A) is pa-universally locally acyclic, then it is a left adjoint and the right adjoint is given by

Dx gy v (A) € Det(X x5 Y, A) = Dt(Y x5 X, A) = Fung, (Y, X).
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The assumption that Y /S is proper is important here. Already if X = Sand A = A € D« (Y, A),
which is always idy -universally locally acyclic, being a left adjoint in Cg implies that there is some B €
De(Y, A) for which Rf. = Rfy(B ®% —).

PrROOF. We need to produce the maps o and 3 again. Let us give the construction of o, which is the
harder part. First, using the various projections m;; on X xgY xg X, we have

ID)XXsY/Y(A) * A2 Rmia (wszXXSy/y(A) ®% T3 A) = Rz R omy (17154, R7T!23A)

using that A is ps-universally locally acyclic, and properness of 713 (which is a base change of Y — S).
Now giving a map RA|A — Dy, oy /vy (A) x 4, for A = Ax /g, amounts to finding a section of

RA'Rry3, Rtomy (155 A, Ry A) = Rp1*RA!Xxsy/YRf%”omA(7ﬁ‘2A, RrigA) = Rpy,RAomp (A, A),

where we can take the identity. O

Theorem has the following notable consequences.

CorOLLARY IV.2.25. Let f : X — S be a compactifiable map of locally spatial diamonds with lo-
cally dim. trg f < oo and let A € Dt (X, A) be f-universally locally acyclic. Then Dy /g(A) is again
f-universally locally acyclic, and the biduality map

A= Dyx/5(Dx/s(A))
is an isomorphism.

If fi : X; — Sfori = 1,2 are compactifiable maps of small v-stacks that are representable in locally
spatial diamonds with locally dim. trg f; < co and A; € Det(X;, A) are f;-universally locally acyclic, then
also A1 X Ay € Det(X; x5 X2,A)is f1 Xg fo-universally locally acyclic, and the natural map

Dy, /s(A1) WDy, /5(A2) = Dy, xgx,/5(A1 X Ag)

is an isomorphism.

PROOF. By Theorem([IV.2.23} the object Dy /4(A) € Func, (S, X)isarightadjointof A € Funcg (X, S).
But Cg = Cg; under this equivalence, this means that Dy g(A) € Fung, (S, X) is a left adjoint of
A € Fung, (S, X). Thus, applying Theorem again, the result follows.

For the second statement, note that A; € Dei(X;, A) define left adjoints, hence so does
A1 xAg = A1 KAy € Det(Xl Xg Xo, A) = FuncS(Xl X5 Xo, S)

Its right adjoint is the similar composition, giving the claim. O

The final statement admits the following generalization concerning “compositions” of universally lo-
cally acyclic sheaves.

PROPOSITION IV.2.26. Let g : ¥ — X and f : X — S be compactifiable maps of small v-stacks
representable in locally spatial diamonds with locally dim. trg f, dim. trg g < oo,andlet A € D¢t (X, A) be
f-universally acyclicand B € D¢ (Y, A) be g-universally locally acyclic. Then g* A®% Bis fog-universally
locally acyclic, and there is natural isomorphism

Dy ,5(g" A ® B) = g Dx/s(A) ®% Dy /x(B).
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PRrOOF. It is easy to see that condition (a) of being locally acyclic holds universally, so it suffices to
identify the functor R/#omp(g* A @% B, R(f o g)'—). We compute:

RAom (9" A®K B, R(f 0 9)'~) = Riomp(B, RAom (g A, Rg'Rf'~))
= RAomn(B, Rg'RAomy (A, Rf'—))
= Dy x(B) @% g* R#om(A, Rf'-)

=Dy/x(B) ®% g"Dx/s(A4) &% g* f*—,
implying that it commutes with colimits, hence its left adjoint preserves perfect-constructible complexes

(after reduction to strictly totally disconnected S and X and Y spatial). Moreover, evaluating this functor
at A gives the identification of the Verdier dual. O

Let us also note another corollary of Theorem concerning retracts.

CorROLLARY IV.2.27. Let f : X — Sand g : Y — S be maps of small v-stacks that are compactifiable
and representable in locally spatial diamonds with locally dim. trg f, dim.trgg < oo. Assume that f is
a retract of g over S, i.e. therearemaps¢ : X — Y, r : Y — X over S such that i = idx. If Ais
g-universally locally acyclic, then A is f-universally locally acyclic.

PROOF. One can check this directly from the definitions, or note that the map in Cg given by A €
Det(X,A) = Fung, (X, S) is a retract of the map given by A € D (Y, A) = Fune, (Y, S), from which one
can easily obtain adjointness. U

Moreover, in some cases the converse to Proposition |[IV.2.11/ holds.

PROPOSITION IV.2.28. Let g : ¥V — X, f : X — S be maps of locally spatial diamonds where g is
proper and quasi-pro-étale and f is compactifiable and locally dim. trg f < co. Then A € D (Y, A) is
f o g-universally locally acyclic if and only if Rg, A € D¢t (X, A) is f-universally locally acyclic.

PROOF. One direction is given by Proposition For the converse, assume that Rg.A is f-
universally locally acylic. To see that A is h = f o g-universally locally acyclic, it suffices by Theo-

rem that the map
p1y RAom(4, RR'A) @ Py y A — Ritom(p] y A, Rpé,yA)

in Det(Y xg Y, A) is an isomorphism, where p1y,p2y : Y XgY — Y are the two projections. As
gx59:Y xgY — X xg X is proper and quasi-pro-étale, pushforward along g x g g is conservative:
By testing on stalks, this follows from the observation that for a profinite set 7', the global sections functor
RT(T, —) is conservative on D(T', A) (as one can write any stalk as a filtered colimit of functors that are
direct summands of the global sections functor). Applying R(g X s g)« = R(g X g g): to the displayed map,
we get the map

p} x RA#om(Rg. A, Rf'A) ®F pb x Rg«A — RAom(p; x Rg.A, Rpy x Rg. A)
where p1 x,p2 x : X Xg X — X are the two projections. This is an isomorphism precisely when Rg. A is
f-universally locally acyclic. ]

The following corollary shows that smooth base change generalizes to universally locally acyclic maps.
The general version of this corollary was suggested by David Hansen.
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COROLLARY 1V.2.29 (ULA base change). Consider a cartesian diagram of small v-stacks

x-ox
if’ lf
s-2.5

with f representable in locally spatial diamonds, compactifiable, locally dim. trg f < oc. Assume that A is
f-universally locally acyclic. Then the base change map

F*Rg.A — R, f"* A

is an isomorphism. More generally, if B € D¢ (X, A) is f-universally locally acyclicand A € D¢ (S’, A),
then

(f*Rg.A) ®% B = Rj.(f*A®% §*B).

Such base change results are false without some hypothesis on f. For example, if S’ is a countable union
of copies of S and X is a geometric point of .S, this base change would assert that taking stalks commutes
with (countable) products, which fails in general.

PrOOF. We apply Proposition to the universally locally acyclic Dy ;g(B), so that by Corol-

lary[[V.2.25) we get
f*Rg.A @Y% B = Ritom,(Dx,s(B), Rf' Rg. A).

By [Schi7a) Theorem 1.9 (iii)], Rf' Rg. A = RG.Rf" A, and then one can rewrite further as
Rtomp(Dy/s(B), R Rf"A) = RG.RAomy (7" Dx 5(B), Rf" A).
Now another application of Proposition and Proposition gives the result. O

Finally let us note the following consequence of Theorem and [LZ22].

ProPOSITION IV.2.30. Let K be a complete non-archimedean field with residue characteristic p, f :
X — S a separated morphism of K-schemes locally of finite type, and A € D2(X,A). Then A is f-
universally acyclic if and only if its analytification A%? is £ universally locally acyclic, where f2%¢ :
xad,$ N Sad,O.

PrOOF. The criterion of Theorem (ii) applies similarly in the algebraic case by [LZ22], and all

operations are compatible with passing to analytic adic spaces (and diamonds) O

For example,if S = Spec K thenany A is f-universally locally acyclicand thus A% is f*%¢ universally
acyclic. This gives plenty of examples of ULA sheaves.

2For this compatibility, the case of ®, f* and fi is easy. The essential remaining case is Rj. for an open immersion j (both
internal Hom and 7' for closed immersions reduce to that case, and general f' can be reduced to closed immersions and smooth
maps, where the latter reduces to f*). The case of Rj. is [Hubg6| Theorem 3.8.1].
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IV.2.4. Local acyclicity for morphisms of Artin v-stacks. Using the descent results Remark[[V.2.2]and
Proposition one can extend the previous definition and results to the case of maps of Artin v-stacks
as follows.

DEFINITION IV.2.31. Let f : X — S be amap of Artin v-stacks and assume that there is some separated,
representable in locally spatial diamonds, and cohomologically smooth surjection g : U — X from alocally
spatial diamond U such that f o g : U — S is compactifiable with locally dim. trg(f o g) < oo. Then
A € Det(X, A) is f-universally locally acyclic if g* A is f o g-universally locally acyclic.

All previous results concerning universally locally acyclic complexes also hold in this setting (assuming
that the relevant operations are defined in the case of interest - we did not define Rf; and Rf* for general
stacky maps), and follow by the reduction to the case when S and X are locally spatial diamonds. In
particular, the characterization in terms of dualizability gives the following.

ProposiTION 1V.2.32. Let f : X — S be a cohomologically smooth map of Artin v-stacks, and let
A € Det (X, A). Consider X x g X with its two projections p1, p2 : X Xg X — X. Then A is f-universally
locally acyclic if and only if the natural map

piRAomp (A, A) @ psA — RAomp (p} A, psA)

is an isomorphism.

ProoF. Taking a chart for S, we can assume that .S is a locally spatial diamond, and then taking a
presentation for X we can assume that also X is a locally spatial diamond, noting that the condition com-
mutes with smooth base change. In that case, replacing some occurences of p3 by Rp!2 using cohomological

smoothness, the result follows from Theorem O

There is a simple characterization of /-cohomological smoothness in terms of universal local acyclicity.

PROPOSITION IV.2.33. Let f : X — S be a compactifiable map of v-stacks that is representable in
locally spatial diamonds with locally dim. trg f < co. Then f is /-cohomologically smooth if and only if
Fy is f-universally locally acyclic and its Verdier dual Rf'F; is invertible.

Note that in checking whether [y is f-universally locally acyclic, condition (a) of Definition is
automatic. Also, by Theorem the condition that [, is f-universally locally acyclic is equivalent to
the condition that the natural map

pTRf!Fg — Rp!ZFg
is an isomorphism, where p1,ps : X xg X — X are the two projections. Thus, f is /-cohomologically
smooth if and only if Rf'Fy is invertible and its formation commutes with any base change.

PROOF. The conditions are clearly necessary. For the converse, we may assume that S is strictly totally
disconnected. By Proposition the natural transformation of functors
RFA®X " — RS
isan equivalence. As Rf'A isassumed to be invertible (it commutes with base change by Proposition|[[V.2.15),
this shows that the condition of [[Sch17a, Definition 23.8] is satisfied. O

In particular, we can resolve a question from [Sch17al.
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CoRrOLLARY IV.2.34. The map f : Spd O — SpdF, is /-cohomologically smooth for all ¢ # p.

ProoF. This is clear if E is of equal characteristic, so assume that E is p-adic. First, we prove that F,
is f-ULA. This follows from f’ : Spd O, = SpdF,[t'/?*] — SpdF, being ¢-cohomologically smooth,
where E/F is some totally ramified Z,-extension, by the argument of the proof of [Sch17a, Proposition
24.3] (in essence, the compactly supported pushforward for any base change of f are the Z,-invariants
inside the compactly supported pushforward for the corresponding base change of f’, so constructibility
of the latter implies constructibility of the former).

It remains to show that Rf'Fy is invertible. If j : Spd E — Spd Op is the open immersion with
complement i : SpdF, — Spd O, we have Ri' Rf'F, = F, by transitivity, and j* Rf'F, = F(1)[2] by
[Schi7a| Proposition 24.5], so we get a triangle

ixFo = Rf'Fy — Rj.Fy(1)[2].
Using this, one computes Rf'F; = Fy(1)[2], as desired. O

IV.3. Formal smoothness

IV.3.1. Definition. A key step in the proof of Theorem the Jacobian criterion of cohomological

smoothness, is the following notion of formal smoothness.

DEFINITION IV.3.1. Let f : ¥ — X be a map of v-stacks. Then f is formally smooth if for any affinoid
perfectoid space S of characteristic p with a Zariski closed subspace Sy C .S, and any commutative diagram

SOLY

|, b

s, x,

there is some étale map S’ — S containing Sy in its image and amap g : S’ — Y fitting in a commutative
diagram

S’XSSOHSOLY

)

S’ S

This kind of formal smoothness is closely related to the notion of absolute neighborhood retracts
([Bor67]], [Dol80])). In fact, suppose Y — X is formally smooth with ¥ and X affinoid perfectoid. Choose
a Zariski closed embedding Y < B for some set I. Then there exists an étale neighborhood U — B, of
Y such that the closed embedding

admits a retractionr : U — Y Xpl U,roi = Id. Thus,Y /X is aretract of an (étale) neighborhood inside
aball/X.
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IV.3.2. Examples and basic properties. We will see that formally smooth morphisms share analogous
properties to cohomologically smooth morphisms. Let’s begin with the following observations:

(i) The composite of two formally smooth morphisms is formally smooth,

(ii) The formally smooth property is stable under pullback: if Y — X is formally smooth and X’ — X is
any map then Y x x X’ — X' is formally smooth.

(iii) Etale maps are formally smooth.

(iv) For morphisms of locally spatial diamonds, formal smoothness is étale local on the source and the target.

Let us observe that, like cohomologically smooth morphisms, formally smooth morphisms are univer-
sally open.

PROPOSITION IV.3.2. Formally smooth maps are universally open.

PROOF. Let Y — X be formally smooth. We can suppose X is affinoid perfectoid. Since any open
subsheaf of Y is formally smooth over X we are reduced to prove that the image of ¥ — X is open. Let
S — Y be a morphism with S affinoid perfectoid. Choose a Zariski closed embedding S < B for some
set I. The formal smoothness assumption implies that there exists an étale neighborhood U — B of
S C B such that S xgr U—=5=Y extends toamap U — Y/; in particular, the image of S — Y — X
is contained in the image of U — Y — X, and it suffices to prove that the latter is open. We can suppose
U is quasicompact and separated over BY. Writing B = lim | BY- where J goes through the set of finite
subsets of I, there exists a some J C [ finiteand V' — Bg( such that U — Bg( is the pullback of V' — 18%37(
via the projection IB%& — Bgf, cf. [Sch17a) Proposition 6.4]. Since Bg( — IB%g( is a v-cover,

Im(U = X) =Im(V — X).

Now, using that V' — B, — X is open, since cohomologically smooth for example, this is an open subset

of X. O

Let us begin with some concrete examples. In the following, B —  is the v-sheaf O on Perf}, and
A! — x is the v-sheaf O.

ProPOSITION IV.3.3. The morphisms B — *, Al — x and Spd O — * are formally smooth.

ProoF. Let Sy = Spa(Ro, Ry) < S = Spa(R, R") be a Zariski closed embedding of affinoid per-
fectoid spaces. Then R — Ry is surjective, which immediately shows that A’ — x is formally smooth.
The case of B — x* follows as B C A! is open. For Spd O, note that any untilt of Sy can be given by
some element £ € Wo,, (RJ) of the form &y = 7 + Y00 7[r; o] where all r; € RS°. But R°® — RS° is
surjective (cf. the discussion after [Schi7a) Definition 5.7]), so one can lift all 7,0 € R° to r; € R°°, and
then { = 7 + > o0, 7'[r;] defines an untilt of S over O lifting the given one on Sp. O

COROLLARY IV.3.4. Is f : ¥ — X is a smooth morphism of analytic adic spaces over Z,, then f< :
Y — X is formally smooth.

PROOF. Any smooth morphism is locally étale over a finite-dimensional ball. O

Let us remark the following.
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ProposITION IV.3.5. If f : Y — X is a formally smooth and surjective map of v-stacks, then f is
surjective as a map of étale stacks. Equivalently, in case X is a perfectoid space, the map f splits over an
étale cover of X.

PROOF. We can suppose X is affinoid. There exists a surjective morphism X’ — X with X’ affinoid
perfectoid and a section s : X’ — Y of Y — X over X’. Let us choose a Zariski closed embedding
X' < BL.. Applying the formal smoothness property we deduce there is an étale neighborhood U — B
of X’ C Bl and a section over U of Y — X. It thus suffices to see that U — X admits a section over an
étale cover of X. As in the proof of Propositionthere exists a finite subset JJ C I, and quasicompact
étale map V' — BY such that U — B is the pullback of V' — B via the projection BY, — BY. This
reduces us to the case [ is finite. We may also replace V' by its image in BY.. At geometric points, the
splitting follows from [Schi17a) Lemma 9.5]. Approximating a section over a geometric point over an étale
neighborhood then gives the desired splitting on an étale cover. O

According to [Schi7a) Proposition 23.13] cohomological smoothness is cohomologically smooth local
on the source. The same holds for formally smooth morphisms.

CoROLLARY IV.3.6. Let f : ¥ — X be a morphism of v-stacks. Suppose there exists a v-surjective
formally smooth morphism of v-stacks g : Y/ — Y such that f o g is formally smooth. Then f is formally
smooth.

PROOF. Given a test diagram gg : So — Y, h : S — X as in Definition we can first lift
So — Y étalelocally to Y’ by Proposition[[V.3.5) and the required étale neighborhoods lift to S by [Sch17a
Proposition 6.4] applied to Sy as the intersection of all open neighborhoods in S. Thus, the diagram can
be lifted to a similar test diagram for Y’ — X, which admits a solution by assumption. O

Let us remark the following.

ProposITION IV.3.7. The stack Bung — * is formally smooth.

PRrOOF. Let Sy = Spa(Ry, Rar ) C S = Spa(R, R") be a Zariski closed immersion of affinoid perfectoid
spaces over Spd k, and fix a pseudouniformizer @w € R. Let & be a G-bundle on Xg,. Pick any geometric
point Spa(C, CT) — Sp; we intend to find an étale neighborhood U — S of Spa(C,C") in S such that

the G-bundle over U x g Sy extends to U.

Note that the pullback of & to Y |1 4) is a trivial G-bundle, by Theorem From [GRo3, Propo-
sition 5.4.21] (applied with R = @V O+(YV,[1,q}): t = mand I = 0, where V' — Sy runs over étale
neighborhoods of Spa(C, C") in S; all of these lift to S) it follows that after passing to an étale neigh-
borhood as above, we can assume that the pullback of & to Yoo, 1, 152 trivial G-bundle. In that case, & is
given by some matrix A € G(Bp, [1,1]) encoding the descent. Applying [GRo3)} Proposition 5.4.21] again,
with

R = m O+(YU’[171]), t = T, I = ker(R — hAﬁO+(YU7[1’1})),
SocUCS U
then shows that we may lift A into a neighborhood, as desired. O

The following is the analog of Proposition [II.3.5|(iii).
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PROPOSITION IV.3.8. Let S be a perfectoid space and let [£; — &] be a map of vector bundles on
Xg such that & is everywhere of positive Harder—Narasimhan slopes, and &£ is everywhere of negative
Harder—Narasimhan slopes. Then BC([€1 — &y]) — S is formally smooth.

PROOF. Using the exact sequence
0 — BC(&) — BC([&1 — &) — BC(&1[1]) = 0

and Proposition (iii) to get étale local surjectivity of the second map, one reduces to the individual
cases of BC(&y) and BC(&1[1]). For & = &, we can use Corollary|[II.3.3]to choose étale locally on S a short
exact sequence

00— Oxs(H)"—=E—=0

where G is fiberwise on S semistable of positive slope. Moreover, by Proposition (iii), one can also
ensure that H'(Xg,G|x,,) = 0 for all affinoid perfectoid spaces S — S. In particular, if Sy C Sisa
Zariski closed immersion of affinoid perfectoid spaces, the map Ox,(2)™(S0) — £(So) is surjective, and
we can replace £ by Ox,(2)™. But then Proposition (iv) shows that this Banach-Colmez space is
representable by a perfectoid open unit disc, which is formally smooth.

For £ = £, we can use Theorem to find a short exact sequence
08— O0x4(d)™" =G —0
for some d, m > 0 (so G necessarily has only positive slopes), and this induces an exact sequence
0 — BC(Ox4(d)™) — BC(G) — BC(E1]) — 0

where the middle term is formally smooth by the preceding, and the map BC(G) — BC(E]1]) is formally
smooth (as étale locally surjective and its fibre BC(Ox, (d)™) is formally smooth). We conclude by Corol-

lary [V-3.6 O

IV.4. A Jacobian criterion

The goal of this section is to prove that certain geometrically defined diamonds are cohomologically
smooth when one expects them to be. We regard this result as the most profound in the theory of diamonds
so far: While we cannot control much of the geometry of these diamonds, in particular we have no way
to relate them to (perfectoid) balls in any reasonable way, we can still prove relative Poincaré duality for
them. The spaces considered below also appear quite naturally in a variety of contexts, so we expect the
result to have many applications.

The setup is the following. Let S be a perfectoid space and let Z — Xg be a smooth map of sous-
perfectoid adic spaces — defining this concept of smoothness will be done in a first subsection, but it is
essentially just a family of smooth rigid spaces over Xg, in the usual sense. One can then consider the
v-sheaf M of sections of Z — Xg, sending any perfectoid space S’ — S to the set of maps Xg» — Z
lifting X» — Xg. In general, we cannot prove that Mz is a locally spatial diamond, but this turns out to
be true when Z is quasiprojective in the sense that it is a Zariski closed subspace of an open subset of (the
adic space) P’y _ for some 1 > 0.

In general, the space Mz — S is not (cohomologically) smooth: If tangent spaces of M, — S would
exist, one would expect their fibre over S’ — M, given by some section s : Xg — Z, to be given by
H(Xg,5"T, /xg)» where Tz . is the tangent bundle of Z — Xg; and then an obstruction space would
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be given by H'(Xg/,5*Tx,). Thus, one can expect smoothness to hold only when H'(Xg,5T7/xy)
vanishes. This holds true, locally on .5, if all slopes of s*T',x are positive (by Proposition [I1.3.4](iii)),
suggesting the following definition.

DEFINITION 1V.4.1. Let M$* C Mz be the open subfunctor of all sections s : Xgs — Z such that
s*Tyx has everywhere positive Harder—Narasimhan slopes.

Roughly speaking, one expects M to look infinitesimally like the Banach—Colmez space BC(s* Tz x );
these indeed are cohomologically smooth when all slopes are positive, by Proposition (iii). Unfortu-
nately, we are unable to prove a direct relation of this sort; however, we will be able to relate these spaces
via a “deformation to the normal cone”.

Our goal is to prove the following theorem.

THEOREM IV.4.2. Let S be a perfectoid space and let Z — Xg be a smooth map of sous-perfectoid
spaces such that Z admits a Zariski closed immersion into an open subset of (the adic space) P% , for some
n > 0. Then My is a locally spatial diamond, the map Mz — S is compactifiable, and M* — S is
cohomologically smooth.

Moreover, for a geometric point « : Spa C' — M$}" given by amap SpaC' — S and a section s : X¢ —
Z, the map M7 — S'is at x of {-dimension equal to the degree of s"T7 x .

REMARK IV .4.3. The map M — S is a natural example of a map that is only locally of finite dimen-
sion, but not globally so (as there are many connected components of increasing dimension).

REMARK 1V.4.4. In the “classical context” of algebraic curves the preceding theorem is the following
(easy) result. Let X /k be a proper smooth curve and Z — X be quasi-projective smooth. Consider Mz
the functor on k-schemes that sends S to morphisms s : X xj; S — Z over X. This is representable by
a quasi-projective scheme over Spec(k). Let M%" be the open sub-scheme defined by the condition that if
s: X X S — Zisan S-point of M7 then the vector bundle s*1'7,x has no H' fiberwise on S. Then
M — Spec(k) is smooth.

REMARK IV.4.5. Suppose that W is a smooth quasi-projective I/-scheme. The moduli space Mz with
Z = W x g Xg classifies morphisms X g — W i.e. Mz isamoduli of morphisms from families of Fargues—
Fontaine curves to W. This is some kind of “Gromov-Witten” situation.

REMARK IV .4.6. We could have made the a priori weaker assumption that Z admits a Zariski closed
immersion inside an open subset of P(£) where € is a vector bundle on Xg. Nevertheless, since the result
is local on S and we can suppose it is affinoid perfectoid, and since when S is affinoid perfectoid Ox (1)
“is ample” i.e. there is a surjection Ox,(—N)" — &€ for N, n > 0, this assumption is equivalent to the one
we made i.e. we can suppose € is free.

ExampLE 1V.4.7 (The Quot diamond). Let £ be a vector bundle on Xg. We denote by
Quotg — S

the moduli space over S of locally free quotients of £. Fixing the rank of such a quotient, one sees that
Quoty is a finite disjoint union of spaces M 7 with Z — X a Grassmannian of quotients of £. This is thus
representable in locally spatial diamonds, compactifiable, of locally finite dim. trg.

Let Quotz® C Quotg be the open subset parametrizing quotients u : £ — F such that fiberwise, the
greatest slope of keru is strictly less than the smallest slope of . According to Theorem this is

cohomologically smooth over S.
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n,sm,o

Fix an integer n > 1. For some N € Zand r € N>y, let QuotO(N’)T be the open subset of Quotigm(N)T
where the quotient has rank 7 and its slopes are greater than /N. When IV and 7 vary one constructs, as in

the “classical case”, cohomologically smooth charts on Bungy,,, using Quotgz%’;r. In fact, the morphism

7,Sm,0
Quot (N Bungy,,

given by the quotient of O(NN)" is separated cohomologically smooth. When pulled back by a morphism
S — Bungy,, with S perfectoid, this is an open subset of a positive Banach—Colmez space.

We will not use the Quot diamond in the following. In section using the Jacobian criterion, we
will construct charts on Bung for any G that are better suited to our needs.

IV.4.1. Smooth maps of sous-perfectoid adic spaces. We need some background about smooth mor-
phisms of adic spaces in non-noetherian settings. We choose the setting of sous-perfectoid adic spaces as
defined by Hansen-Kedlaya, [HK20], cf. [SW20) Section 6.3]. Recall that an adic space X is sous-perfectoid
if it is analytic and admits an open cover by U = Spa(R, R") where each R is a sous-perfectoid Tate alge-
bra, meaning that there is some perfectoid R-algebra Rsuchthat R — Risa split injection in the category
of topological R-modules.

The class of sous-perfectoid rings R is stable under passage to rational localizations, finite étale maps,
and R(T1,...,T,). As smooth maps should be built from these basic examples, we can hope for a good
theory of smooth maps of sous-perfectoid spaces.

Recall that amap f : Y — X of sous-perfectoid adic spaces is étale if locally on the source and target
it can be written as an open immersion followed by a finite étale map.

DEFINITION IV.4.8. Let f : Y — X be a map of sous-perfectoid adic spaces. Then f is smooth if one
can cover Y by open subsets V' C Y such that there are étale maps V — B¢% for some integer d > 0.

It can immediately be checked that analytifications of smooth schemes satisfy this condition.

PROPOSITION 1V.4.9. Let X = Spa(A, A1) be an affinoid sous-perfectoid adic space, and let fj : Yy —
Spec A beasmooth map of schemes. Let f : Y — X be theanalytification of fy : Yj — Spec A, representing
the functor taking Spa(B, B™) — Spa(A, A™) to the Spec B-valued points of Yy — Spec A. Then f : Y —
X is smooth.

ProOF. Locally, fy is the composite of an étale and the projection from affine space. This means that its
analytification is locally étale over the projection from the analytification of affine space, which is a union

of balls, giving the result. O

Let us analyze some basic properties of smooth maps of sous-perfectoid adic spaces.
PROPOSITION IV.4.10. Let f : Y — X and g : Z — Y be maps of sous-perfectoid adic spaces.

(i) The property of f being smooth is local on Y.

(i) If f and g are smooth, then sois fog: Z — X.

(iii) If h : X’ — X is any map of sous-perfectoid adic spaces and f is smooth, then the fibre product
Y’ =Y xx X’in adic spaces exists, is sous-perfectoid, and f’ : Y' — X is smooth.

(iv) If f is smooth, then f is universally open.
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(v) If f is smooth and surjective, then there is some étale cover X’ — X with a lift X' — Y.

Regarding part (i), we note that we will see in Proposition that the property of f being smooth
is in fact étale local on Y (and thus smooth local on X and Y/, using (v)).

PROOF. Part (i) is clear from the definition. For part (ii), the composite is locally a composite of an
étale map, a projection from a ball, an étale map, and another projection from a ball; but we can swap the
two middle maps, and use that composites of étale maps are étale. Part (iii) is again clear, by the stability
properties of sous-perfectoid rings mentioned above. For part (iv), it isnow enough to see that f is open, and
we can assume that f is a composite of an étale map and the projection from a ball, both of which are open.
For part (v), using that f is open, we can work locally on Y and thus assume again that it is a composite
of an étale map and the projection from a ball; we can then replace Y by its open image in the ball. By
[Schi7a, Lemma 9.5], for any geometric point Spa(C, C*) — X of X, we can find a lift to Y. Writing the
geometric point as the limit of affinoid étale neighborhoods, the map to Y’ C B4 can be approximated at
some finite stage, and then openness of Y ensures that it will still lie in Y. This gives the desired étale cover

of X over which f splits. O

Of course, the most important structure of a smooth morphism is its module of Kahler differentials.
Recall that if Y is sous-perfectoid, then one can define a stack (for the étale topology) of vector bundles
on Y, such that for Y = Spa(R, R") affinoid with R sous-perfectoid, the category of vector bundles is
equivalent to the category of finite projective R-modules; see [KL15],, [SW20, Theorem 5.2.8, Proposition
6.3.4]. By definition, a vector bundle on Y is an Oy -module that is locally free of finite rank.

DEFINITION IV.4.11. Let f : Y — X be a smooth map of sous-perfectoid adic spaces, with diagonal
Ap:Y =Y xx Y. LetZy,x C Oyxy be the ideal sheaf. Then

Q%f/x = IY/)(/I}2//)(

considered as Oy« . v /Ly /x = Oy-module.

It follows from the definition that there is a canonical O x-linear derivation d : Oy — Q%, /X0 given
byg—g®1-1®g.

PROPOSITION IV.4.12. Let f : ¥ — X be a smooth map of sous-perfectoid adic spaces. Then €2}, /x 18
a vector bundle on Y. There is a unique open and closed decomposition Y = Y, U Y7 U ... LY}, such that
Q3 % |y, isof rank d foralld = 0, ..., n. In that case, for any nonempty open subset V' C Y;; with an étale
map V — B, necessarily d’ = d.

We will say that f is smooth of dimension d if €2}, /x 1s of rank d. By the proposition, this is equivalent

to asking that Y can be covered by open subsets V that admit étale maps V — B%. In particular, f is
smooth of dimension 0 if and only if it is étale.

PROOF. It is enough to show that if f is a composite of an étale map ¥ — B% with the projection
to X, then O, /x 1 isomorphic to Of.. Indeed, this implies that ()3, /x 1s a vector bundle in general, of
the expected rank; and the decomposition into open and closed pieces is then a general property of vector

bundles.
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Let Y =B%. ThenY xx Y — Y’ xx Y'isétale,and themap Y — Y’ xyry .y (Y xx Y) isan
open immersion (as the diagonal of the étale map Y — Y”). It follows that Zy- /x is the pullback of Zy/ x:.
But Y’ — Y’ x x Y’ is of the form

Spa(R(Tt,..., Tp), RH(Ty, ..., T)) — Spa(R(TY ..., 70 7@ 1@y p(rD . 1))

n

if X = Spa(R, R"), and the ideal sheaf is given by (Tl(l) — T1(2), e ,TT(LI) - T,?)). This defines a regular

sequence after any étale localization, by the lemma below. This gives the claim. O

LEMMAIV.4.13. Let X = Spa(R(T1,...,T,), RT(T1,...,T,)) where R isa sous-perfectoid Tate ring,
let Y = Spa(S, S*) where S is a sous-perfectoid Tate ring, and let f : ¥ — X be a smooth map. Then
Ti,...,T, define a regular sequence on S and (71, ...,7},)S C S isa closed ideal.

PROOF. By induction, one can reduce to the case n = 1. The claim can be checked locally, so we can
assume that Y is étale over IBB% for some d; replacing X by BdX, we can then assume that f is étale. Let
Yy C Y be the base change to Xy = Spa(R, RT) = V(T') C X; then Y and Y}, X x, X are both étale over
X and become isomorphic over Xg C X. By spreading of étale maps, this implies that they are isomorphic
after base change to X’ = Spa(R(1"), R™ (1")) where T" = @"T for some n (and  is a pseudouniformizer
of R). This easily implies the result. O

Locally around a section, any smooth space is a ball:

LEMMA IV.4.14. Let f : Y — X be a smooth map of sous-perfectoid spaces with a section s :
Spa(K, K*) — Y for some point Spa(K, K*) — X. Then there are open neighborhoods U C X of
Spa(K, K*)and V C Y of s(Spa(K, K*)) such that V = BY.

PROOF. We can assume that X and Y are affinoid. If f is étale, then any section extends to a small
neighborhood (e.g. by [Sch17a) Lemma 15.6, Lemma 12.17]), and any section is necessarily étale and thus
open, giving the result in that case. In general, we may work locally around the given section, so we can
assume that f is the composite of an étale map Y — B% and the projection to X. Using the étale case
already handled, we can assume that Y is an open subset of B%. Any section Spa(K, K*) — B% hasa
cofinal system of neighborhoods that are small balls over open subsets of X: The section is given by d

elements 77,...,T; € KT, and after picking a pseudouniformizer t and shrinking X, one can find global
sections 77, ..., T} of O% (X) such that T; = T} mod ™. Then {|T7],...,|T}| < |w|"} is a small ball
over X, and the intersection of all these is Spa(K, K*). Thus, one of these neighborhoods is contained in
Y, as desired. ]

PROPOSITION 1V .4.15. Let f; : Y; — X, i = 1,2, be smooth maps of sous-perfectoid adic spaces, and
let g : Y7 — Y5 be a map over X.

(i) If g is smooth, then the sequence
*l 1 1
0—g QYQ/X — QY1/X —>QY1/Y2 —0
is exact.

(ii) Conversely, if g*Q%,2 /x Q%,l /X is a locally split injection, then g is smooth.

In particular, if g*Q%,2 /x Q%/l /x 1s an isomorphism, then g is étale.
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PROOF. Part (i) follows from a routine reduction to the case of projections from balls, where it is clear.
For part (ii), we may assume that Y7 — Bgl(l and Yo — IB%SI(Q are étale. It suffices to see that the composite
Yi > Y5 — IB%?? is smooth, as g is the composite of its base change Y] X g Y5 — Y5 with the section

X

Y1 - 1 X 2 Y5 of the étale map Y3 X g2 Y5 — Y7; any such section is automatically itself étale. Thus,
X X

we may assume that Yo = ng. Locally on Y7, we may find a projection ¢’ : B;l(l — EggfdQ so that
* 1
(g/ Q]:Bg(l*‘iQ/X)’Yl

is an orthogonal complement of g*Q%/2 /X (Indeed, looking at (’)gl(l = Q%,l /x g*Q%/2 /x asapoint of the

Grassmannian and using the standard affine cover of the Grassmannian, one shows that one may take ¢’ to
simply be a projection to a subset of d; — ds of the coordinates.) Thus, we can assume that d; = dy =: d,
and g*Q%,Q/X — Q%/l/X is an isomorphism.

Our aim is now to prove that g : Y1 — Y5 = Bgf is étale. We may assume that all of X, Y7 and Y5
are affinoid. Passing to the fibre over a point S = Spa(K, K*) — X, this follows from a result of Huber,
[Hubgé, Proposition 1.6.9 (iii)]. The resulting étale map Y7 5 — Y5 g deforms uniquely to a quasicompact
separated étale map Y/ ;; — Y3 7 for a small enough neighborhood U C X of S, by [Sch17a Lemma 12.17].
Moreover, the map Y7 7 — Y3 ¢ lifts uniquely to Y; i — YI/,U for U small enough, by the same result.
Replacing X by U, Y7 by Y; 7 and Y3 by YII,U' we can now assume that g : Y7 — Y5 is a map between
sous-perfectoid spaces smooth over X that is an isomorphism on one fibre. It is enough to see that it is then
an isomorphism in a neighborhood. To see this, we may in fact work locally on Y5.

For this, westudy Y7 C Y7 xx Y2 — Y5: Here Y] X x Yo — Ys issmooth,and Y] C Y] X x Ys islocally
the vanishing locus of d functions (as Y2 C Y5 X x Y3 is). Moreover, over fibres lying over the given point
of X, the map Y7 — Y5 becomes an isomorphism, and in particular gives a section of Y; X x Y2 — Y5. By
Lemma after shrinking Y5, we can assume that there is an open neighborhood V' C Y7 x x Y3 such
that V' = BY, . Inside there, Y is (locally) given by the vanishing of d functions, and is only a point in one
fibre. Now the result follows from the next lemma, using Y5 in place of X. O

LEMMA 1V .4.16. Let X = Spa(A, A") be a sous-perfectoid affinoid adic space with a point X' =
Spa(K,K+) — X. Let f1,..., fn € AT(T4,...,T,) be functions such that

K — K(Tv,....,Ta)/(fr,- - fn)
is an isomorphism. Then, after replacing X by an open neighborhood of X’, the map

A— ATy, T) ) (fy ooy fn)

is an isomorphism.

PRrOOF. For any ring B with elements g1, ..., g, € B, consider the homological Koszul complex

Kos(B, (¢i)"_y) = [B — B" — ... — B» Yoo, gy
We claim that, after shrinking X, we can in fact arrange that
A — Kos(A(Th, ..., Ty), (fi)iz1)

is a quasi-isomorphism.
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Note that all terms of these complexes are free Banach-A-modules, and thus the formation of this com-
plex commutes with all base changes; and one can use descent to establish the statement. In particular, we
can reduce first to the case that X is perfectoid, and then to the case that X is strictly totally disconnected.
In that case, the map A — K is automatically surjective, and so we can arrange that under the isomorphism
K = K(Ty,...,T,)/(f1,..., fn),all T; are mapped to 0. Moreover, applying another change of basis, we
can arrange that the image of f; in K(Ty,...,T,)/(T1,...,Ty)? is given by a;T; for some nonzero scalar
a; € K1. Note that we are in fact allowed to also localize on B, around the origin, as away from the ori-
gin the functions fi, ..., f, locally generate the unit ideal (in the fibre, but thus in a small neighborhood).
Doing such a localization, we can now arrange that f; = 7; mod w for some pseudouniformizer @ € A™.
But now in fact

A+ - KOS(A+ <T17 s 7Tn>7 (fl)?:l)

is a quasi-isomorphism, as can be checked modulo @, where it is the quasi-isomorphism

At/ — Kos(AT /w[Th, ..., T,), (T)™,). O

Let us draw some consequences. First, we have the following form of the Jacobian criterion in this
setting.

PROPOSITIONIV.4.17. Let f : Y — X beasmooth map of sous-perfectoid adic spaces,andlet fi,..., f, €

Oy (Y') be global functions such that dfy, ..., df, € Q3 /X (Y) can locally be extended to a basis of (2, /X
Then Z =V (fi,..., fr) CY isasous-perfectoid space smooth over X.

PrROOF. We can assume that all f; € Oy (Y) by rescaling, and we can locally find fr41,..., fn €
(’); (Y) such thatdfy, ..., df, isabasis of Q%,/X. Thisinduces an étalemap Y — B by Proposition(IV.4.15
and then V(f1,..., fr) C Y is the pullback of By, C B, giving the desired result.

Moreover, we can prove that being smooth is étale local on the source.

PROPOSITION 1V.4.18. Let f : Y — X be a map of sous-perfectoid adic spaces. Assume that there is
some étale cover j : V' — Y such that f o j is smooth. Then f is smooth.

PROOF. By étale descent of vector bundles on sous-perfectoid adic spaces, 23, /x = Ty)x JIE /x isa
vector bundle, together with an Ox-linear derivation d : Oy — Q%/ /X We claim that locally we can
find functions fi,..., f, € Oy such that dfi,...,df, € Q%,/X is a basis. To do this, it suffices to find

such functions over all fibres Spa(K, K*) — X, as any approximation will then still be a basis (small
perturbations of a basis are still a basis). But over fibres, the equivalence of the constructions in [Hubgé,
1.6.2] shows that the df for f € Ox form generators of Q%//X'

Thus, assume that there are global sections f1, ..., f, such thatdfy,...,df, € Q%, /x are a basis. Rescal-
ing the f; if necessary, they define a map g : Y — B% that induces an isomorphism g*Qég( x Q5 /X

By Proposition|IV.4.15| the map Y — B% is étale locally on Y étale. We may assume that Y and X are affi-
noid; in particular, all maps are separated. Then by [Sch17a, Lemma 15.6, Proposition 11.30] also Y — B%
is étale. O

Finally, we note that if Y and Y are both smooth over a sous-perfectoid space X, then the concept of
Zariski closed immersions Y < Y over X is well-behaved.
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PROPOSITION 1V .4.19. Let f : Y — X, f' : Y/ — X be smooth maps of sous-perfectoid adic spaces,
andlet g : Y — Y’ be a map over X. The following conditions are equivalent.

(i) There is a cover of Y’ by open affinoid V’ = Spa(S’, S'*) such that V =Y Xy V' = Spa(S,S™) is
affinoid and S” — S is surjective, with ST C S the integral closure of the image of S'*.

(ii) For any open affinoid V/ = Spa(S’, S’*) C Y7, the preimage V =Y xy+ V' = Spa(5, ST) is affinoid
and S" — S is surjective, with ST C S the integral closure of the image of S'*.

Moreover, in this case the ideal sheaf Zy -y C Oy~ is pseudocoherent in the sense of [KL16], and
locally generated by sections fi, ..., f, € Oy’ such that dfy,...,df, € Q%/, /x can locally be extended to
a basis.

PrROOF. We first analyze the local structure under condition (1), so assume that Y = Spa(5’, 5'") and
Y = Spa(S, ST) are affinoid, with S’ — S surjective and ST C S the integral closure of the image of
S'*. It follows that g*Qs., /X Q5 /x s surjective, and letting d’ and d be the respective dimensions of
Y’ and Y (which we may assume to be constant), we see that 7 = d’ — d > 0 and that locally we can
find fi,..., fr € Iycy' so that dfy, ..., df, generate the kernel of g*Q%,,/X — Q%,/X (as the kernel is
generated by the closure of the image of Zyy+). By Proposition [IV.4.17| the vanishing locus of the f;
defines a sous-perfectoid space Z C Y that is smooth over X. The induced map ¥ — Z induces an
isomorphism on differentials, hence is étale by Proposition|IV.4.15 but it is also a closed immersion, hence
locally an isomorphism.

We see that the ideal sheaf 7y ~y~ is locally generated by sections f1, ..., f, as in the statement of the

proposition. By the proof of Proposition|IV.4.17|jand Lemma|IV.4.13| it follows that the ideal sheaf Zy -y~
is pseudocoherent in the sense of [KL16].

To finish the proof, it suffices to show that (1) implies (2). By the gluing result for pseudocoherent
modules of [KL16], the pseudocoherent sheaf Zy y- over V' corresponds to a pseudocoherent module I C
S’, and then necessarily V' = Spa(S, S*) where S = S’/I with ST C S the integral closure of the image
of S't. O

DEFINITION 1V.4.20. In the setup of Proposition [IV.4.19) the map ¢ is a Zariski closed immersion if

the equivalent conditions are satisfied.

IV.4.2. Maps from Xg into P". Our arguments make critical use of the assumption that in Theo-
rem the space Z — Xg is locally closed in P% . For this reason, we analyze the special case of P"

in this section.

PROPOSITION 1V.4.21. Let n > 0 and consider the small v-sheaf Mpn taking any perfectoid space S
to the set of maps Xg¢ — P%%. Then Mpn — x is partially proper and representable in locally spatial
diamonds, and admits a decomposition into open and closed subspaces

Mpn = | | M
m>0

such that each Mp, —  has finite dim. trg, and the degree of the pullback of Opn (1) to Xz, is m. In
fact, there is a canonical open immersion

M = (BE(O(m)" ) \ {0})/EX.
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PrOOF. The degree of the pullback £/ Xg of Opn (1) to Xg defines an open and closed decomposition
according toall m € Z. Fix some m. Then over the corresponding subspace Mg, we can fix a trivialization
L = Ox¢(m), which amounts to an £ -torsor. After this trivialization, one parametrizes n + 1 sections
of L = Ox(m) without common zeroes. The condition of no common zeroes is an open condition on S:
Indeed, the common zeroes form a closed subspace of | X g|, and the map | Xg| — |5 is closed (see the proof

of Lemma . This implies the desired description. O

PROPOSITION IV.4.22. Let S be a perfectoid space and let Z — X g be a smooth map of sous-perfectoid
adic spaces such that Z admits a Zariski closed embedding into an open subspace of P’y . Then the induced
functor

MZ —>M]P>§
s

islocally closed. More precisely, for any perfectoid space " — Mp}s , the preimage of M 7 is representable
by some perfectoid space Tz C T that is étale locally Zariski closed in T, i.e. there is some étale cover of T’
by affinoid perfectoid 7" = Spa(R, RT) — T such that Tz x1 T" = Spa(Rz, R},) is affinoid perfectoid,
with R — Ry surjective and R}, C Ry the integral closure of the image of R*.

In particular, the map Mz — S is representable in locally spatial diamonds and compactifiable, of
locally finite dim. trg.

ProOF. Choose an open subspace W C P’y such that Z is Zariski closed in W. For any perfectoid
space T" with a map 1" — MP}S corresponding to a map Xy — P’ over X, the locus Ty C 1" where
the section factors over I is open. Indeed, this locus is the complement of the image in |T’| of the preimage
of [P% \ W/ under |[X7| — [P% |, and [X7| — [T'] is closed.

Replacing T' by T1y, we can assume that the section X7 — P’ factors over IV. We may also assume
that 7' = Spa(R, R") isaffinoid perfectoid and that S = T'. Pick a pseudouniformizer w € R, in particular
defining the cover

Ys1.q = {In|" < [[@]| < [7]} € SpaWo, (R")

of Xs. The pullback of the line bundle Opn (1) to X5 along this section, and then to Yy [; , is étale locally
trivial, as when S is a geometric point, Yg [; 4 is affinoid with ring of functions a principal ideal domain by
Corollary[[I.1.12] Replacing IV by a small étale neighborhood of this section and correspondingly shrinking
S, we can assume that the pullback of Opn (1) to Wiq = W X x4 Yg 1,4 is trivial. In that case the pullback
Z1,q — Ys1,q of Z — Xg is Zariski closed in an open subset of

n+1

Ys.La)’
Inside Ag;[ll,q]’ the image of Yspa (i, i+),[1,q (via the given section) for a point Spa(K, K*) — S is an
intersection of small balls over Yg |1 1 for small neighborhoods S’ C S of Spa(K, K*). Thus, one of
these balls is contained in the open subset of which Z|; ;) is a Zariski closed subset. Thus, after this further
localization, we can assume that there is a Zariski closed immersion

n+1
Z[lyq] = BYS,[I,q]’

and in particular Z|; ; isaffinoid and cut out by global functions on IB%;L/;[ILQ] by Proposition|IV.4.19, Pulling

back these functions along the given section Yg 1 j — B@:[ll y it suffices to see that if S = Spa(R, R™) is
I ’ s .q
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an affinoid perfectoid space of characteristic p with a choice of pseudouniformizer @ € R and

f€Bruqg =0 s1)

is a function, then there is a universal perfectoid space S’ C S for which the pullback of f is zero, and

S’ C S is Zariski closed. This is given by Lemma|lV.4.23 O

LEMMA IV .4.23. Let S = Spa(R, R") € Perfr, be affinoid perfectoid with a fixed pseudo-uniformizer
w, I C (0, 00)acompact interval with rational ends,and Z C |Yg 1| a closed subset defined by the vanishing
locus of an ideal J C O(Yg ). Then, via the open projection v : |Yg | — |S|, the closed subset |S| \
v(|Ys, 1| \ Z) is Zariski closed. The corresponding Zariski closed perfectoid subspace of S is universal for
perfectoid spaces " — S such that J — 0 via O(Yg 1) — O(Y7 7).

PROOF. Since YS? 7 — S is cohomologically smooth, v is open. We can suppose J = (f) with f €
O(Ys,z). For any untilt of F,((w'/?™)) over E such that ||’ < |wf| < |7]|%if I = [a,b], we get a
corresponding untilt R* of R over F, with a map Bp; — R*. The locus where the image of f in R'
vanishes is Zariski closed by Proposition [[T.0.2] Intersecting these Zariski closed subsets over varying such
untilts gives the vanishing locus of f, as in any fibre, f vanishes as soon at it vanishes at infinitely many
untilts (e.g., by Corollary , and all rings are sous-perfectoid, in particular uniform, so vanishing at
all points implies vanishing. O

IV.4.3. Formal smoothness of M. The key result we need is the following.

PROPOSITION 1V.4.24. Let S = Spa(R, R™) be an affinoid perfectoid space over F,, and let Z — X
be a smooth map of sous-perfectoid adic spaces that is Zariski closed in an open subspace of IP")‘(S. Then
MP — S is formally smooth.

PROOF. Pick a test diagram as in Definition we can and do assume that the .S from there is the
given S, replacing the S in this proposition if necessary. This means we have a diagram

Z
P
Xg s Xg

0

and, up to replacing S by an étale neighborhood of Sy we try to extend the section sg to a section over Xg
(the dotted line in the diagram). Fix a geometric point Spa(C, C*) — Sj; we will always allow ourselves
to pass to étale neighborhoods of this point. Fix a pseudouniformizer w € R and consider the affinoid
cover Yg 1 4 — Xg; recall that

Ys1,q = {In|" < |[=]| < |[} € SpaWo, (RT)
and we also consider its boundary annuli
Yy = {llw@ll = 7]}, Y g9 = {I7* = l[@][} € Ys1q-
Let Z}; 4 — Z be its pullback; with pullback Z; 11, Zq g C Z[1,q of Ys,1,1]; Vs, [q,9 C Ys,[1,9- In par-

ticular, Z is obtained from Z|; ;) via identification of its open subsets Z|; 1}, Z|4 4 along the isomorphism
v = 2ol
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Arguing as in the proof of Proposition we can after étale localization on S embed

n+1
Z[LQ} — BYS,[I,q]

as a Zariski closed subset. We thus have a diagram

Zariski closed n+1
Larsd closed
a4 By

I !

YSO’[lvq] —* YS7[17q] :

In particular, Z|; 4 is affinoid.

Next, consider the Kahler differentials {2 Zoo Ve Again, as B¢ [1 4 is a principal ideal domain, its
restriction to the section Y5,,(c,0+),1,q) C Z[1,q IS trivial, and thus it is trivial in a small neighborhood. It

follows that after a further étale localization we can assume that QIZ v, = 0 istrivial. On the
(1,a)/Ys,1,q] L.l

Zariski closed subset Z |1 o) C Z[1 4 (defined as the pullback of Y, C Y), this implies that we may find
functions f1,. .., fr € O(Zy[1,4) vanishing on the section Yg, 1 ; — Zy 1,4 and locally generating the
ideal of this closed immersion (use Proposition |[IV.4.19)). In particular,

1
dfi,...,dfr € QZO?[M]/YSO#[M]

are generators at the image of the section Y, 1, — Zo,[1,¢, and thus in an open neighborhood. Picking
lifts of the f; to O(Z]; 4)) and shrinking Z|; ), Proposition|IV.4.15/implies that they define an étale map

r
Z[LQ] — BYS,[L«;]'

Moreover, over {O}Yso,u,q] C BYS,[l,q]’ this map admits a section. Shrinking further around this section, we
can thus arrange that there are open immersions

N
(7T B>TYS, ] - Z[qu} - IB,g/S,[l,q

[L.q i
and that the section over Y (1 4 is given by the zero section.

The isomorphism ¢ : Z[1 1) — Z[, 4 induces a map

/. N
o (m IB%)@SJM] — B@Sy[q’q].
Recall that for any compact interval I C (0, c0), the space

Ys 1 = Spa(Br,1, B&7R+),1)

is affinoid. The map ¢’ is then given by a map
a:Brg(T....,To) = Bppy(n VT, ..., 7 NT,)

linear over the isomorphism ¢ : B (4 1 — Bg,[1,1]- The map « is determined by the images of 71, ..., T},
which are elements

o; € BE’ARJF)’[LI] (r N1y, N,
These have the property that on the quotient By, 1 1] they vanishat Ty = ... = T}, = 0 (as over Sy, the

zero section is p-invariant). Moreover, over the geometric point Spa(C, C") — S fixed at the beginning,
we can apply a linear change of coordinates in order to ensure that the derivative at the origin is given by
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a standard matrix for an isocrystal of negative slopes; i.e., there are cycles 1,...,7r;; 11 +1,...,7r9; .. ;
Ta—1 +1,...,74 = r and positive integers dy, . . . , d, such that

a; = Tyy1in Bop [Ty, ... T /(Ty, ..., T;)?
ifi # rjforsome j = 1,...,a,and

=7 4T, _41in Bopy[Ty,...,T)/(Ty, ..., Tp)%

Qy;

(Here, we set 79 = 0.) Approximating this linear change of basis over an étale neighborhood, we respect

the condition that the o;’s vanish at 77 = ... =T, = 0 over Sy, while we can for any large )M arrange
a; =T;yq in B&yRﬂ’[l,l]/TrM[ﬂ*NTl, T N (N, N T2
ifi # rjand
ap; = W_djTrj71+1 in B&}Rﬂ’[l’”/ﬂM[w_NTl, o m N (N, e N2

Moreover, rescaling all 7; by powers of 7, and passing to a smaller neighborhood around .Sy, we can then
even ensure that

a; € Ty + WMB?}%RJF),[LI] <T1, c. ,Tr>
fori # r;j and
Qr; € 7T_d~7Trj_1+1 + WMB;;%,R+),[1,1] (Th,...,T,).
At this point, the integers d1, . . . , d, are fixed, while we allow ourselves to choose M later, depending only

on these.
From this point on, we will no longer change S and Sy, and instead will merely change coordinates in
the balls (by automorphisms). More precisely, we study the effect of replacing T} by T; + ¢; for some
e €ml ker(B(+R7R+)’[Lq} — BRry [1,q)

where we take d to be at least the maximum of all d;. This replaces a; by a new power series o, given by
a;(Tl,... ,Tr) = ai(Tl,... , T -f—Ei,...,Tr) — @(61)

and the o’s still vanishat 77 = ... = T, = 0 over Sp. Their nonconstant coefficients will still have the
same properties as for «; (the linear coefficients are unchanged, while all other coefficients are divisible by
7M), and the constant coefficient satisfies

a;(0,...,0) = ;(0,...,0) + €41 — ¢(€;) in ]-L3(+}z,1;:Jr),[1,1]/WMJr

d
ifi # rjand

a;,j 0,...,0) = a;(0,...,0) + 7T_dj€rj_1+1 —¢(€r,) in B&’R+)7[1’1]/7TM+d'

Assume that by some inductive procedure we already achieved ;(0,...,0) € 7% ,B&’ RH),[L1] for some

N’ > M. By Lemma(IV.4.25|below, there is some constant ¢ depending only on dj, ..., d, such that we

- NcpT L 1 .
canthen finde¢; € 7 B(R,Rﬂ,[l,q]' vanishing over R, with

@;(0,...,0) = p(€) — €41
fori # rj and
Qr; 0,...,0) = So(frj) - ﬂ'*djem'fl‘*‘l’
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This means that ¢(0,...,0) € 7TM+N/_CB('%7R+)
can), then this inductive procedure converges, and in the limit we get a change of basis after which the zero
section defines a (-invariant section of Z|; ), thus a section s : Xg — Z, as desired. Note that we arranged
that this section agrees with s over Sp, as all coordinate changes did not affect the situation over Sp. [

1,1 S° if we choose M > c in the beginning (which we

We used the following quantitative version of vanishing of H'(Xg, &) for £ of positive slopes.

LEMMA IV.4.25. Fix a standard Dieudonné module of negative slopes, given explicitly on a basis
el,...,e.byfixingcyclesl,...,r;;r+1...,70;.. ;7q—1+1,...,7, = randpositiveintegersdy, ..., d, >
0, via

plei) = eip1 fori # 1), pley,) =m Ve, 41
Then there is an integer ¢ > 0 with the following property.
Let S = Spa(R, R") bean affinoid perfectoid space over F,, with Zariski closed subspace Sy = Spa(Ro, Ry ),

and a pseudouniformizer w € R. Let

— Bf ), I = ker(

+
[1,1] — B

+ +
Iy g = ker Bigreynn = Biry rypag):

+
g = kX Bg re) g = Blpy m) 1

Then forall f1,..., f, € I[Jlrl] onecan find g1,...,9, € W_CIHQ] such that

fi=0(gi) — gis1 fori £ rj, fr, = olgr,) =7 Vg 41

PROOF. We may evidently assume that a = 1; set d = d;. By linearity, we can assume that all but one
of the f;’s is equal to zero, say (by cyclic rotation) f1 = ... = f,_1 = 0. Thus, it suffices to see that for all
positive integers r and d there is ¢ > 0 such that for all f = f. € I} ., one can find some g € 7¢I [+

[1,1] 1,9"]
(for the evident definition of I H q”"]) such that

f=¢"(g) 7.

Indeed, one then takes g1 = g, g2 = ©(g),--.,9r = ¢"'(g). Replacing E by its unramified extension of
degree 7, we can then assume that 7 = 1. At this point, we want to reduce to the qualitative version given

by Lemma below, saying that the map
p—m " g = Iy

is surjective. Indeed, assume a constant c as desired would not exist. Then for any integer i > 0 we
can find some Zariski closed immersion Sp; = Spa(Ry, Ra: ;) C S; = Spa(R;, R;‘ ), with choices of
pseudouniformizers w; € R;, as well as elements f; € [11]71. such that there isno g € 71, [Jlr,q],i with
fi = ¢©(gi) — 7 %g;. Then we can define R* = []; R} with@w = (w;); € R",and R = R"[L], which
defines an affinoid perfectoid space S = Spa(R, R™), containing a Zariski closed subspace Sy C S defined
similarly. Moreover, the sequence (7' f;); defines an element of f € I[Jlil}. Asp — 1% Ing — Iy is

surjective by Lemma 1V.4.26) we can find some g € I g with f = p(g) — 7~ %. Then 7¢g € IH d for
some ¢, and restricting g to SO,i C S; with ¢ > c gives the desired contradiction. O

We reduced to the following qualitative version.
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LEMMA IV.4.26. Let d be a positive integer, let Sy = Spa(Ro, Rj) C S = Spa(R, R") be a Zariski
closed immersion of affinoid perfectoid spaces over F,, and let 7w € R be a pseudouniformizer. Let
I g = ker(Br1,q = Bro1,q) » Ina) = ker(Bri,1) = Bpo,1,1))-
Then the map
Y — . I[LQ} — I[l,l]

is surjective.

PROOF. By the snake lemma and the vanishing H'(Xg, Ox,(d)) = 0 (Proposition (iii)), the

lemma is equivalent to the surjectivity of
HO(XS’ Oxs(d)) — HO(XSm OXSO (d)).

For d < [E : Q] (or if E is of equal characteristic), this follows directly from Proposition (iv) and
the surjectivity of R°® — R°. In general, we can either note that the proof of Proposition (iii) also
proves the lemma, or argue by induction by choosing an exact sequence

0 — Oxg(d—2) = Oxy(d—1)% = Ox4(d) = 0
(the Koszul complex for two linearly independent sections of H%(Xg, Ox4(1))), and use the vanishing
of H'(Xg,,O Xg,(d —2)) = 0for d > 2, Proposition (iii). This induction gets started as long as

E # Qp. For E = Q,, we can write Ox(d) as a direct summand of 7,7*Ox(d) for any extension
m: Xgp — Xgwith E # Q. O

IV.4.4. Universal local acyclicity of M3" — S. The next step in the proof of Theorem is to

show that Iy is universally locally acyclic.

PROPOSITION IV.4.27. Let S be a perfectoid space and let Z — X g be a smooth map of sous-perfectoid
spaces such that Z is Zariski closed inside an open subset of PSL(S for some n > 0. Then, for any ¢ # p, the
sheaf [F'; is universally locally acyclic for the map

MZ = S.

PROOF. Recall from Proposition that M, — MP”XS is a locally closed immersion, and the
open embedding
Mepy = | | (BC(Oxs(m)™™)\ {0})/E*
m>0

from Proposition|[[V.4.21] In the following, we fix some m and work on the preimage of
(BC(Oxs(m)" )\ {0})/E~.
We choose asurjection g : T — BC(Ox,(m)"™1\{0})/E> from a perfectoid space T as in Lemma

in particular, g is separated, representable in locally spatial diamonds, cohomologically smooth, and for-
mally smooth. Moreover, locally 7" admits a Zariski closed immersion into the perfectoid ball Iﬁ%g over S.
Taking the pullback of T to Mz, we get a surjection Tz — Mz for some perfectoid space Tz such that
¢étale locally Tz admits a Zariski closed immersion into a space étale over BY.

It follows that one can cover Mz via maps hg : Ty — Mz that are separated, representable in locally
spatial diamonds, cohomologically smooth, and formally smooth, and such that T admits a Zariski closed
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immersion into some space étale over B. We can then also do the same for M3". By Proposition|IV.4.24
we can, up to further replacement of () by an étale cover, assume that the map hg extendstoamap h : T —
M for some perfectoid space T étale over BS. Moreover, as Ty — M is formally smooth, we can, after

a further étale localization, lift the map 7" — M to a retraction T' — Tp; thus, T is a retract of a space
that is étale over a perfectoid ball. Now the result follows from Corollary O

We used the following presentation of certain projectivized Banach—Colmez spaces.

LEMMA IV.4.28. Let S be a perfectoid space over I, and let £ be a vector bundle on X5 that is every-
where of nonnegative Harder—Narasimhan slopes. There is a perfectoid space 7' — S that is locally Zariski
closed in a perfectoid ball B¢ over S and that admits a surjective map

— (BC(&) \{0})/E~

over S that is separated, representable in locally spatial diamonds, cohomologically smooth, and formally
smooth.

PROOF. The target parametrizes line bundles £ on Xg of slope zero together with a section of £ ® £
that is nonzero fibrewise on S. Parametrizing in addition an injection £ — Ox(1) defines a map that
is separated, representable in locally spatial diamonds, cohomologically smooth, and formally smooth (by
Proposition and Proposition . Over this cover, one has locally on S an untilt S* over E
corresponding to the support of the cokernel of L — Ox(1), and one parametrizes nonzero sections of
£(1) that vanish at S* < X. This is Zariski closed (by [BS22, Theorem 7.4, Remark 7.5]) inside the space
of all sections of £(1). We see that it suffices to prove the similar result with (BC(&) \ {0})/E* replaced
by BC(E(1)) x Spd E, and this reduces to the individual factors. For BC(£(1)), the result follows from
the argument in Proposition For Spd E, there is nothing to do in equal characteristic, so assume
that E is p-adic. Then we reduce to [x/O};] as the fibres of Spd E — [x/O};] over perfectoid spaces are

given by BC(L) \ {0} for some line bundle £ of slope 1, and this in turn admits covers of the desired form.
Finally, for [x/OF], we can pass to the étale cover [x/1 4+ p*Op] = [*/Og], or to [x/E]. This, finally,

admits a surjection from a perfectoid open unit disc BC(Ox (1)) with the desired properties by passing to
Banach-Colmez spaces in an exact sequence

0— OXS — OXS(%) — OXs(l) —0
and using Proposition|II.3.4 O

IV.4.5. Deformation to the normal cone. The final step in the proof of Theorem is a deforma-

tion to the normal cone.

By Proposition and Proposition [[V.4.27/ (and Proposition [IV.2.33)), in order to prove Theo-

rem it only remains to prove that Rf'F, is invertible and sitting in the expected cohomological
degree. Picking a v-cover T — MS® by some perfectoid space 7" and using that the formation of Rf'Fy
commutes with any base change by Proposition it suffices to prove the following result.

PROPOSITION IV.4.29. Let S be a perfectoid space and let Z — X g be a smooth map of sous-perfectoid
spaces such that Z admits a Zariski closed immersion into an open subset of (the adic space) P% , for some
n > 0. Let f : Mz — S be the moduli space of sections of Z — Xg. Moreover, let s : Xg — Z bea
section such that s*1';, x . is everywhere of positive Harder-Narasimhan slopes, and of degree d.
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Lett : S — Mz be the section of f corresponding to s. Then t*R f 'Fy is étale locally on S isomorphic
to IFy[2d].

Proor. We will prove this by deformation to the normal cone. In order to avoid a general discussion of
blow-ups etc., we will instead take an approach based on the local structure of Z near a section as exhibited

in the proof of Proposition[IV.4.24

We are free to make v-localizations on S (as being cohomologically smooth can be checked after a v-
cover), and replace Z by an open neighborhood of s(Xg). With this freedom, we can follow the proof
of Proposition and ensure that S = Spa(R, R") is strictly totally disconnected with pseudouni-
formizer w, the pullback Z|; o) — Yg 1 4 of Z — Xg to

Y g = {7l <[]l < |7} € SpaWo, (RT)

satisfies

Nmr r
T BYS’,[I,q] C Z[LQ] C BYS,[l,q]

and the gluing isomorphism is given by power series

o; € Tip1 + WMB?;%,RJF),[l,l] (Ty,...,T)
resp.
ap, €m BT 4 7B e Lo (T T)

with notation following the proof of Proposition IV.4.24, Moreover, the constant coefficients of all o
vanish. These in fact define a map

. dpr r
QO.TFBYS’[ _>]BYS

1,1]

s[a,4]
preserving the origin, where d is the maximum of the d;.

Forany n > N, d, we can look at the subset
(n) _ T T
Z[l,Q] =" Ys,[1,q] U (" Ys,[1,1]) C Z[LQ}’

which descends to an open subset Z(") C Z. Letting Ti(n) = 7~ "T;, the gluing is then given by power
(n)

series v, ~ given by

agn) =7 "o (r" T, ..., 7 Ty)

(n)

which satisfy the same conditions, but the nonlinear coefficients of ;

limit

become more divisible by 7. The

(

%

) = IE az(n) € BR,[I,l] <T17 s aTT>

n—o0

Q

exists, and is linear in the 7;.

Let S’ = S x N>y U {00}, using the profinite set N>y U {o0}. Let Z' — X/ be the smooth map of
sous-perfectoid spaces obtained by descending

/ _ TRT / T
Zia) = Bror g VO Bro )
along the isomorphism ¢’ given by the power series

af = (a(,N), oz(N+1)7 e ,a(oo)) € Br/ 1,1 (Ty,...,Ty).

% i %
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Then the fibre of Z — Xg over S x {n} is given by Z(™), while its fibre over S x {0} is given by an open
subset Z(°) of the Banach-Colmez space BC(s*T’z,x ;). Moreover, letting S'>™) C S’ be the complement
of S x { N}, there is natural isomorphism 7 : S">) — S’ given by the shift S x {n 41} = S x {n},and

this lifts to an open immersion

v Z/(>N) =27 X Xgr XS’(>N> AR

We need to check that Z’ — X still satisfies the relevant quasiprojectivity assumption.

LEMMA IV .4.30. The space Z — X g admits a Zariski closed immersion into an open subset of IP)”Xlsl
for some m > 0.

PrOOF. One may perform a parallel construction with Z replaced by an open subset of P'¢_, reducing us
to the case that Z is open in P'Y_. In that case, the key observation is that the blow-up of P’y _ at the section
s: Xg— IP’%S is still projective, which is an easy consequence of X g admitting enough line bundles. [J

Let f' : My — S’ be the projection, with fibres £ and f(>). By Proposition both F,
and Rf"F, are f’-universally locally acyclic. In particular, the formation of Rf"IF; commutes with base
change, and we see that the restriction of Rf"F; to the fibre over oo is étale locally isomorphic to IF[2d], as
an open subset of BC(s*17/x). As S is strictly totally disonnected, one can choose a global isomorphism
with Fg[Qd].

The map from F/[2d] to the fibre of Rf"'F; over oo extends to a small neighborhood; passing to this
small neighborhood, we can assume that there is a map

B : Fy[2d] — Rf'F,

that is an isomorphism in the fibre over co. We can assume that this map is y-equivariant (passing to
a smaller neighborhood). Let @ be the cone of 3. Then @ is still f’-universally locally acyclic, as is its
Verdier dual

DMZ//S’(Q) = R%omMZ, (Q7 Rf/!FZ)~
In particular, 2 f{D /5 (Q) € Det(S ', TFy) is constructible, and its restriction to S x {oo} is trivial. This

implies (e.g. by [Sch17a) Proposition 20.7]) that its restriction to S x {n,n + 1,..., 00} is trivial for some
n > 0. Passing to this subset, we can assume that Rf/Dyq,,/s/(Q) = 0. Taking Verdier duals and using

Corollary[IV.2.25] this implies that Rf/Q = 0.

In particular, for all n > ng, we have R ffn)Q\ M,y = 0. Using the 7-equivariance, this is equivalent
to

Rf*n) (Q|M<Z”O))|Mz(n) = O)

regarding M ;) C M ;) as an open subset. Taking the colimit over all » and using that the system
M )y C M ,(ng) has intersection s(S) C Mz and is cofinal with a system of spatial diamonds of finite
cohomological dimension (as can be checked in the case of projective space), [Sch17a, Proposition 14.9]
implies that
*
s Qlm

no)

= @Rfin)(Q‘MZ<no))|Mz(n) =0
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(by applying it to the global sections on any quasicompact separated étale S — S), and thus the map
s*Blmy, : Fe[2d] — s*Rf'F,

is an isomorphism, as desired. This finishes the proof of Proposition [IV.4.29|and thus of Theorem
O

The idea of the preceding proof is the following. Let C' — Xg x A! be the open subset of the defor-
mation to the normal cone of s : Xg <+ Z (we did not develop the necessary formalism to give a precise
meaning to this in the context of smooth sous-perfectoid spaces, but it could be done) whose fiberat 0 € A'
is the normal cone of the immersion s (the divisor over 0 € A! of the deformation to the normal cone is
the union of two divisors: the projective completion of the normal cone and the blow-up of Z along Xg,
both meeting at infinity inside the projective completion). One has a diagram

XS XAIC—>C

L

Al

where outside t = 0 € A! this is given by the section s : Xg < Z, i.e. the pullback over G,, of the
preceding diagram gives the inclusion Xg x G;,, — Z x G, and at t = 0 this is the inclusion of X g inside
the normal cone of the section s. Let us note moreover that C' is equipped with a G,-action compatible
with the one on Al

This gives rise to an £ -equivariant morphism with an equivariant section

Mc

Qg

SxE

whose fiber at 0 € E is the zero section of BC(s*Ty,x) — S, and is isomorphic to M7 x E* equipped
with the section s outside of 0. Now, the complex s *Rg'Fy is EX -equivariant on S x E. Its fiber outside
0 € E, i.e. its restriction to S x E*,is s* Rf'Fy, and its fiber at 0 is Fy(d)[2d], d = deg(T;/x,) (since g is
universally locally acyclic the dualizing complex commutes with base change).

Now one checks that one can replace the preceding diagram by a quasicompact Of \ {0}-invariant
open subset U C M together with an equivariant diagram

U—— M

(b Ak

SxOp—— S x L.

In the preceding proof one replaces O by 7"V1°} © Of, which does not change anything for the ar-
gument. One concludes using that X7 “contracts everything to 0” and some constructibility argument
using the fact that U is spatial and some complexes are h-universally locally acyclic (see the argument

“RfiDpy,,/5(Q) € Der(S’, Fy) is constructible” at the end of the proof of Proposition|IV.4.29).
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IV.5. Partial compactly supported cohomology

Let us start by recalling the following basic vanishing result. Let C' be a complete algebraically closed
nonarchimedean field with pseudouniformizer @ € C. Let SpaZ((t)) xz SpaC = D, be the punctured
open unit disc over C, and consider the subsets

§:U=A{ltl < |wl} = D, 5" - U ={|t| > |w|} = Dy,

Note that the punctured open unit disc has two “ends”: Towards the origin, and towards the boundary. The
open subsets U and U’ contain one “end” each.

LEmMMA IV.5.1. The partially compactly supported cohomology groups
RT(Dg, jiA) = 0 = RT(Dg, jiA)

vanish.
As usual A is any coefficient ring killed by an integer n prime to p.

PrOOF. We treat the vanishing RI'(D{,, 1A) = 0, the other one being similar. Let k& : Df, < D¢ be
the inclusion. One has an exact triangle
(ki) A — Rl jiA — i, A 5

where i : {0} < D¢. One has H(A) = A, HY(A) = A(1), HY(A) = 0fori # 0,1, since A =
lim RT(Uy, A) with U, = {|t| < |@"|} C D, being a punctured disc. We thus have to prove that the
preceding triangle induces an isomorphism A ~ RT.(U, A)[1]. Let j : P} \ {0, 00} < PE \ {0}. There
is a commutative diagram, obtained by applying RI'(P,, —) to an obvious diagram of sheaves:

RT(U,A) —— RT(D}, jiA) A

- | |

RT(PL\ {0,00}, A) — RT(PL\ {0}, ih) —— A —1

The left vertical map is an isomorphism by inspection (e.g., reduce to U being an affinoid annulus, and the
standard computation of its (compactly supported) cohomology). It thus suffices to check that

RI(Pg \ {0}, j1A) = 0,

for example in the algebraic setting using comparison theorems, which is an easy exercise. O

Our goal now is to prove a very general version of such a result. Fix an algebraically closed field k|F,
and work on Perfj,. Let X be a spatial diamond such that f : X — x = Spdk is partially proper with
dim. trg f < o0o. Then the base change X X}, S of X to any spatial diamond S is not itself quasicompact.
Rather, it has two ends, and we will in this section study the cohomology with compact support towards
one of the ends.

To analyze the situation, pick quasi-pro-étale and universally open surjections X~ — XandS — S
from affinoid perfectoid spaces (using [Schi17a, Proposition 11.24]), and pick maps X — Spak((t)) and
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S — Spak((u)) by choosing pseudouniformizers. We get a correspondence
X xS

T

X xS Spak((t)) x Spak((u)) =Dy,

where all maps are qcgs, and the left map is (universally) open. Now Spa k((t)) X Spa k((u)) is a punctured
open unit disc over Spa k((u)), and one can write it as the increasing union of the affinoid subspaces

{lul® < 1t] < |ul*} < Spak((t)) x Spak((u)

for varying rational 0 < a < b < co. For any two choices of pseudouniformizers, a power of one divides
the other, so it follows that if U,;, C X x S denotes the preimage of {|t|® < |u| < [t|%}, then the
doubly-indexed ind-system {U, ; }0<a<p<oo is independent of the choice of the maps X — Spa k((t)), S —
Spa k((u)).

Let U, C X x S be the image of U, 5. As X x S — X x S is open, this is a gcgs open subset of X x S.
Moreover, the doubly indexed ind-system {U, j }o<a<b<oo is independent of all choices made.

Welet Uy = Uy oo Uap and Uy = |J 50 Ua,p and let
Gab Ut = X XS, ja:Us—= X xS, jy:Up— X x 8

be the open immersions. We can now define the cohomology groups of interest, or rather the version of
pushforward along 5 : X x S — S. As usual, A is a coefficient ring killed by some integer n prime to p.

DEFINITION IV.5.2. The functors
RBH-»RB!— : Det(X X S» A) - Det(Sa A)
are defined by
Rp1.C = lim BB (jaiClu,),
Rp_C = lim BB, (juClu, )
b
for C € Dgt(X x S, A).

The transition maps here are given by (R[3, applied to) the counits of the adjunction between j, /1 and
Ju o Where jo o : U, C Uy is the open immersion. As the ind-systems of U, and U, are independent of
all choices, these functors are canonical.

The main result is the following. Here v : X x S — X and 3 : X xS — S are the two projections.
THEOREM IV.5.3. Assume that C' = o*A ®H/§ B*Bfor A € Dgt(X,A) and B € D¢ (S, A). Then
RBLC =0=Rp_C.

REMARK IV.5.4. The essential case for applications is C = a*4,i.e. B = A,and S = Spak((t)). In
other words, we take any coefficient system A on X, pull it back to X x Spa k((¢)), and then take the partially
compactly supported cohomology (relative to S). However, it is sometimes useful to know the result in the
relative case, i.e. for general S, and then it is also natural to allow twists by B € Dg(S, A).
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PROOF. We write the proof for Rf3; the other case is exactly the same. Let X, — X be a simplicial
hypercover by affinoid perfectoid spaces X; = Spa(R;, R;") which are partially proper over Spa k (i.e., R;"
is minimal, i.e. the integral closure of k& + R°°). As X isa spatial diamond, we can arrange that the X; are
the compactifications of quasi-pro-étale maps to X (since X is spatial it admits an hypercover X, — X
with X; affinoid perfectoid and X; — X quasi-pro-étale, since X — Spd k is partially proper this extends
to a hypercover X{ — X where X is Huber’s canonical compactification over Spa(k)); in particular,
gi + X; — X satisfies dim. trgg; = 0 < oo. Let B, : Xo x S — S be the corresponding projection. We
claim that

RBC’
is the limit of R 14(C’|x,xs), for any C! € D (X x S,A). Writing C’ as a limit of its Postnikov
truncations ([Sch17a) Proposition 14.15]), we can assume ¢’ € D (X x S, A). Now g; : X; — X isa qcgs
map between spaces partially proper over *, so g; is proper, and hence so its base change h; : X; xS — X x S.
This implies that
RB14 (hC') = Ry (RhiuhiC),

as j,1 commutes with Rh;, by [Sch17a, Theorem 19.2]. Now by [Schi7a Proposition 17.3], one sees that
C' is the limit of Rh;h!C’. But RS commutes with this limit, using that the filtered colimit does as
everything lies in D" (with a uniform bound).

By the preceding reduction (used with C’ = ('), we may assume that X = Spa(R, R") is an affinoid
perfectoid space. We can even assume that X hasno nonsplit finite étale covers (by taking the X; above to be
compactifications of strictly totally disconnected spaces). In that case, thereisamapg: X — Y = Spa K,
where K is the completed algebraic closure of k((t)), which is necessarily proper (as X and Y are partially
proper over ), and as above one has

Rp.C = Rpy,; (Rh.C)

where By : Y xS — Sistheprojectionand h : X xS — Y x Sisthebasechangeof g. Letay : Y XS =Y
be the other projection. Then the projection formula (and properness of k) [Sch17a, Proposition 22.11] show
that

Rh,C = Rh,(a*A®% B*B) = Rh,a*A &% B¢ B
and Rh.a* A = o3 Rg. A by proper base change.

In other words, we can reduce to the case X = Spa Kj; in particular A € De(Spa K, A) = D(A) is
just a complex of A-modules. In that case, define U, ; and U, as above but taking X = X — Spa k((¢)) the
natural map. We claim that in this case for all > 0

Rﬁ* (ja!C‘Ua) =0.
To prove this, it suffices to see that for all «’ > a > 0, the cone of

Rﬁ*(ja’!C’UaJ - RB*(ja!C|Ua)

vanishes, as R3,(j,C|v,) is the limit of these cones as @/ — c0. Now these cones depend on only a
quasicompact part of X x S, and hence their formation commutes with any base change in S, cf. [Sch17a)
Proposition 17.6]. Therefore, we can reduce to the case S = Spa(L, L™) for some complete algebraically
closed nonarchimedean field L with open and bounded valuation subring L™ C L, and check on global
sections RI'(S, —). Moreover, the cone commutes with all direct sums in C, so one can assume that A €

Det(Spa K, A) = Det(A) is simply given by A = A.
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It remains to prove the following statement: For all B € De(Spa(L, L"), A) one has
RI(Spa K x Spa(L, L"), juBlu,) = 0.
If the stalk of B at the closed point vanishes, this follows from proper base change (writing Spa K x

Spa(L, L) as the union of its subspaces proper over Spa(L, L")), [Sch17a, Theorem 19.2]. Thus we may
assume that B is concentrated at the closed point of S.

Recall that U, is defined using a choice of a quasi-pro-étale and universally open cover S — S, together
with amap S — Spa k((w)). As we only care about the closed point of S, we can assume that S is the product
of S with a profinite set. The map S — Spa k((u)) is then given by a profinite set worth of maps k((u)) — L.
The resulting subsets {|t| < |u|*} are locally constant on this profinite set, and for any two choices one
is contained in the other. It follows that we may actually define U, using just one map k((u)) — L (i.e.
S = S). Thus, we can now assume that U, = {|t| < |u|*}, and we can also reduce to the case that B
is constant. Now using as above that the cones for ' > a > 0 commute with any base change in S and
commute with direct sums in B, we can reduce to B = A and the rank-1-geometric point S = Spa L where
L is the completed algebraic closure of k((u)).

At this point, we can further replace Spa K by Spa k((t)): One can write Spa K as the inverse limit over
finite extensions of Spa k((t)), each of which is isomorphic to Spa k((¢')), and although a priori RT'(Spa K x
Spa L, ja1A) does not take this inverse limit to a colimit, this does happen after passing to cones for maps

for @’ > a > 0, which suffices as above. Finally, we have reduced to Lemma O

IV.6. Hyperbolic localization

In this section we extend some results of Braden, [Brao3], to the world of diamonds. Our presentation
is also inspired by the work of Richarz, [Ric19]. We will use these results throughout our discussion of
geometric Satake, starting in Section

Let S be a small v-stack, and let f : X — S be proper and representable in spatial diamonds with
dim. trg f < 00, and assume that there isa G,,,-action on X /S, where G,,, is the v-sheaf sending Spa(R, R™)
to R*. The fixed point space X? := X®n C X defines a closed subfunctor.

We make the following assumption about the G,,-action. Here, (A!)™ (resp. (A!) ™) denotes the affine
line Spa(R, R") — R with the natural G,,,-action (resp. its inverse).

HypOTHESIS IV.6.1. There isa decomposition of X into open and closed subsets X7, . .., X0 such that
for each i = 1,...,n, there are locally closed G,-stable subfunctors X f ,X; C X with X ‘'Nnx Z+ = X?
(resp. XN X;” = X7?) such that the G,,-action on X (resp. X; ) extends to a G,,-equivariant map
(AHYT x Xt — X7 (resp. (A1)~ x X; — X;), and such that

n n
x=Jx"=Jx; .
=1 =1
We let
n n
xt=| x5 x = |x7,
=1 =1

so that there are natural maps
gt XT=>X,qg : X =X,
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as well as closed immersions
it X0 5 Xt i X0 5 X
and projections
pT Xt 5 X% pm X o XY,
here p* is given by the restriction of (AY)™ x X;" — X" to {0} x X, and p~ is defined analogously.

Although the decomposition of X into X? fori = 1,...,n is a choice, ultimately the functors X T
and X~ are independent of any choice. Indeed, we have the following functorial description.

PROPOSITION 1V.6.2. Consider the functor (X )’ sending any perfectoid space T" over S to the set
of G,,-equivariant maps from (A!)* to X. There is a natural map X — (XT), as there is a natural
G -equivariant map (A')T x X+ — X — X. The map X — (X ™)’ is an isomorphism.

Analogously, X ™ classifies the set of G,,,-equivariant maps from (A!)~ to X.

PROOE. It is enough to handle the case of X ™. Thereisa natural map (X )’ — X given by evaluating
the G,,,-equivariant map on (A})T x (X ) — X on {0} x X*. Let (X;") = (X T)' x xo X?; it is enough
to prove that X;” — (X;")’ is an isomorphism. For this, it is enough to prove that the map (X;") — X
given by evaluation at 1 is an injection whose image is contained in the locally closed subspace X, C X.
This can be checked after pullback to an affinoid perfectoid base space S = Spa(R, R"). As X /S is proper
(in particular, separated) and G,,, x (X;7)" € (A1)* x (X"’ is dense, it follows that the map (X;') — X
is an injection. To bound its image, we can argue on geometric points. If x € |X]| is any point in the
image of |(X;")’|,and @ € R is a pseudouniformizer with induced action y on X, then the sequence 7" (z)
converges to a point of | X?| for n — co. On the other hand, if z ¢ | X;"|, then z € \X]ﬂ for some j # 1,

which implies that 7" (x) converges to a point of \X]Q| for n — oo; this is a contradiction.
Thus, (X;")’ embeds into X;” C X, but it also contains X', so indeed X;" = (X;")". O

LEMMA IV.6.3. Themap j : X* — XT x y X~ is an open and closed immersion. More precisely, for
any ¢ =1,...,n,themap j; : XZ.0 — Xj' X x X is an isomorphism.

PrOOE. It is enough to prove that for any i = 1,...,n, the map j; : X? — X;” xx X, is an isomor-
phism. As it is a closed immersion (as X — X is a closed immersion and the target embeds into X), it is
enough to prove that it is bijective on geometric rank 1 points. Thus, we can assume S = Spa C, and let
x : SpaC = S — X be a section that factors over X:r X x X, . Then the G,,-action on x extends to a
Gy -equivariant map g : P, — X. Consider the preimage of X" under g; this is a locally closed subfunc-
tor, and it contains all geometric points. Indeed, on (A')/;, the map g factors over X;" by hypothesis, and
at 0o, it maps into X C X;". This implies that the preimage of X" under g is all of P}.. In particular, we
get a map

(AT x PL — (AN x XF — X
which, when restricted to the copy of G,, embedded via t + (¢,¢71), is constant with value . By con-
tinuity (and separatedness of X;"), this implies that it is also constant with value z when restricted to A!
embedded via ¢ — (¢,¢71), i.e. the point (0,00) € (A!)* x P}, maps to . On the other hand, when re-
stricted to G,;, x {00}, the map is constant with values in X?, and thus by continuity also on (A!)* x {c0}.
This implies that z € X?, as desired. O
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In this setup, we can define two functors Det(X, A) — Det(X°, A). We use the diagrams

+
xt 1 . x

Jr*

X0

DEFINITION IV.6.4. Define the functors

L;—(/S’ = R(p+)'(q+)* : Det(Xa A) — Det(XO,A),
Ly ¢ =R(p7)R(¢7)' : Det(X, A) = Det( X7, A),

and a natural transformation Ly /s~ L}"( /s as follows. First, there are natural transformations
RG%)' = RpORGORG 5 BTy R )= 607 R = (0)'
and the desired transformation L /s L} /s arises as a composite
Ly g =R(p7)R(¢7) = (i7)"R(¢7) = (Ri*)(¢")" = R )(¢")" = Ly s,
where the middle map (i~)*R(q¢™)" — (Ri*)'(¢")* of functors Der(X, A) — Det(X°, A) is defined as the

following composite
(i7)*R(g7)' = (i) R(¢7)' R(g")«(¢")"
= () R(@G)-R@) ()
(I7)* R(G)wded ™ R(GH) (¢)"
()" (7)Ri'R(G) (¢)*
— R ")

using base change in the cartesian diagram

1

XUCL>X+ XXX_LX""

. s - . N\ —\! SR
Equivalently, it is enough to define for eachi = 1, ..., nanatural transformation (i; )*R(q; )' — (Ri}")'(¢;"

of functors Det(X, A) — Der( XD, A). As

-+
7.

X0 _ i x+

i <

is cartesian, this arises as the composite
(i) Rla; )" = (i )" Rla; ) R(g)«(@)" = (i) (i )-R6) (a)" = RGY) (a)"

The following is our version of Braden’s theorem, [Brao3], cf. [Ric19, Theorem B].
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THEOREM IV.6.5. For any A € Det(X /Gy, A) whose restriction to X we continue to denote by A,
the map

Lo, JA— LT

X/S X/SA

is an isomorphism. In fact, moreover for any A" € Det (X /Gy, A), the map
R(i)'AT — R(pt) At

is an isomorphism, and for any A~ € Det(X ™ /Gy, A), the map
RO ).A™ = (7 4°

is an isomorphism, so that

Ly, gA=R(p )R(q VA= (i7)*R(¢7)' A= R(i%) (¢")* A= R(p")i(¢") A= L}

X/S x/s4

is a series of isomorphisms.

Before we start with the proof, we prove a certain general result about cohomology groups on spaces
with “two ends”, a flow connecting the two ends, and cohomology of sheaves, equivariant for the flow, that
are compactly supported at only one end.

PROPOSITION IV.6.6. Let S = Spa(R, R") be an affinoid perfectoid space, w € R a pseudouniformizer,
let f : Y — S be a partially proper map of locally spatial diamonds, and assume that Y is equipped with a
G -action over S. Assume that the quotient v-stack Y /Gy, is qcgs. In that case, we can find a quasicompact
open subset V' C Y such that G, x V — Y is surjective and quasicompact. Write

Gm,s =limUp, Up = {2 € Gn5 | 2] < ||},
n>0

and let j,, : Vj, C Y be the open image of the cohomologically smooth map U, xgV C G, s XsY — Y.
In this situation, we define for any A € D¢ (Y, A) the relative cohomology with partial supports

lﬂRf*(]n'A|Vn) S Det(Sa A) ;

this functor is canonically independent of the choices made in its definition.

Forany A € DY (Y /Gy, A) (resp. any A € Dot (Y /Gy, A) if dim. trg f < 00),
lim R f.(jmAlv;,) = 0.

REMARK 1V.6.7. Assume that S = Spa C'is a geometric rank 1 point. Then we set
RTei (Y, A) = lim RU(Y, juAv,).
n

whichisexactly theabove functorlim R f. (jn1Alv;, ) under the identification Dt (S, A) = D(A). Roughly
speaking, the space Y has two ends, one given by |J,,_,7"(V) for V large enough, where 7 is the auto-
morphism of Y induced by w € G,,(S5), and the other given by | J,,. 47" (V). We are considering the
cohomology groups of Y that have compact support in one of these directions, but not in the other. If
one replaces the G,,,-action by its inverse, this implies a similar result for the direction of compact support
interchanged.
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PROOF. One can assume that A € D (Y /Gy, A) by a Postnikov limit argument (in case dim. trg f <
00). Finding a v-hypercover of Y by spaces with G,-action of the form G, x X;, where each X; is a proper
spatial diamond over S, and using v-hyperdescent, one reduces to the case Y = G,,, X X;. Then there is
the projection G,,, x X; = Gy, g, and one reduces to Y = Gy, 5. There, A is a sheaf on the base S. One
can now write G,;, as an increasing union of punctured discs to reduce to Theorem O

PrROOF OF THEOREM[[V.6.5] We can assume that A € D} (X/G,,, A) by pulling through the Post-

nikov limit gnn 727" A, noting that L;r( /5 commutes with limits while (¢*)* commutes with Postnikov
limits and R(p™), as well by finite cohomological dimension.

By choosing a v-hypercover of S by disjoint unions of strictly totally disconnected spaces S,, and using

v-hyperdescent, we can assume that S is a strictly totally disconnected space; indeed, L /s
all limits, while (¢")* and R(p"); commute with any base change and so preserve cartesian objects, and
thus also commute with the hyperdescent.

We start by proving that for any A" € Det (X /Gy, A), the map
RGY)'AY = R(pt) AT

commutes with

is an isomorphism, and similarly for any A~ € Det(X ™ /Gy, A), the map
R(p).A” = (747

is an isomorphism. Let j* : X\ X% < X+, i~ : X~ \ X? < X~ denote the open embeddings. Then
there are exact triangles

()R AT AT = RGYLGHAT L GG AT = AT = () AT

Using these triangles, we see that it is enough to see that for any BT € D (X \ X°)/G,,A), B~ €
Det((X~\ X°)/G,, A), one has

R(p*)R(j7)B" =0, R(p"):R(j" B~ =0

as objects in Dei(X°, A). This follows from Proposition appliedto S = X%and Y = X+ \ X
(resp. Y = X~ \ X©), and the following lemma.

LEMMA IV.6.8. The G,,-action on X\ X (resp. X ~\ X") has the property that the quotient v-stack
(XT\ X%)/G,, (resp. (X~ \ X°)/G,,) is qcqs over S (thus, over X©).

PrOOF. It is enough to do the case of X\ X?, and we may restrict to X;" \ X?. We can assume that
S = Spa(R, R") is an affinoid perfectoid space, and fix a pseudouniformizer @ € R. As G, 5/w” is qcqs
(in fact proper — a Tate elliptic curve), it is equivalent to prove that (X \ X°)/+% is qcgs, where 7 is the
automorphism given by the action of w € G,,(.5).

Now we use the criterion of Lemma for the action of 7y on |X,'|. As a locally closed partially
proper subspace of the proper spatial diamond X over S, the locally spectral space | X'| is taut, and the
condition on generizations is always fulfilled for locally spatial diamonds. The spectral closed subspace
|X?| C | X, is fixed by ~, and by assumption for all x € | X |, the sequence 4" (z) for n — oo converges
to a point of | X?| (as the G,,,-action extends to (A!)*). It remains to see that for all z € |X;" \ X7, the
sequence y"(z) for n — —oo diverges in | X;"|. Butz € | X | for some j, and j # i by Lemma
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Thus, 7" (), for n — —o0, converges to a point of |XJQ|, which is outside of | X;"|, so the sequence diverges
in | X O

Now it remains to see that for any A € D} (X /G,,, A), the map
(i7)*R(¢")'A— R(i*)'(¢")*A
in DY (X% A) = DT ((X%e, A) is an isomorphism. This can be done locally on X, so fix some i €
{1,...,n}, and choose a quasicompact open neighborhood Uy C X of X! that does not meet any XJQ for
j # i and such that X;r NUy, X, NUy C Uy are closed. The G,,-orbit Y = G, - Uy C X is still open,
and contains X;" and X, necessarily as closed subsets.
We are now in the situation of the next proposition. To check conditions (ii) and (iii) of that propo-

sition, note that we may find a quasicompact open subspace V' C Y such that Y = 7% . V by averaging
Up over {|w| < [t| < 1} C Gy Let W be the closure of |J,,50 7" (V) C X. To check (iii), it suffices (by

symmetry) to see that

") =X

m>0
in X. Note that X;” C [J,507"(V) (as for all = € X, the sequence v~ "(z) converges into XY C
V), so X ;, is contained in W, and thus in ﬂmzo 4™(W). To prove the converse inclusion, let W/ =
Mo Y™ (W). If X;7 C W, then there is some j # i such that X contains a quasicompact open subset
AC W' Then A = Uns07""(A) isa~~'-invariant open subset of W’ whose closure is y~(NU{ood) . 74; in
particular, replacing A by 7" (A) if necessary, we can arrange that this closure is contained in any given
small neighborhood of X]Q, and in particular intersects V trivially. Theny™(V)NA = +"(VNy~"(A4)) =
for all n > 0, and hence A intersects |J,,~, 7" (V) trivially, and then also its closure I¥. But we assumed
that A C W' C W, giving a contradiction. O

PROPOSITION 1V.6.9. Let S = Spa(R, R") be a strictly totally disconnected perfectoid space, let f :
Y — S be a compactifiable map of locally spatial diamonds, and assume that Y'/S is equipped with a
G -action, with fixed points YY C Y, and the following properties.

(i) There are G,,-invariant closed subspaces ¢* : Y* C Y, ¢~ : Y~ C Y, containing Y (viai* : Y0 —
Y*,i7 : Y — Y~ )such that the action maps extend to maps (A') T x Y+ — Y resp. (A)"xY~ = Y.
(ii) The quotient v-stack Y /G, is quasicompact. In particular, picking a pseudouniformizer w € R with
induced action y on Y, we can find some quasicompact open V' C Y such that Y = 7% . V.

(iii) With V as in (ii), et W~ be the closure of ¥-V and W the closure of Y- V. Then N0V (W) =
Y=and (507 "(WF) =Y.

Then Y is a spatial diamond, the diagram

YOLY-F

-k

Y_L>Y
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is cartesian, the quotient v-stacks (Y \ Y1) /Gy, and (Y \ Y ) /G, are qcgs, and forall A € D (Y /Gy, A)
(resp.all A € Det(Y /Gy, A) if dim. trg f < oo) whose pullback to Y we continue to denote by A, the map

(i) R(g™)'A— (i) R(g7)(a")(a") A= ()" (i7)R(") (¢")" A= R(*) (¢") A

in Det (Y, A) is an isomorphism.

PrROOF. Note that Y°/G,, C Y /G,, is closed and thus Y°/G,, is quasicompact. As the G,,-action is
trivial on Y0, this implies that Y° is quasicompact. As Y? C Y is closed and Y — S is compactifiable and
in particular quasiseparated, we see that Y9 5 Sis qcgs. That the diagram is cartesian follows from the

proof of Lemmal|[V.6.3]

Next, we check that (Y \ Y ) /G, and (Y \ Y )/G,, are qcgs. By symmetry and as G,,, s/ is qegs,
it suffices to see that (Y \ Y ™)/~ is qcgs. First, we check that it is quasiseparated. Take any quasicompact
open subspace V™~ C Y \ Y,7; we need to see there are only finitely many n with V=~ N~™(V ™) # (. We
can assume that V'~ C J,;~q7" (V) (translating by a power of  if necessary), and then V'~ is covered by
the open subsets V= \ 7”*(IW~) C V~ by the claim above. By quasicompacity, the intersection of V'~
with ™ (W ™) is empty for some large enough m, but then also the intersection of V'~ with v (V) C
Y™ (W) form’ > m is empty.

To see that (Y \ Y 7) /% is quasicompact, note that V' \ |J,,~, 7" (V') is a spectral space (as it is closed
in V) that maps bijectively to (Y \ Y 7)/4%.

Now, for the cohomological statement, we can as usual assume that A € D (Y /G,,, A) by a Postnikov
limit argument. Then we are interested in checking that a map in D (Yp, A) = D* (Y, A) (cf. [Schi7a)
Remark 14.14]) is an isomorphism, so we need to check that the sections over all quasicompact separated
étale Y] — Yj agree. Now we claim that any such quasicompact separated étale Y] — Y lifts to a G,,-
equivariant quasicompact separated étale map Y’ — Y; this will then allow us to assume Yj = Y} via
passing to the pullback of everything to Y.

To see that one may lift Yj — Yy to Y’ — Y, consider the open subspace v -y given as the
intersection of | J,,~,, v (V) with | J,,«_,, 7™ (V). It follows from the topological situation that this is
still quasicompact, and that the intersection of all V(") is equal to Yy (using condition (iii)). Let V(") = 4%.
V() C Y. Then ~y-equivariant quasicompact separated étale maps to Y™ are equivalent to quasicompact
separated étale maps to V(") together with isomorphisms between the two pullbacks to V™) N~ (V™). The
latter data extends uniquely from Yj to V(") for small enough n by [Sch17a, Proposition 11.23]. Repeating
a similar argument after taking a product with G,, s/ ~% (which is qcgs), and observing that the Y () are
cofinal with their G,,-orbits, one can then attain G,,-equivariance.

We have now reduced to checking the statement on global sections. Now consider the compactification

jiY Y= V7% - S. Note that Y satisfies all the same conditions of the proposition. Restricted to Yj,
this gives a quasicompact open immersion jy : Yy < Yp. By the above argument, this quasicompact open
immersion spreads to a quasicompact open immersion into Y, and by taking it small enough in the argument
above, we can assume that it is contained in Y. This allows us to assume that j is quasicompact. In that case
the functor Rj. commutes with all operations in question by [Sch17a, Proposition 17.6, Proposition 23.16
(i)]. Thus, we can now moreover assume that Y is partially proper.
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Our goal now is to prove that when Y’ is partially proper and A € D (Y /Gy, A), the map
(i7)"R(g)'A— R(i")(¢")"A

becomes an isomorphism after applying R fo. where fo : Yo — S is the proper map. For this, we define
another functor Det (Y, A) — De (S, A), as follows. Let j,, : Vi, = U,,>_, 7" (V) <= Y for n > 0. Then
we consider N

A F(A) = lim Rf.(juAly,) : Dae(Y.A) = Da(S, A).

LEmMMAIV.6.10. Letj~ : Y \Y ™ = Y,j7 : Y\ YT — Y denote the open immersions.
(i) fA=Rj A for A~ € DE((Y \ Y7)/Gy, A), then F(A) = 0.
(i) f A = j," AT for AT € DL((Y \ Y1)/Gy,, A), then F(A) = 0.
PrOOF. This follows from Proposition and condition (iii). O

There are natural transformations Rfo.R(p~)+R(q7)' — F — Rfo«R(p*)i(¢")*, and the lemma
implies that these are equivalences when evaluated on A € D} (Y /G, A). Using thatalso (Y 7\ Y?)/G,,
and (Y~ \ Y?)/G,, are qcgs (as closed subspaces of (Y \ Y 7)/G,, resp. (Y \ Y1)/G,,) so that we can
apply Proposition[[V.6.6|again as in the beginning of the proof of Theorem we get an isomorphism

Rfou(i”)"R(¢7)' A= Rfo.R(p")«R(q")' A= F(A) = Rfo.R(p*)1(¢")" A = Rfo. R(i¥)'(¢*)" A,
We need to see that this implies that also the map
Rfou(i")*R(¢7)'A — Rfo.R(i") (¢")* A

defined in the statement of the proposition is an isomorphism. For this, observe that this map is an isomor-

phism if and only if for A = j;" A" with AT € Dt ((Y \ Y)/Gyn, A), one has
Rfou(i")"R(¢")'A=0.
But this follows from the existence of some isomorphism
Rfo-(i7) R(g™)'A = Rfo-R(i7) (¢")" A =0,
using (¢7)*A = (¢")*jF AT =0. O

Using Theorem we give the following definition.

DEFINITION IV.6.11. Let f : X — S with G,,-action be as above, satisfying Hypothesis Let
Der(X, A)Emmon Do (X, A) be the full subcategory generated under finite colimits and retracts by the
image of Det(X /Gy, A) — Det(X, A). The hyperbolic localization functor is the functor

Lx/s @ Det( X, A)5m ™™ — Dt (X9, A)
given by L)_(/S & Lj{/S'

We observe that Theorem IV.6.5/implies the following further results.
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PROPOSITION 1V.6.12. In the situation of Definition let g : S” — S be a map of small v-stacks,
with pullback f : X' = X xg 8 — &, gx : X' = X, ¢° : X¥ — XO. Then there are natural
equivalences
9" Ly s = Lx1/s19% » Lx/sRox« = Rg%Lx s, Lx sRgx1 = RgoLx1/s, Rg" Ly s = Ly, Ry,

the latter two in case g is compactifiable and representable in locally spatial diamonds with dim. trg g < oo
(so that the relevant functors are defined).

PrOOF. The first and third assertions are clear for L;r{ /s while the second and fourth assertions are
clear for Ly /5" ]

PROPOSITION 1V.6.13. In the situation of Definition let A € De(X,A)Cm™n and B €
Det(S,A). Let L'y /5 denote the hyperbolic localization functor for the inverse G,-action. Then there

is natural isomorphism
Ritom(Ly/s(A), Rf"B) = L'y R om(A, Rf'B).

In particular, taking B = A, hyperbolic localization commutes with Verdier duality, up to changing the
G,,,-action.

PROOF. More generally, for all A € Dg(X,A) and B € D¢(S, A), we have a natural isomorphism
Rﬁiﬂom(L}/S(A), Rf"B) = L;/Sijom(A, Rf'B). Indeed,

RAom(LY 4(A), Rf* B) = R#om(R(p*)i(¢*)" A, Rf"B) = R(p*). . RAom((¢*)" A, R(p*)'Rf"B)
= R(p")«RAom((q)" A, R(q") Rf'B) = R(p").R(¢") RA#om(A, Rf'B).

]

ProPOSITION 1V.6.14. In the situation of Definition assume that A € Dei(X, A)Gmmon jg

[f-universally locally acyclic. Then Ly g(A) € Det(X 0’ A) is universally locally acyclic with respect to
fo:Xx%cXx — 8.

PROOF. As the assumption is stable under base change, we may assume that .S is strictly totally discon-
nected, and it suffices to see that Lx,g(A) is f?-locally acyclic. For condition (a), we can in fact assume
that S = Spa(C, C'™) is strictly local; let j : Sy = Spa(C,O¢) C S be the generic open point. Then we
have to see that Lx /g(A) = Rj2(Lxs5(A)|x0xs,), where 5 : XV x ¢Sy — XU is the pullback of j. But
this follows from Proposition and the corresponding property of A.

For condition (b), it suffices to see that the functor R#om(Ly,s(A), R f%—) commutes with all

direct sums, as then its left adjoint Rf(Lx /5(4) ®@% —) preserves perfect-constructible complexes. For
this, we compute this functor:

RAfomy(Ly/s(A), Rf*" =) = L'y ;gRAomp (A, Rf'—)
= L'y /5(Dx/s(A) ®5 ).
Here, we used Proposition and Proposition The final functor clearly commutes with all

direct sums, giving the desired result. O
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1V.7. Drinfeld’s lemma

As a final topic of this chapter, we prove the version of Drinfeld’s lemma that we will need in this
paper. Contrary to the classical formulation [Dri80, Theorem 2.1], cf. also [Lauo4) Theorem 8.1.4], this
version actually makes the Weil group of E, not the absolute Galois group of E, appear. (Also, it is worth
remarking that usually, a global Galois group appears, not a local Galois group.)

In this section, we work on Perf;, where k& = F,. In that case, we can write the moduli space of de-
gree 1 Cartier divisors on the Fargues-Fontaine curve as Div! = Spd E/¢%, where ¢ acts on Spd E =
Spd k Xspar, Spd E via the second factor. This admits a natural map

Y : Divl — [/ Wg]

to the classifying space of the Weil group of F. Indeed, if C = E is a completed algebraic closure of E, then
there is an action of Wg on Spd C, with the inertia subgroup I C W acting via its usual action, while
Frobenius elements act via the composite of the usual action and the Frobenius of Spd C'. More precisely,
7 € Wg acts as 7 o Frob™ 487 where deg : W — 7 is the projection; note that this as a map over Spd k as
on Spd k the two Frobenii cancel. The natural map

[Spd C/ W) — [Spd £/¢"]
is an isomorphism, thus yielding the natural map
v [Spd /"] = [Spd C/ W] — [/ W],
One could equivalently compute
Wg x SpdC = Spd C' xp;,1 Spd C
for the natural map Spd C' — Div' to arrive at the result.
In particular, for any small v-stack X, we get a natural map

Yx : X x Divt = X x [x/Wg].

As usual, A is a ring killed by some integer n prime to p.

PropPosITION IV.7.1. The functor
Uk @ Det(X x [%/WE],A) = Det(X x Divl, A)

is fully faithful. If the natural pullback functor
Det(X7 A) — Det(X X Spd C, A)

is an equivalence, then 9% is also an equivalence.

PrOOF. We apply descent along * — [*/Wg]|. This describes De(X x [*/Wg], A) in terms of cartesian
objectsin Dt (X x Wg®, A),and Dy (X x Div!, A) in terms of cartesian objectsin D¢t (X xSpd CxWEg*, A).
By [Sch17a) Theorem 1.13], all functors Det(X x Wg*, A) = Det(X x Spd C' x Wg®, A) are fully faithful;
this implies the fully faithfulness. Moreover, for essential surjectivity on cartesian objects it is enough to
know essential surjectivity on the degree 0 part of the simplicial resolution, i.e. for Det(X, A) — Det(X X

Spd C, A), giving the desired result. O

We note the following immediate corollary.
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COROLLARY IV.7.2. For any finite set I, pullback along X x (Div')! — X x [*/W]] induces a fully
faithful functor o
Det(X x [#/Wg], A) = Det(X x (Div')! A).

Proor. This follows inductively from Proposition O

We need the following refinement, see Proposition For any small v-stack Y, let
Di(Y,A) C Det(Y, A)

be the full subcategory of all objects that are v-locally constant with perfect fibres. (Being v-locally constant
with perfect fibres is equivalent to dualizability, and on spatial diamonds such objects are actually étale
locally constant, as follows from [Sch17a} Proposition 20.15].)

PROPOSITION IV.7.3. For any finite set I and any small v-stack X, the functor

Die(X x [x/Wg], A) = Di(X x (Div')!, A)

is an equivalence of categories.

We will mostly be using this in case X is a point. The equivalence certainly fails without the local
constancy condition, as there are sheaves supported on proper subsets of |(Div')|, like the partial diagonals.

PrOOE. By Corollary[[V.7.2} the functor is fully faithful. By induction, we can reduce to the case that
I has one element. By descent, we can assume that X is strictly totally disconnected. Note that X x Div?
is a spatial diamond, and using [Sch17a] Proposition 20.15] we can reduce to the case that X = Spa(C, C'")
is strictly local (by writing any connected component as a cofiltered inverse limit of its open and closed
neighborhoods to see that then any object is locally in the image of the functor). Moreover, the category
D is unchanged if we replace Spa(C, C") by Spa(C, O¢), so we can assume that X is even a geometric
rank 1 point.

At this point, we need to simplify the coefficient ring A. The algebra A is a Z/nZ-algebra for some n
prime to p; we can then assume 7 is a power of some prime ¢ # p, and in fact even n = ¢ by an induction
argument. By [Schi7a, Proposition 20.15], we can also assume that A is a finitely generated F,-algebra.
Taking a surjection from a polynomial algebra, one can then assume that A = Fy[T1,...,T,]. Applying
[Sch17a, Proposition 20.15] again, we can assume that A is the localization of Fy[T7,...,T,] at a closed
point, or applying faithfully flat descent in the coefficients, that A is the completion of F[T7,...,Ty] ata
closed point, but equipped with the discrete topology. Also note that this ring is regular, so all truncations
of perfect complexes are perfect, and we can assume that the complex is concentrated in degree 0.

We are now in the following situation. We have an étale sheaf A of A = [Fy- [T, ..., T;]-modules on
S = SpaC x Div!, such that for some finitely generated A-module M, there are étale local isomorphisms
between A and the constant A-module associated to M. Our goal is to see that after pullback along the
WEg-torsor

S =SpaC x Spd E — § = SpaC' x Div’,
there is an isomorphism between A and M. To see this, we will also need to analyze the behaviour at a

carefully chosen geometric point. In fact, by Lemma we can find a point Spa K' — Y( of the curve
Y¢ associated with C' such that the induced map Gal(K|K) — I is surjective. This induces a point
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y : Spd K — S, and we can lift it to a geometric point ¥ : Spdﬁ — S. Define M as the stalk of A at §; our
goal is then to prove the existence of a unique isomorphism between A|z and M that is the identity at 7.

To prove this, we first reduce modulo (71,...,74)". Then A, := A/(Th,...,T;)" is a finite ring,
and the space of isomorphisms between A/(T1,...,Ty)" and M /(T1,...,T;)" is parametrized by a space
finite étale over S. By [SW20, Lemma 16.3.2], all such finite étale covers come via pullback from finite étale
covers of Div!, and are thus trivialized after pullback to S; this implies that there is a unique isomorphism
A/(Ty,...,Ty)" = M /(T1,...,Ty)" reducing to the identity at 7.

[as

Taking the limit over 1, we get an isomorphism A g = M| g between the pro-étale sheaves A =
&iinn A/(Ty,...,Ty)" and M = klinn M/(Ty,...,Ty)" after pullback to S. This gives in particular an
automorphism of M over

SxgS=WgxS8,
and thus by connectedness of S a continuous map W — Auta (M) (in fact, it extends continuously to
the absolute Galois group of F). We claim that this map is trivial on an open subgroup of Iz (but not
necessarily on an open subgroup of the absolute Galois group of E/ — here it is necessary to pass to the Weil
group). Indeed, restricting the map Wy — Auty (M) to Gal(K|K) gives a map Gal(K|K) — Auty (M)
that is in fact continuous for the discrete topology on the target, as a local system of A-modules on Spd K
is given by a continuous representation of Gal(K|K). As Gal(K |K) — I is surjective, we get the claim.

By equivariance under an open subgroup of I, we find that the isomorphism A| g = M| g descends,
necessarily uniquely, to an isomorphism over

SpaC x Spd E

for some finite extension F’ | E. Now we take the pushforward of the isomorphism /l| SpaCxSpd B/ = M |Spa C'xSpd E
to the small étale site of SpaC' x Spd E’. As any étale U — SpaC' x Spd E' is locally connected, we have
HO(U, M) = H°(U, M) and then also H°(U, A) = H°(U, A) (as A is étale locally isomorphic to M) for
all such U, so we get the desired isomorphism Alsye oxspa 57 = M ’SpaCXSpd B O



CHAPTER V

Det (BunG)

In this chapter, we want to understand the basic structure of Det(Bung, A), building it up from all
Dei(Bun%, A), where we continue to work in the setting where A is killed by some integer 7 prime to p.

Throughout this chapter, we fix an algebraically closed field k|F, and work on Perfj,. Our goal is to
prove the following theorem.

THEOREM V.0.1 (The Proposition Proposition Theorem Theorern
V.71

Theorem Theorem|V.7.1). Let A be any ring killed by some integer n prime to p.

(o) For any b € B(G), there is a map

mp : Mp — Bung
that is representable in locally spatial diamonds, partially proper and cohomologically smooth, where M,
parametrizes G-bundles £ together with an increasing Q-filtration whose associated graded is, at all geo-
metric points, isomorphic to &, with its slope grading. The v-stack My, is representable in locally spatial
diamonds, partially proper and cohomologically smooth over [x/G}(E)].

(i) Via excision triangles, there is an infinite semiorthogonal decomposition of Det(Bunc;, A) into the vari-
ous De(Bun?, A) for b € B(G).
(ii) For each b € B(G), pullback along

Buan = [*/éb] — [x/Gp(E)]

gives an equivalence

Det([#/Gp(E)], A) = Det(Bung;, A),

and De([*/Gy(E)],A) = D(Gp(E), A) is equivalent to the derived category of the category of smooth
representations of G,(F) on A-modules.

(iii) The category Det(Bung, A) is compactly generated, and a complex A € D, (Bung, A) is compact if
and only if for all b € B(G), the restriction

i®* A € Det(Bunl, A) = D(Gy(E), A)
is compact, and zero for almost all b. Here, compactness in D(G(E), A) is equivalent to lying in the thick

(E)

triangulated subcategory generated by C-Ind% A as K runs over open pro-p-subgroups of G(E).

(iv) On the subcategory Dei(Bung, A)¥ C Det(Bung, A) of compact objects, there is a Bernstein-Zelevinsky
duality functor

Dpz : (Det(Bung, A)*)°P — Det(Bung, A)“
with a functorial identification

RHom(A, B) = my(Dpz(A) ®% B)
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for B € D¢ (Bung, A), where 7 : Bung — * is the projection. The functor Dp is an equivalence, and
D%, is naturally equivalent to the identity. It is compatible with usual Bernstein-Zelevinsky duality on
D(Gy(E), A) for basic b € B(G).
(v) An object A € Det(Bung, A) is universally locally acyclic (with respect to Bung — *) if and only if for
all b € B(G), the restriction

i A € Det(Bunly, A) =2 D(Gy(E), A)
is admissible, i.e. for all pro-p open subgroups K C G(FE), the complex (i** A)X is perfect. Universally
locally acyclic complexes are preserved by Verdier duality, and satisfy Verdier biduality.

V.1. Classifying stacks

First, we want to understand Det([*/G], A) for a locally pro-p-group G. Fix a coefficient ring A such
that nA = 0 for some n prime to p, and assume that G is locally pro-p. Our aim is to prove the following
theorem.

THEOREM V.1.1. Let D(G, A) be the derived category of the category of smooth representations of G
on A-modules. There is a natural symmetric monoidal equivalence
D(G, A) = De([*/G], A)
under which the functor D(G, A) — D(A) forgetting the G-action gets identified with the pullback func-
tor Det([*/G], A) = Det(*, A) = D(A) under the projection * — [x/G]|.
The same result holds true for the base change [SpaC/G] = [*/G] x SpaC for any complete alge-
braically closed nonarchimedean field C'/k; more precisely, the base change functor

Det([#/G), A) = Det([Spa C/G], A)

is an equivalence.

Note that indeed
Det(x,A) = D(A).
This follows from applying [Sch17a, Theorem 1.13 (ii)] to the small v-stack X = . In fact, for any complete
algebraically closed field C, one has D¢t (Spa C, A) = D(A) and there is a sequence

D(A) — D(s, A) B, (SpaC,A) = D(A)

whose composite is the identity, and D(A) — Det(*, A) is thus an equivalence.

PROOF. We start by constructing a functor
D(G,A) — De([*/G], A)

compatible with the derived tensor product and the forgetful functors. For this, one first constructs a
functor from the category of smooth representations of G on A-modules to the heart of De([*/G], A);
note that this heart is a full subcategory of the heart of D([*/G],, A), which is the category of v-sheaves on
[*/G]. Now one can send a smooth G-representation V' to the v-sheaf i on [*/G] that takes a perfectoid
space X with a G-torsor X — X to the set of all continuous G-equivariant maps from | X| to V. In fact
one checks that for any perfectoid space S and any locally profinite set A,

IS x Al =|S] x A,
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and thus | X| has a continuous G-action. As v-covers induce quotient maps by [Sch17a, Proposition 12.9],
this is indeed a v-sheaf. Moreover, after pullback along * — [*/G], it is given by the functor which sends X
to the set of continuous G-equivariant maps from | X| x G = | X X G| to V. These are canonically the same
(via restriction to X x {1}) as continuous maps | X | — V, so that Fy |, = V is the v-sheaf corresponding
to V. As V is discrete, this is a disjoint union of points, and in particular (after pullback to any Spa C') an
étale sheaf. According to [Sch17a, Definition 14.13], this implies that Fyy € Det([*/G], A), as desired.

From now on, we will simply write V for y,. Given any complex of smooth G-representations V'*, one
can form the corresponding complex V' * of v-sheaves on [*/G], which defines an object of Det([*/G], A) C
D([*/G]y, A) (using [Schi7a| Proposition 14.16]), giving the desired functor D(G,A) — De([x/G], A)
compatible with the forgetful functors, using exactness of V' +— Fj,. One checks that this functor is com-
patible with derived tensor products by unraveling the definitions.

To check whether the functor is an equivalence, we may by [Sch17a, Theorem 1.13 (ii)] replace [x/G] by
its base change [Spa C'/G| = [x/G] x Spa C, where C'is some complete algebraically closed nonarchimedean
field.

For the v-stack X = [SpaC/G], we can also consider its étale site Xt C X, consisting of all Y € X,
which are étale (and locally separated) over X. This recovers a classical site.

LEMMA V.1.2. The étale site X,; is equivalent to the category G- Set of discrete G-sets, via sending a
discrete set S with continuous G-action to [S x Spa C'/G].

PROOF. It is clear that the functor S + [S x Spa C'/G] maps to Xt C X, (as the pullback to Spa C'is
given by S x Spa (), and is fully faithful. Conversely, if Y — X = [Spa C'/(] is étale, then the pullback
of Y to Spa C is a discrete set, on which G acts continuously, giving the descent datum defining Y. O

LEMMA V.1.3. There is a natural equivalence D(G, A) ~ D(G-Set, A), such that the following dia-
gram commutes

D(G, A) D(G-Set, \) —= D([SpaC /Gl A)

| |

Det([%/G], A)© Det([SpaC/G], A).

PROOF. It is enough to give an equivalence of abelian categories between smooth G-representations
on A-modules, and sheaves of A-modules on discrete GG-sets. The construction of the functor is as before:
Send a smooth representation V' to the sheaf sending some discrete G-set S to the A-module of continuous
G-equivariant maps S — V. This functor is clearly fully faithful. But any sheaf of A-modules F on G- Set
comes from the smooth G-representation V' = h_n>1 neat (G/H), where H runs over all open subgroups

of G. One directly verifies that the diagram commutes. O

It remains to see that the natural functor
D([SpaC/Glet, A) — Det([SpaC/G], A)

is an equivalence. We claim that this reduces to the case that G' is pro-p: We first reduce fully faithfulness
to this case. For this, we have to see that, if A : X, — X, denotes the map of sites, then for any A €
D([SpaC/Glet, A), the natural map

A — RAMATA
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is an equivalence. This can be checked locally on [Spa C'/G]et, meaning that we can replace G by an open
pro-p-subgroup. Similarly, for essential surjectivity, one needs to see that for all B € D¢ ([SpaC/G], A),
the map \*R\.B — B is an equivalence, which can again be checked locally.

Thus, we can assume that G is pro-p. Note that ([Spa C'/G]et, A) is locally of cohomological dimension
0, as there is no continuous group cohomology of pro-p-groups on A-modules if nA = 0 for n prime to
p. This implies (cf. [Sta) Tag 0719]) that D([Spa C/G]et, A) is left-complete. As Dei([SpaC/G], A) is also
left-complete by [Sch17a) Proposition 14.11], it is enough to see that the functor
D7 ([SpaC/Glet; A) = D ([SpaC/Gl, A)

is an equivalence. First, we check fully faithfulness, i.e. that the unit id — RA.\* of the adjunction is
an equivalence. For this, it is enough to see that for any étale sheaf of A-modules, i.e. any smooth G-
representation V/, one has

RI([SpaC/Glu, V) =V,
ie. its H? is V¥ and there are no higher H. However, one can compute v-cohomology using the Cech
nerve for the cover SpaC' — [Spa C'/G|, which produces the complex of continuous cochains, giving the
desired result.

Finally, for essential surjectivity, it is now enough to check on the heart. But if F is a v-sheaf on
[Spa C'/G] whose pullback to Spa C is an étale sheaf, then this pullback is a disjoint union of points, thus
separated and étale, and therefore F is itself a v-stack which is étale over [Spa C'/G], and so defines an object
in the topos [Spa C'/G|et. O

COROLLARY V.1.4. The operation
Rstomp(—, A) : Det([x/G], A)°P — De([x/G], A)
corresponds to the derived smooth duality functor
A (A")™: D(G,A)® — D(G,A)
induced on derived categories by the left-exact smooth duality functor

Vise (V)" ={f:V —->A|3H CGopenVh € HveV: f(hv) = f(v)}.

PRrOOF. The operation A — (A*)*™ on D(G, A) satisfies the adjunction
Hom p(c ) (B, (A*)™) = Homp g 2) (B ®% A, A)
forall B € D(G,A). As R7#omy(—, A) is characterized by the similar adjunction in De([*/G], A) and

the equivalence is symmetric monoidal, we get the result. O

V.2. Etale sheaves on strata

We want to describe De;(Bung, A) via its strata Bun?,. For this, we need the following result saying
roughly that connected Banach—-Colmez spaces are “contractible”.

PROPOSITION V.2.1. Let f : S" — S beamap of small v-stacks that isa torsor under BC (&) resp. BC(E[1]),
where £ is a vector bundle on X that is everywhere of positive (resp. negative) slopes. Then the pullback
functor

" Det(S, A) — Det(S', A)
is fully faithful.
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PrOOF. By descent [Schi7a, Proposition 17.3, Remark 17.4], the problem is v-local on S, and in par-
ticular one can assume that the torsor is split. In the positive case, we can use Corollary [IL.3.3[(iv) to find
pro-étale locally on S a short exact sequence

0— Oxs(i)m' — Oxg(H)m =€ =0,

inducing a similar sequence on Banach-Colmez spaces. This reduces us to the case £ = Ox () for some n
(as then pullback under BC(Ox(+)™) — S is fully faithful, as is pullback under BC(Ox,(2)™) — S =
BC(€)). In that case, BC(E) is a 1-dimensional perfectoid open unit ball over S by Proposition (iv),

in particular cohomologically smooth. It suffices to see that Rf" is fully faithful, for which it suffices that
forall A € De(S, A), the adjunction map

RARS'A— A

is an equivalence. But note that both Rfj and Rf' commute with any base change by [Sch17a, Proposition
22.19, Proposition 23.12]. Thus, we may by passage to stalks reduce to the case S = Spa(C,C") where
C is a complete algebraically closed nonarchimedean field and C* C C an open and bounded valuation
subring, and (as we reduced to the stalk) we only need to check the statement on global sections. If the
stalk of A at the closed point s € S is zero, then the same holds true for RfiRf'A as Rf'A agrees with
f*A up to twist, so this follows from the commutation of Rf) with extension by zero. This allows us to
reduce to the case that A is constant, and then as both Rf' and Rf, commute with all direct sums, even to
the case A = A. Thus, we are reduced to the computation of the cohomology of the perfectoid open unit
disc, which is known.

The case of negative Banach—Colmez spaces follows by taking an exact sequence
0—=E&—O0xy(d)™" —-G—0
with d > 0 (and hence G of everywhere positive slopes) and using the exact sequence

0 — BC(Ox4(d)™) — BC(G) — BC(E]1]) — 0. O

Now we can formulate the desired result.
PRrOPOSITION V.2.2. Forany b € B(G), the map
Bung, = [+/Gj] — [x/Gy(E)]

induces via pullback an equivalence
Det(Gy(E), A) = Det([%/Gy(E), A]) = Der([%/Gi], A).
Moreover, for any complete algebraically closed nonarchimedean field C'/k, the map
Det([%/Gs), A) = Det([Spa C/Gy], A)

is an equivalence.

PrOOF. Using [Sch17a, Theorem 1.13] and Theorem it is enough to prove that the functor
De([Spa C/Gy(E)], A) = Der([SpaC/Gy], A)
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is an equivalence. For this, it is enough to prove that pullback under the section [SpaC/G,(E)] —
[Spa C'/G}) induces a fully faithful functor

Det([Spa C/éb], A) — Det([spa C/Gb(E)]v A)?

which follows from Proposition[[II.5.1/and Proposition [V.2.1] O

We see that Dei(Bung, A) is glued from the categories Dei(Bun, A) = D(Gy(E), A), which are en-
tirely representation-theoretic[| In particular, this implies that the base field plays no role:

CoROLLARY V.2.3. For any complete algebraically closed nonarchimedean field C' and any locally
closed substack U C Bung, the functor

Det(U,A) = Det(U x SpaC, A)

is an equivalence of categories.

Although this seems like a purely technical result, it will actually play a key role when we study Hecke
operators.

Proor. Fully faithfulness holds true by [Sch17a, Theorem 1.13 (ii)]. To see that it is an equivalence of
categories, it is enough to check on all quasicompact locally closed substacks U C Bung. These are stratified
into finitely many locally closed substacks Bun?, C Bung, and thus any object of Dt (U x SpaC,A) is
filtered by objects !-extended from De(Bun x Spa C, A). By fully faithfulness, it suffices to show that all

the graded pieces lie in the essential image of D¢(U, A). Now the result follows from Proposition
(and compatibility of !-extension with base change to Spa C). O]

V.3. Local charts

For any b € B(G) we wish to construct a chart
T, : My — Bung

whose image contains Bun’, such that 7y is separated, representable in locally spatial diamonds and coho-
mologically smooth, and whose geometry can be understood explicitly.

EXAMPLE V.3.1. Before we discuss the general case, let us briefly discuss the first interesting case, namely
G = GL; and the non-basic element b corresponding to O(1) & O. In that case, we let M}, be the moduli
space of extensions

0=L—=E—=L =0
where L is of degree 0 and £’ is of degree 1. Mapping such an extension to £ defines the map M}, — Bung.

Note that there is a natural £* x E*-torsor Mb — My, parametrizing isomorphisms £ = O and
L' = O(1). On the other hand, it is clear that M;, = BC(O(—1)[1]) is a negative absolute Banach-Colmez
space; thus, M,, is very explicit.

1t would be very interesting to understand the gluing of these categories in terms of pure representation theory.
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Any extension £ parametrized by M), is either isomorphic to O & O(1), or to O(3). The fibres of
7 : My — Bungr, over a rank 2 bundle £ are given by an open subset of the projectivized Banach-

Colmez space (BC(E) \ {0})/E*. Thus, these fibres interpolate between (BC(O(3)) \ {0})/E*, which is
cohomologically smooth by Proposition [[I.3.7} and an open subset of

(BC(O & O(1))\ {0})/E = (E x Spd k[t'/*"]\ {(0,0)})/E*.

That open subspace is still cohomologically smooth, although £ x Spd k[t'/P™] is not — the quotient by
E* gets rid of the disconnected nature of the space. In this case, and in fact in complete generality for all
b € B(GL,,), one can actually check cohomological smoothness of 7, by hand. To handle the general case,
we had to prove the Jacobian criterion, Theorem[[V.4.2]

Coming back to the general case, we can in fact construct all M, together, as follows.

DEFINITION V.3.2. The v-stack M is the moduli stack taking S' € Perf}, to the groupoid of G-bundles
& on X together with an increasing separated and exhaustive Q-filtration (p.€)<* C p.€ (ranging over
algebraic representations p : G — GL,, and compatible with exact sequences and tensor products) on the
corresponding fibre functor such that (letting (p.€)<* = [J,/_, (p+& )=") the quotient

(P*g))\ = (P*S)S)\/(p*g><)\

is a semistable vector bundle of slope A, for all A € QQ and representations p : G — GL,,.

Note that by passing to the associated graded, M maps to the moduli stack of G-bundles in the category
of Q-graded vector bundles on X g where the weight \ piece is semistable of slope A. By Proposition|II1.4.7
this is isomorphic to | |,¢ g [*/Gy(£)]. In particular M decomposes naturally into a disjoint union

M= || My,
beB(G)

and for each b € B(G), we have natural maps

q : My = [x/Gy(E)].

ExaMmPpLE V.3.3. When G = GL,,, M sends S to the groupoid of filtered vector bundles 0 = Filp £ C
Fil; € C --- C Fil, £ = & for somer, such that Fil; 1 £/ Fil; £ is semistable and the slopes (1(Fil;+1 £/ Fil; £))o<i<r
form an increasing sequence (the opposite condition to the one defining the Harder—Narasimhan filtration
of a vector bundle). The maps g, send such a vector bundle to the graded vector bundle @;:—8 Fil;11 £/ Fil; £.

EXAMPLE V.3.4. Suppose G is quasisplit. Let M}, be the centralizer of the slope morphism, which is a
Levi subgroup. Let P, be the parabolic subgroup with Levi M}, such that the weights of 14, on Lie P, are
positive. There is a diagram

Bunp, —— Bung

!

Buan
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induced by the inclusion P, C G and the quotient map P, — M}, There is a cartesian diagram

Mp — Bunp,

| |

b
Bunjy, < Bunyy, .

PROPOSITION V.3.5. Forany b € B(G), the map
@ = My — [+/Gy(E)].

is partially proper, representable in locally spatial diamonds, and cohomologically smooth, of dimension
(2p, ). In fact, after pullback along * — [*/G}(E)], it is a successive torsor under negative Banach-
Colmez spaces.

In particular, M, is a cohomologically smooth Artin v-stack, of dimension (2p, 1).

ProoF. It suffices to check everything after pullback by the v-cover * — [*/G(F)], inducing M, —
My. Let H — Xg be the automorphism group of & — Xg, see Proposition[[I1.5.2} the pure inner twisting
of G x Xg by &,. This is equipped with a parabolic subgroup H =", and moreover a filtration (H<"),<q
with unipotent radical H <. This is the opposite parabolic subgroup to the one used in the proof of Propo-
sition 1} Then M, (S) is identiﬁed with the set of H<"-torsors on Xg. The result is deduced using the
descrlptlon of the graded pieces of (H =) ¢ as vector bundles of negative slopes. O

We first prove some structural results about M, and its universal G ( E')-torsor My — My. A general

theme here is the subtle distinction between the absolute property of being a (locally spatlal) diamond
(which My, is not, but it has a large open part M C M, that is) and the relative notion of M;, — * being
representable in (locally spatial) diamonds (whlch My, is), and some related subtle distinctions on absolute

and relative quasicompactness.
PROPOSITION V.3.6. The map M;, — [*/G}(E)] has a section [x/Gy(E)] — My given by the closed

substack where £ is (at every geometric point) isomorphic to &, in which case (p,&) <A ¢ p«€ is asplitting
of the Harder—Narasimhan filtration of p.£ for all representations p : G — GL,,.

Consider the open complement M¢ = M, \ [*/G}(E)], with preimage M$ = Mj, \ {x}. Then M3

is a spatial diamond.

Moreover, if U, := v}¥ () € Gy(FE) for any large enough N (so that 1/}Y : G,;, — G}, is a well-defined
cocharacter), then M§ /UZ — x is proper.

PROOF. To check that the substack where £ is at every geometric point isomorphic to & is closed, note
that by semicontinuity it suffices to see that everywhere on My, the Newton point of £ is bounded by b.
By [RR96) Lemma 2.2 (iv)], this reduces to the case of G = GL,,, where it is a simple consequence of the
Harder—Narasimhan formalism (the Newton polygon of an extension is always bounded by the Newton
polygon of the split extension). On this closed substack, £ has two transverse filtrations, given by (p.&)=
and the Harder—Narasimhan filtration; it follows that £ upgrades to a G-bundle in Q-graded vector bundles

on the Fargues—Fontaine curve, with the weight A-piece semistable of slope A. We see that this gives the
desired section of M; — [x/G},(F)], using again Proposition [III.4.7]
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We claim that the action of Uy on | M}, X, Spak((t))| satisfies the hypotheses of Lemma with
fixed point locus given by the closed subspace * considered in the previous paragraph. Writing M as a
successive extension of Banach-Colmez spaces, it is clear that for all - € | M}, X Spa k((t))| which are not
in the closed substack, the sequence U_"(x) leaves any quasicompact open subspace for large n: Look at
the first step in the successive extensions where = does not project to the origin. Then z gives an element
in the fiber over the origin, which is a negative Banach—-Colmez space, on which U, = I/év (m) acts via a
positive power of 7; thus U " (x) leaves any quasicompact open subspace of this Banach-Colmez space. In
particular, it follows that the fixed points locus of U is precisely the origin. To apply Lemma it
remains to see that for all = € | M}, x}, Spak((t))| and quasicompact open neighborhoods U of the origin,
one has v (x) € U for all sufficiently large m. This can be reduced to the case of GL,, by the Tannakian
formalism, so assume G = GL,, for this argument. Now fix a map f : Spa(C,Ct) — My x}, Spak((t))
having z in its image; it suffices to construct a map

Spa(C,C") x NU {oo} — My x; Spak((t)

whose restriction to Spa(C, Ct) x {0} is f, whose restriction to Spa(C, C") x {oo} maps to * C My, and
which is equivariant for the y-action, with +y acting on the left via shift on the profinite set NU {co}. The
map f classifies some Q-filtered vector bundle £ <A < & of rank n on X with D, A & as Q-graded
vector bundles. After pullback to Y(; 1 4}, the filtration is split, so we can find an isomorphism

@ Elvepg = Glvepg
of Q-filtered vector bundles on Y(; [; 4, such that o reduces on graded pieces to the given identification.
The descent datum is now given by some isomorphism of Q-filtered vector bundles

B0 (Elyo ) = Eblvey

that reduces to the standard Frobenius on graded pieces. In other words, /3 is the standard Frobenius on &,
multiplied by some

g gb’Yo,[m] = gb’Yo,[m]
and with respect to the Q-grading on &, the map /3’ is the identity plus a lower triangular matrix.

The action of +y replaces 3’ by its Ur-conjugate. This multiplies all lower triangular entries by powers
of m, so

(B (BB, - 1)
composed with the standard Frobenius defines an isomorphism
P (Eblvs fg.0) = Eblys

where S = Spa(C,C") x NU {oo}. Using this as a descent datum defines a Q-filtered vector bundle on
Xs defining the required map

S = Spa(C,C") x NU {oo} — M, x. Spa k((t).
This finishes the verification of the hypotheses of Lemma

It is clear from the definition that M§ — * is partially proper (as the theory of vector bundles on the
Fargues—Fontaine curve does not depend on R*). Thus, to show that M§ /UZ — x is proper, it suffices to
see that the map is quasicompact, which can be checked after base change to Spa k((t)); then it follows from

the previous discussion and Lemma
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It remains to see that M is a spatial diamond. For this, we pick a representative b € G (E) of the
o-conjugacy class that is decent in the sense of [RZ96| Definition 1.8]. In particular, b € G(E;) for some
unramified extension F|E of degree s,and M} is already defined over Perﬂgqs . Let Frob, be the Frobenius

x +— x9°. As b is decent, the action of U, = I/év (m) on ./\;lg agrees with the action of a power of Frob; for
N large enough, by the decency equation for b. We know that

MG /U %, Spak((t)
is a spatial diamond (as it is proper over Spa k((t))). Replacing U, by Frob,, and moving the quotient by
Frobenius to the other factor (which is allowed as the absolute Frobenius acts trivially on topological spaces)
one sees that also
MG %, Spa k((t))/ Frob”

is a spatial diamond. But Spa k((t))/ FrobZ —  is proper and cohomologically smooth. Thus, Lemma
shows that it is a spatial v-sheaf. By [Sch17a, Theorem 12.18], to see that M} is a spatial diamond, it suffices
to check on points. Writing M, as a successive extension of Banach-Colmez spaces, any point in M has
a minimal step where it does not map to the origin. Then its image is a nontrivial point of an absolute
Banach-Colmez space, and a punctured absolute Banach—Colmez space is a diamond by Proposition|[IL.3.7}
the result follows. 0

The following theorem gives the desired local charts for Bung; its proof is based on the Jacobian crite-

rion for (cohomological) smoothness, Theorem

THEOREM V.3.7. The map 7, : M}, — Bung forgetting the filtration is partially proper, representable
in locally spatial diamonds, and cohomologically smooth of ¢-dimension (2p, v).

The image of , is open, and consists exactly of the set of points of | Bun(; | specializing to b.

ProOF. First, we show that
M=| [ M, — Bung
b

is partially proper, representable in locally spatial diamonds, and cohomologically smooth. Let S — Bung
be some map for an affinoid perfectoid space S, given by some G-bundle £ on Xg. Then M Xpyn, S
parametrizes Q-filtrations on £ whose associated graded Q-bundle has the degree \-part semistable of slope

A. Now Q-filtrations are parametrized by sections of a smooth scheme Z = & x¢ F1 — X;lg, for some
smooth scheme Fl over E with G-action (classifying such Q-filtrations on the forgetful functor Rep,G —
Vectp). Here 7 is a disjoint union of projective schemes. The condition on the associated graded bundle
is an open condition by openness of the semistable locus. Using the Jacobian criterion Theorem
it remains to see that M C Mz is contained in the smooth locus M%' C M. The tangent bundle of

Z—X glg is the £-twisted form of the tangent bundle of F1/E. By the usual dscription of tangent bundles
of flag varieties, this tangent bundle admits a Qo-filtration whose A-th graded piece is given by the graded
piece of weight A of £ x¢ LieG (with respect to its universal Q-filtration). After pullback to a section in
M, these are semistable of slope A > 0, as desired.

Knowing cohomological smoothness of 7, its -dimension can be computed as the difference of those
of My, and Bung. For the final assertion, note that by cohomological smoothness, the image must be open.
Conversely, if b’ € | Bung | is in the image, then it follows from the explicit degeneration used in the proof

of Proposition that Bun, lies in the closure of BunY, giving the desired result. O
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This final assertion was proved in the case of G = GL,, by Hansen [Han17], as a step towards the
identification of | Bun¢ |; indeed, [BFH ™ 22] determines the image of 7, for G = GL,,.

V.4. Compact generation

We are now revisiting the notion of a finite type smooth representation in terms of D (Bung, A).

The goal of this section is to prove the following theorem. As above, we fix some coefficient ring A
such that nA = 0 for some 7 prime to p.

THEOREM V.4.1. For any locally closed substack U C Bung, the triangulated category Det(U, A) is
compactly generated. An object A € Det(U, A) is compact if and only if for all b € B(G) contained in U,
the restriction

" A € Det(Bunl, A) = D(Gy(E), A)

along i* : Bun? C Bung is compact, and zero for almost all b. Here, compactness in D(G(E), A) is

equivalent to lying in the thick triangulated subcategory generated by C-Indgb(E)

pro-p-subgroups of Gy,(E).

A as K runs over open

To prove the theorem, we exhibit a class of compact projective generators. The key result is that M,

behaves like a strictly local scheme; in some vague sense, M, is the strict henselization of Bung at b.

PROPOSITION V.4.2. Let b € B(G). Forany A € De(My, A) with stalk Ay = i*A € Dey(, A) =
D(A) at the closed point i : * C M, the map

RT(M,, A) = Ay

is an isomorphism. In particular, RT'(M,, —) commutes with all direct sums.

PRrOOF. Replacing A by the coneof A — i, Aj, we can assume that A = j; A’ forsome A" € De( Nz, A).
We have to see that

RF(Mb,j!A/) = 0.
But this follows from Theorem [IV.5.3((applied with X = Mvg and S = Spa k((t)), noting that base change
along S — * follows from smooth base change), using that the partial compactification My C M, is
precisely a compactification towards one of the two ends of My}, as follows from the behaviour of the
Frobenius action exhibited in the proof of Proposition O]
REMARK V .4.3.

(i) Consider the v-sheaf X = Spd(k[x1,...,x4]) and the quasicompact open subset
U = Spd(k[z1,...,2za]) \ V(21,...,2a)

that is representable by a perfectoid space. When base changed to S = Spa(k((¢))), X becomes isomorphic
to an open unit disk, U becomes the punctured unit disk that has two ends: the origin and the exterior of
the disk. The picture is thus analogous to the preceding one with My, and for any A € De;(X, A) one has
RI'(X,A) = i*Awherei : Spd(k) — X is V(z1,...,xq).
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(ii) This applies more generally to the v-sheaf associated to any W (k)-affine formal scheme Spf(R) with R
an [-adicring for a finitely generated ideal /. Then, forany A € D¢ (Spd(R), A) one has RI'(Spd(R), A) =
RI'(Spd(R/I),i*A) with i : Spd(R/I) < Spd(R). In particular, for A € De(Spd(R) \ V(I), A), where
here Spd(R) \ V(1) is representable by a spatial diamond and even a perfectoid space if R is a k-algebra,

one has
RT'(Spd(R) \ V(I),A) = RT'(Spd(R/I),i"Rj.A).
Thus, Proposition can be seen as a result about “nearby cycles on the strict henselization of Bung at
b”.
COROLLARY V.4.4. Let b € B(G) and let K C Gy,(F) be an open pro-p-subgroup. Then for any
A € Der(My/K, A) with pullback Ay = i*A € De([+/K],A) = D(K, A) corresponding to a complex V'
of smooth K -representations, the map

RI'(M,/K, A) — RT([x/K], Ay) = VE

is an isomorphism. In particular, RF(va /K, —) commutes with all direct sums.

Proor. This follows formally from Proposition by descent along 1) : M, = M, /K; more
precisely, by writing any A as a direct summand of )" A. O

REMARK V .4.5. Let
i [x/Gp(E)] = My = My 1 j

be the usual diagram. From the corollary, one deduces that if one regards

i*Rj.A € Det([%/Gy(E)], ) = D(Gy(E), A)

as a complex of Gy(E)-representations, then this is given by

RT(M3, A).
As M3 is qcgs (and of finite cohomological dimension) by Proposition this commutes with all direct
sums in A.

For example, in the case of GLg and &, = O(1) & O, one has
M = BC(O(-1)[1]) \ {0} = Spak((t'/7™))/SLy (D)

by Example and Example Thus, in this case one can compute
i*Rj,A = RT(Spak((t'/P™))/SL1(D), A)

which is a very explicit formula. If one would use the presentation
BC(O(-1)[1]) x SpaC = (A:)®/E

instead, it would be considerably more difficult to compute the answer. In particular, we critically used
quasicompacity of the absolute M}, its base change M7 x ;. Spa C'is no longer quasicompact. This highlights
the importance of working with absolute objects, and of using the right local charts.

In fact, Theorem smooth base change, and this formula for ¢* Rj, show that the gluing of the

representation-theoretic strata De;(Bun%,, A) 2 D(G},(E), A) into Det(Bung, A) is encoded in the spaces
4» showing that the local charts M}, are of fundamental and not just technical importance.
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Now we can prove Theorem

PrOOF OF THEOREM [V.4.1} As for closed immersions i, the functor i* preserves compact objects, it is
enough to handle the case that U is an open substack. Let b € |U| C Bung = B(G) be any point of U, and
let K C G(E) be an open pro-p-subgroup, giving rise to the map

fK: /K/lvb/K—> Bung .

By Corollary and Theorem we see that A% = RnyRf}(A € Dgt(Bung, A) is compact; in
fact,

RHom(AY%, B) = RHom(Rf} A, Rfj¢B) = RHom(RfiA, f3: B ®% RfjA)
>~ RT(My/K, fiB) = (i**B)X.

From this computation, we see that the collection of objects AY%- for varying b € |U|and K C Gy(F) open
pro-p form a class of compact generators: Indeed, if B is nonzero, then (i** B)® must be nonzero for some

band K.

To prove the characterization of compact objects, we argue by induction on the number of points of
|U|, noting that any compact object must be concentrated on a quasicompact substack, and thus on finitely
many points. So assume that |U| is finite, b € |U|is a closed pointand j : V = U \ {b} C U is the
open complement, so we know the result for V. It suffices to prove that j* preserves compact objects.
Indeed, then A € D, (U, A) is compact only if j*A and i** A are compact, implying by induction that
all stalks are compact. For the converse, one has to see that !-extension from strata preserves compact
objects. By induction, this is true for all strata except Bunlé ; and to check it for this one, reduce to the sheaf
corresponding to the representation c—IndIGg’(E)A of G,(E), where K is pro-p; in that case, the !-extension is
the cone of jij *Al}( — Al;(, which is compact. Indeed, as fx is cohomologically smooth, fx:1 f }( commutes
with any base change and hence the restriction of A% to Bun® is given by gig'A for the map

g: [x/K] 25 [x/Gy(E)] L5 Bunb .

Here, go1g4 is the identity by Proposition while 119} A = g11A produces the sheaf corresponding to
(E) (E) A

the representation c—Indgb A. Thus, the restriction of A% to Bun% gives the representation C-Ind?’ ,

as desired.

To see that j* preserves compact objects, we can check on the given generators. For generators AY-

corresponding to b’ # b we get j*AY. = AY so there is nothing to prove. On the other hand, j* A% =
Rfs f3 A for

f%: M3/K — V C Bung .

The compactness of j* A%, then follows from RF(./\?Z /K, —) commuting with all direct sums. But this is
true as M is a spatial diamond of finite dim. trg, by Proposition and Proposition and taking
O

cohomology under K is exact.
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V.5. Bernstein-Zelevinsky duality

We note that one can define a Bernstein—Zelevinsky involution on (the compact objects of ) Dt (Bung, A)

More precisely, we have the following result. Here, in anticipation of some functor introduced later, we
write

7y : Der(Bung, A) — D(x,A) = D(A) : A — Rm(A Y% Rr'A)
for the left adjoint of 7%, where 7 : Bung; — * is the (cohomologically smooth!) projection ]

THEOREM V.5.1. Forany compact object A € D¢t(Bung, A), there isa unique compact object Dpz(A) €
Det(Bung, A) with a functorial identification

RHom(Dgz(A), B) = my(A®% B)

for B € Det(Bung, A). Moreover, the functor Dpy is a contravariant autoequivalence of Det(Bung, A)%,
and D%, is naturally isomorphic to the identity.

If U C Bung is an open substack and A is concentrated on U, then so is Dpz(A). In particular, Dpz
restricts to an autoequivalence of the compact objects in Der(Bunl,, A) = D(Gy(E), A) for b € B(G) basic,
and in that setting it is the usual Bernstein-Zelevinsky involution.

PROOF. By the Yoneda lemma, the uniqueness of Dpz(A) is clear. For simplicity, choose Haar measures
on Gy(E) for all basic b € B(G), leading to an isomorphism R7'A = A (at generic points, but then by
spreading out everywhere, noting that both are invertible), and hence my, = Rm.

For the existence, it suffices to check on a system of generators. For any b € B(G) and K C G,(E)
pro-p, consider the map
gk : [*/K] — Bung
factoring over [*/Gy(E)] — Bun% C Bung,and consider A = Rgx1A. These are, up to shift and twist, the

sheaves supported on Bunlé; corresponding to the representation C-Ind?;b(E)A, and are compact generators

of Det(Bung, A). Then the functor
B my(A®% B) = Rm(A®Y% B) = Rm(RgA ®% B) = R(7 o g )19 B

is given by B + (i*B)X when i%* B is regarded as G}, (E)-representation. Here, we note that for pro-p-
groups K, the lower !-functor along [*/K] — * maps isomorphically to the lower *-functor, which is
cohomology. By Corollary this agrees with R Hom(A4%., B), so Dpz(A) = AY%.. This also shows
that if A is concentrated on an open substack U C Bung, then so is Dpz(A).

Now note that
RHom(Dpz(A), B) = m(A®Y% B) 2 m(B ®% A) = RHom(Dpz(B), A).

In particular, taking B = Dpz(A), we see that there is a natural functorial map D3,(A4) — A. We claim
that this is an equivalence. It suffices to check on generators. We have seen that the Bernstein-Zelevinsky

2The “classical” Bernstein-Zelevinsky duality on smooth representations was first defined on the level of irreducibles of
GL,,(E) by Zelevinsky [Zel80], then generalized by Aubert [Aubgs] to all groups but still on the level of Grothendieck groups,
independently discovered by Bernstein and Schneider-Stuhler [SS97]. Its categorical formulation as (derived) Hom into the Hecke
algebra is discussed in [Faroé].

3The dualizing sheaf R7'A is, in fact, isomorphic to A[0], by fixing a Haar measure on G (E) for each basic b € B(G), so
is isomorphic to Rm.
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dual of A = g1 A is A% Its restriction to Bun?, corresponds again to the representation if’c—Ind%(E)A, s0
one easily checks that the map D2, (A) — A isan isomorphism over Bun’,. To see that it is an isomorphism
everywhere, one needs to see that if B = Rj.B’, B' € D¢ (U, A) for some open substack j : U C Bung
not containing Bung, then

(A% @ B) = 0.
Twisting a few things away and using the definition of A% = Rfx R f}(A, this follows from the assertion
that forall A’ € Det(ﬂg/ﬁ, A), with jg : MVZ/K <+ M,/ K the open immersion, one has

RT(My/K, Rjgc.A') = 0.

Using the trace map for My = M, /K, this follows from Theorem applied as before with X = M X
and S = Spa k((t)), noting that base change along S — * holds by smooth base change and is conservative.

The comparison to Bernstein—Zelevinsky duality follows formally by taking B corresponding to the
regular representation of G;(E), in which case m;(A ®% B) is isomorphic to the underlying chain com-
plex of A. Moreover, as the regular representation has two commuting Gy, (E)-actions, there is a residual
Gp(E)-action, which is the usual action on A. This gives the usual definition of the Bernstein-Zelevinsky
involution as R Hom into the regular representation. O

V.6. Verdier duality

It turns out that one can also understand how Verdier duality acts on D (Bung, A). The key result is
the following.

THEOREM V.6.1. Let j : V < U be an open immersion of open substacks of Bung. For any A €
D¢t (V, A), the natural map
JiRAomy (A, N) — R omy(Rj. A, \)

is an isomorphism in Det (U, A).

Note that one always has
Rj.R#omy(A,N) = R#omy (j1A, N);

the theorem asserts that this is also true with ji and Rj, exchanged, which is related to a local biduality
statement: If A € D¢t (V, A) is reflexive, the theorem implies formally that j1A € D¢ (U, A) is reflexive.

PROOF. We can assume that U and V' are quasicompact, and then by induction, we can assume that
V = U \ {b} for some closed b € |U|. The map is clearly an isomorphism over V, so it suffices to see that
for the compact objects

Al = RfgficA, fx : My/K — U C Bung,
one gets an isomorphism after applying R Hom(A%., —). As RHom(A%, B) = (i** B)X, we see that the
left-hand side
RHom(A%, jiRAomp(A,N)) =0
vanishes. On the other hand, using the left adjoint 7, : Det(Bung, A) — D(*, A) = D(A) of pullback, we

have

RHom(AY, Ri#omp(Rj. A, A)) = RHom(AY @Y% Rj.A, A) = RHom(m (A% @% Rj.A),A).
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But by Theorem and the identification of the Bernstein-Zelevinsky dual of A% as if’c—Indf(b(E)A,

one has

m(Af @ Rj.A) = RHom(ife-Indf? ™A, Rj.A) = RHom(c-Ind ™A, Ri"Rj.A) = 0. O

Recall that as a cohomologically smooth Artin stack of dimension 0, Bung admits a dualizing complex
Dgung; € Det(Bung, A) that is locally isomorphic to A[0].

THEOREM V.6.2. For any open substack U C Bung, an object A € Det(U, A) is reflexive, i.e. the
natural map

A — RAomp (R omy (A, Dy), Dy)

is an equivalence, if and only if for all b € B(G) lying in U with corresponding locally closed stratum
it Bun% — U, the restriction

i A € Der(Bunly, A) = Det([x/Gy), A) = Det([x/Gy(E)], A) = D(Gy(E), A)

is reflexive as a complex of admissible G (E)-representations; this means that the complex of K-invariants
is reflexive in D(A) for all open pro-p-subgroups K C Gy(E).

In the definition of reflexivity, we can replace Dy by A (as this changes the dual by a twist, and then

the bidual stays the same). The theorem follows immediately from the following result.

LEMMA V.6.3. Let U C Bung be an open substack and A € D¢ (U, A). Forany b € B(G) lying in U,
there is a natural isomorphism

i RAomp (R omp (A, A), N) = RAomy (RAomp (i A, A), A).
PrOOF. We may assume that U C Bung is the set of generalizations of b,andlet j : V = U\ {b} — U.
Let B = j*A. Using the exact triangle
JIB — A — %A -,
and the invertibility of i* A (as Bun% is also cohomologically smooth), it is enough to prove that
ib*R,%”omA(RffomA(j!B, A),A)=0.

But R%omy (1B, A) = Rj, R om,(B, A), and by Theorem|V.6.1}

Rotomp (Rj.R#omp(B, ), N) = jiR#Homy(RAomp (B, ), \). O

V.7. ULA sheaves

Finally, we want to classify the objects A € Dgi(Bung, A) that are universally locally acyclic with
respect to Bung — *. Our goal is to prove the following theorem. This gives a geometric interpretation of
the classical notion of admissible representation in terms of Det(Bung, A).

THEOREM V.7.1. Let A € D¢t(Bung, A). Then A is universally locally acyclic with respect to Bung —
xifand onlyifforallb € B(G), the pullback i** A toi® : Bun’, < Bung corresponds under De;(Bun%, A) =
D(Gy(E), A) to a complex M, of smooth Gy (E)-representations for which M/ is a perfect complex of
A-modules for all open pro-p subgroups K C Gp(E).



V.7. ULA SHEAVES 179

We want to use Proposition As preparation, we need to understand D(Bung X Bung, A).

More generally, we have the following result.

PROPOSITION V.7.2. Let G1 and G2 be two reductive groups over F, and let G = G X Ga. Then
Bung = Bung, X Bung,, giving rise to an exterior tensor product

— X — : Det(Bung,, A) X Det(Bung,, A) = Det(Bung, A).

For all compact objects A; € Det(Bung,, A),7 = 1, 2, the exterior tensor product A1X Ay € Det(Bung, A)
is compact, these objects form a class of compact generators, and for all further objects B; € D¢(Bung,, A),
i = 1, 2, the natural map

RHom(Al, Bl) ®H& RHom(Ag, Bg) — RHom(A1 XAy, B1 X Bg)
is an isomorphism.

REMARK V.7.3. The proposition says that as A-linear presentable stable co-categories, the exterior
tensor product functor

Det(Bung, , A) @p(p) Det(Bung,, A) — Der(Bung, A)

is an equivalence. Here, we use Lurie’s tensor product [Lur16) Section 4.8].

PrOOF. We use the compact generators A; = A%i for certain b; € B(G;), K; C G, p,(E) open pro-p.
These giveriseto b = (b1, b2) € B(G)and K = K| x Ky C Gy(E) = G1,(E) x Gayp,(E), and using
My = My, X My,

and the Kiinneth formula, one concludes that A; X A9 = Al}(, which is again compact. As B(G) =
B(G1) x B(G2) and open pro-p subgroups of the form K; x Ky C Gp(FE) are cofinal, we see that these

objects form a set of compact generators.

Moreover, as RHom(A%, B) = (i** B)X for all B € Det(Bung, A) and similarly for Al}éi, we also see
that the map

RHom(A%} , Br) ® RHom(A% , By) — RHom(A%, By X By)

is an isomorphism. As these objects generate, the same follows for all compact A;, As. O

Now we can prove Theorem

Proor oF THEOREM [V.7.1] By Proposition we see that A being universally locally acyclic is

equivalent to the map
piRAom(A, N) @% p3A — RAom(p} A, psA)
in Det(Bung X Bung, A) = De(Bungx, A) being an isomorphism.
By Proposition this is equivalent to being an isomorphism after applying R Hom(A; X Aj, —)
for varying compact A; € Det(Bung,, A). Using Proposition the left-hand side is given by

RHom(Ay, Ri#om(A, A)) ®§ RHom(As, A) = RHom(my(4; ®f A), A) @)% RHom(As, A).
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The right-hand side is, using 7 : Bung — * for the projection,
RHom(A; X Ay, R#om(p} A, p5A)) = RHom((A; @% A) X Ay, phA)
>~ RHom(p}(A; @% A), psRAomp(As, A))
>~ RHom(A; ®% A, Rp1.p3RAomp (A, A))
>~ RHom(A; ®% A, 7* RHom(Ay, A))
=~ RHom(m(A; ®% A), RHom(As, A)),
using usual adjunctions and smooth base change for py and 7 several times. Under these isomorphisms, the
map
RHom(my(A; @% A),A) @ RHom(Az, A) — RHom(my(A; @ A), RHom(As, A))
is the natural map. This is an isomorphism as soon as 7, (A; ®% A) € D(A) is perfect for all compact 4.
In fact, the converse is also true: If one takes Ay = Dpz (A1), then RHom(Az, A) = m(A; ®% A), and
hence it follows that for M = m(4; ®% A) € D(A), the map
RHom(M,A) ®% M — RHom(M, M)
is an isomorphism, which means that M is dualizable in D(A), i.e. perfect.
Now we use the system of compact generators given by i?c-Indf(b(E)A for varying b € B(G), with

locally closed immersion i® : Bun?, — Bung, and K C Gj(E) open pro-p. This translates the condition
on perfectness of Rmi(A; ®% Rr'A ®% A) into the desired condition on stalks. O



CHAPTER VI

Geometric Satake

As before, we fix a nonarchimedean local field E with residue field I, of characteristic p and a uni-
formizer m € E. We also fix a reductive group G over F, and a coefficient ring A killed by some integer n
prime to p.

Recall that for any perfectoid space S over I, we defined the “curve” Vg over OF, as well as Yy =
Vs \V () and the quotient X = Y/~ In this chapter, we are interested in studying modifications of G-
torsors on these spaces, and perverse sheaves on such. Our discussion will mirror this three-step procedure
of the construction of Xg: If one has understood the basic theory over ), the basic results carry over
easily to Y and then to Xg. While as in previous chapters our main focus is on Xg, in this chapter we will
actually make critical use of Vg in order to degenerate to the Witt vector affine Grassmannian, and hence
to apply some results from the setting of schemes (notably the decomposition theorem). As the discussion
here is very much of a local sort, one can usually reduce easily to the case that G is split, and hence admits
a (split) reductive model over O, and we will often fix such a split model of G.

For any d > 0, we consider the moduli space Div%; parametrizing degree d Cartier divisors D C JVs.
For affinoid S, one can form the completion B of Ox along D. Inverting D defines a localization B
of BT. One can then define a positive loop group L];Vg} G and loop group LDiv% G, with values given by

G(B™) resp. G(B); for brevity, we will simply write L™ G and LG here. One can then define the local
Hecke stack

Heke pivi, = [LTG\LG/L*G] — Div},
We will often break symmetry, and first take the quotient on the right to define the Beilinson-Drinfeld
Grassmannian

Grg pivi, = LG/L*G — Div§,
so that
Hekl = LTG\ Grl,.

The Beilinson-Drinfeld Grassmannian Gr, Divé, — Divsl, is a small v-sheaf that can be written as an

increasing union of closed subsheaves that are proper and representable in spatial diamonds, by bounding
the relative position; this is one main result of [SW20]]. On the other hand, L™ G can be written as an inverse
limit of truncated positive loop groups, which are representable in locally spatial diamonds and cohomo-
logically smooth; moreover, on each bounded subset, it acts through such a finite-dimensional quotient.
This essentially reduces the study of all bounded subsets of HCkGyDiVSi) to Artin stacks.

For any small v-stack S — Divg,, we let
Hekg s/pivg, = Hekg pivg, X pivg S

181
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be the pullback. Let
Det(Hekg s/pivd, AP Det(Hek 5/pive,» M)

be the full subcategory of all objects with quasicompact support over Divgj. This is a monoidal category
under convolution *. Here, we use the convolution diagram

Hekg s pivg, X5 Hekg gypivg, <22 LXGA\LG x2"C LG/L¥G ™ Heke, g g

and define
A% B = Rm.(p;A®Y% p3B).

On De(Hcke ¢ /Divd; A)bd, one can define a relative perverse ¢-structure (where an object is perverse if

and only if it is perverse over any geometric fibre of ), see Section In particular, this ¢-structure is
compatible with any base change in S. For this ¢-structure, the convolution « is left #-exact (and ¢-exactness
only fails for issues related to non-flatness over A). To prove this, we reinterpret convolution as fusion, and
use some results on hyperbolic localization.

Moreover, one can restrict to the complexes A € Det(Hck; ¢ /Divé, A)® that are universally locally

acyclic over S. This condition is also preserved under convolution. For d = 1, or in general when S maps
to the locus of distinct untilts (Divsl,)f C Divgl,, one can describe the category of universally locally acyclic
by the condition that the restriction to any Schubert cell is locally constant with perfect fibres. To prove
that all such sheaves are universally locally acyclic, we also introduce (for d = 1) the affine flag variety, in
Section[VL5} and use their Demazure resolutions.

DEFINITION VI.0.1. The Satake category

is the category of all A € Det(rHCkG,S/Divg, , A)Pd that are perverse, flat over A (i.e., for all A-modules M,

also A @% M is perverse), and universally locally acyclic over (Div')’.

Intuitively, Sat(Hck ¢ /Divd; A) are the “flat families of perverse sheaves on Hck ¢ /Divd, ~ S”, where
flatness refers both to the geometric aspect of flatness over S (encoded in universal local acyclicity) and the
algebraic aspect of flatness in the coefficients A. The Satake category Sat(Hck ¢ /Divg,” A) is a monoidal

category under convolution. The forgetful functor

Sat(,HCkG,S/Divg,’ A) — Det(GrG,S/Div%’ A)

is fully faithful. If d = 1 and S = SpdF,, then one can compare it to the category considered by Zhu
[Zhu17] and Yu [Yu22], defined in terms of the Witt vector affine Grassmannian. Moreover, the categories
for S = SpdO¢ and S = Spd C are naturally equivalent to the category for S = SpdF,, via the base

change functors; here C' = E. Thus, the Satake category is, after picking a reductive model of G, naturally
the same for the Witt vector affine Grassmannian and the By -affine Grassmannian. At this point, we could
in principle use Zhu's results [Zhu17] (refined integrally by Yu [Yu22]) to identify the Satake category with
the category of representations of (, at least when G is unramified. However, for the applications we
actually need finer knowledge of the functoriality of the Satake equivalence including the case for d > 1;
we thus prove everything we need directly.
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More precisely, we now switch to (Divk )¢ in place of Div}, replacing also the use of Vg by X; the
two local Hecke stacks are locally isomorphic, so this poses no problems. For any finite set I, let

Hekg = Heke il )1
and consider the monoidal category
SatL(A) = Sat(HckL, A).

In fact, the monoidal structure naturally upgrades to a symmetric monoidal structure. This relies on the
fusion product, for which it is critical to allow general finite sets /. Namely, given finite sets Iy, ..., I,
letting I = I; U ... U Iy, one has an isomorphism

k
NG -~ I; NG
Hckh X (Divl)! (Div?)Lil D o H Hcke ><(Divl)z(Dlvl)I’Il"“’Ik
j=1
where (Div!)/itIk  (Div!)! is the open subset where x; # z; whenever i,i’ € I lie in different I}’s.
The exterior tensor product then defines a functor

k
&§=1 : H Satéj (A) — Satéjlv'--vfk (A)
7=1

where Saté;h"“’]k (A) is the variant of Sat’,(A) for Hcks, x (Div!)! (Div!) 511k However, the restriction
functor

Sath(A) — Satys™ Tk (A)
is fully faithful, and the essential image of the exterior product lands in its essential image. Thus, we get a
natural functor

k
by [ satg (A) — sath(A),
j=1

independent of the ordering of the I;. In particular, for any I, we get a functor
Satf(A) x Sath(A) — SatZ(A) — Satl(A),

using functoriality of Sat(A) in .J, which defines a symmetric monoidal structure * on Sat’,(A), commut-
ing with +. This is called the fusion product. In general, for any symmetric monoidal category (C, ) witha
commuting monoidal structure , the monoidal structure * necessarily agrees with x; thus, the fusion prod-
uct refines the convolution product. (As usual in geometric Satake, we actually need to change * slightly
by introducing certain signs into the commutativity constraint, depending on the parity of the support of
the perverse sheaves.)

Moreover, restricting A € Sat’,(A) to Grl, and taking the pushforward to (Div!)’, all cohomology
sheaves are local systems of A-modules on (Div'). By a version of Drinfeld’s lemma, these are equivalent
to representations of W} on A-modules. This defines a symmetric monoidal fibre functor

FL:sath(A) — Repwé(A),
where Repy;, T (A) is the category of continuous representations of W, on finite projective A-modules. Us-

ing a version of Tannaka duality, one can then build a Hopf algebra in the Ind-category of Repy;, T (A) so
that Sat},(A) is given by its category of representations (internal in Repyy1 (A)). For any finite set /, this
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is given by the tensor product of I copies of the corresponding Hopf algebra for I = {x}, which in turn is
given by some affine group scheme GG over A with Wg-action.

THEOREM VI1.0.2 (Theorem . There is a canonical isomorphism G = G with the Langlands
dual group, under which the action of Wg on G agrees with the usual action of Wz on G up to an explicit
cyclotomic twist. If /g € A, the cyclotomic twist can be trivialized, and Sat{,(A) is naturally equivalent
to the category of (G x Wi)! -representations on finite projective A-modules.

For the proof, one can restrict to A = Z/{"Z; passing to a limit over n, one can actually build a group
scheme over Z. Its generic fibre is reductive, as the Satake category with Q-coefficients is (geometrically)
semisimple: For this, we use the degeneration to the Witt vector affine Grassmannian and the decompo-
sition theorem for schemes. To identify the reductive group, we argue first for tori, and then for rank 1
groups, where everything reduces to G = PGLy which is easy to analyze by using the minuscule Schubert
cell. Here, the pinning includes a cyclotomic twist as of course the cohomology of the minuscule Schu-
bert variety P! of Grpgy, contains a cyclotomic twist. Afterwards, we apply hyperbolic localization in
order to construct symmetric monoidal functors Sat; — Satj; for any Levi M of G, inducing dually maps
M — G. This produces many Levi subgroups of ZJ/QZ from which it is easy to get the isomorphism with
Go,, including a pinning. As these maps M — G are even defined integrally, and G(Z¢) C G(Qy) isa
maximal compact open subgroup by Bruhat-Tits theory, generated by the rank 1 Levi subgroups, one can
then deduce that G = G integrally, again with an explicit (cyclotomic) pinning.

We will also need the following addendum regarding a natural involution. Namely, the local Hecke
stack Hck(; hasa natural involution sw given by reversing the roles of the two G-torsors; in the presentation
in terms of LG, this is induced by the inversion on LG. Then sw* induces naturally an involution of
SatL(A), and thus involution can be upgraded to a symmetric monoidal functor commuting with the fibre
functor, thus realizing a Wg-equivariant automorphism of GG,

ProposiTION VI1.0.3 (Proposition . The action of sw* on Saté induces the automorphism of G
that is the Chevalley involution of the split group G, conjugated by p(—1).

VI1.1. The Beilinson-Drinfeld Grassmannian

First, we define the base space of the Beilinson-Drinfeld Grassmannian for any d > 0.
DEeFINITION VI.1.1. For any d > 0, consider the small v-sheaves on Perfr, given by
Div}, = (Spd Og)?/4, Div{ = (Spd E)?/S4, Divk = Div? = (Spd E/%)? /S,

where 3 is the symmetric group.

As always, quotients of small v-sheaves are taken inside v-sheaves, and are still small (and in particular
exist).

PROPOSITION VI.1.2. For any d > 0, there is a functorial injection
(i) from Divg,(S ) into the set of closed Cartier divisors on Vs,

(ii) from Div{-(S) into the set of closed Cartier divisors on Y,
(iii) from Div% (S) into the set of closed Cartier divisors on Xg.
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Moreover, in case (i) and (ii), if S = Spa(R, R") is affinoid perfectoid, then for any closed Cartier divisor
D C Yg resp. D C Yg in the image of this embedding, the adic space D = Spa(Q, Q") is affinoid. In case
(iii), the same happens locally in the analytic topology on S.

PrOOF. We handle case (i) first. Over (Spd O)? and for S = Spa(R, R*) affinoid, we get d untilts
R?, i = 1,...,d of R, and there are elements &, € Wo,(R") generating the kernel of 6; : Wo,(R") —
R§+. Each of the &; defines a closed Cartier divisor by Proposition Then & = [, & defines another
closed Cartier divisor, given by Spa(A4, A™") for A = W, (RJF)[H] /& and AT the integral closure of

Wo,(R") /& where @ € R is a pseudouniformizer.

Now the ideal sheaf of this closed Cartier divisor is a line bundle, and by [SW20, Proposition 19.5.3],
line bundles on ) satisfy v-descent. Thus, even if we are only given a map S — Divg, = (Spd Op)?4/%y,
we can still define a line bundle 7 C Oy, and it still defines a closed Cartier divisor as this can be checked
v-locally. Also, V(Z) C )Ys is quasicompact over .5, as this can again be checked v-locally. This implies
that it is contained in some affinoid Vs | ;,), and hence D = Spa(A4, AT) is affinoid in general.

The case (ii) now follows formally by passing to an open subset, and case (iii) by passing to the quotient
under Frobenius. U

REMARK VI.1.3. Asin [Far18] one checks that Divgl,(S ) is the set of “relative Cartier divisors” of degree
d, that is to say Cartier divisors that give degree d Cartier divisors when pulled back via any geometric point

Spa(C,C*) — S. The same holds for Dive and Div% .

In the following we will consider a perfectoid space S equipped with a map f : § — Divgl, (resp. f :
S — Div{, resp. f : S — Div%). We denote by Dg C Vs (resp. Dg C Ys, Dg C Xg) the corresponding
closed Cartier divisor. Let Zg C Oy, (resp. Zg C Oy, Zs C Ox,) be the corresponding invertible ideal
sheaf.

Let us note the following descent result for vector bundles.

PROPOSITION VI.1.4. Sending S as above to the category of vector bundles on Dg defines a v-stack.

PROOF. Any vector bundle on Dg defines a v-sheaf on Perfg: This reduces formally to the structure
sheaf of Dg, which then further reduces to the structure of Oy, (resp. Oy, resp. Ox, ). It remains to prove
that v-descent of vector bundles is effective. The case of X g reduces to Y as locally on .S, the relevant Dg
is isomorphic; and clearly Yg reduces to Vs.

Now assume first that S = Spa(C,C) for some complete algebraically closed C. Then Dy is given
by a finite sum of degree 1 Cartier divisors on )s, and one can reduce by induction to the case of degree 1
Cartier divisors, where the result is [SW20, Lemma 17.1.8] applied to the corresponding untilt of .S.

On the other hand, assume that 7" — S is an étale cover with a vector bundle £ on D7 equipped with a
descent datum to Dg; we want to prove descent to Dg. By the argument of de Jong-van der Put [[dJvdP96)
Proposition 3.2.2], cf. [KL15) Proposition 8.2.20], one can reduce to the case that T — S is a finite étale
cover. Then Dy — Dy is also finite étale (as 7 — Vg is), and the result follows from usual finite étale
descent.

Now let S be general and 7" — S a v-cover with a vector bundle &7 on Dt equipped with a descent
datum to Dg. For any geometric point Spa(C, C*) — S, one can descent 7, sSpa(C,C+) to a vector bundle
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Espa(c,c+) on Dgpa(c,c+)- Now we follow the proof of [SW20| Lemma 17.1.8] to see that one can in fact
descend £7 in an étale neighborhood of Spa(C, C™"), which is enough by the previous paragraph. We can
assume that S'and 7" are affinoid. As Egpy(c,c+) is necessarily free, also £y sspa(c,c+) is free, and by an étale
localization we can assume that £7 is free. Then the descent datum is given by some matrix with coefficients
in Op,., .- Moreover, by approximating the basis coming via pullback from s, c+), We can ensure that
this matrix has coefficients in 1 + [w0] (’);TXST (Vrxg1,0,n))/§ for some n so that Dg C Vg (o ); here  isa
generator of Zg. Now one uses that the v-cohomology group H (S, O(Y}p ) ") is almost zero, as follows
from almost vanishing in the perfectoid case, and writing it as a direct summand of the positive structure
sheaf of the base change to O [7/P™]". Then the argument from [SW20, Lemma 17.1.8] applies, showing
that one can successively improve the basis to produce a basis invariant under the descent datum in the
limit. O

Assuming that Dy is affinoid, as is the case locally on S, we let
Bgivg} (S) (resp. Bgivdy(S), resp. Bgivg( (9))

be (the global sections of) the completion of Oy along Zg (resp. of Oy along Zg, resp. of Ox along Zs),

and

i ()= Bl (S)I2:)

This defines v-sheaves Bgivd - BDiv,(i | over Div?_) in all three cases. In the case of d = 1, those rings
=) -

are the ones that are usually denoted B;'R, resp. Byg.

DEFINITION VI.1.5. Let Z be an affine scheme over Op. The positive loop space L$iv§} Z (resp. loop

space LDivﬁ, Z) of Z is the v-sheaf over Divsl, given by
8= L 4 (5) = Z(B 4 (5)) (xesp. § = Lpyyg () = Z(Bpyg (5)).

Divg}
Similarly, if Z is an affine scheme over E, one defines the positive loop space L;vdy Z and Lavg@ Z (resp. loop

space Ly a Z and L Z )-

We note that we use affinity of Z to see that these are actually v-sheaves — this makes it possible to
reduce to the v-sheaf property of the structure sheaf. (It is likely that they define v-sheaves for general
schemes Z, using Bhatt’s Tannaka result [Bha16]] together with descent results for perfect complexes, but
we do not pursue this here.) Now we can define the local Hecke stacks.

DEFINITION VI.1.6. Let G be a reductive group over O (resp. over E, resp. over E). The local Hecke
stack HckGDivgl} (resp. HCkG,Divgl/ , Tesp. HCkG,Divg( )is the functor sending an affinoid perfectoid S — Divgl,
(resp. S — Div{, resp. S — Div%, assuming that Dy is affinoid) to the groupoid of pairs of G-bundles
&1, & over Bgivgl,(s) (resp. over Bgivdy (S), resp. over Bgivg( (9)) together with an isomorphism & = &

over BDivg, (S) (resp. over BDiv?, (), resp. over BDivgf (S)).

The G-bundles here are taken in the algebraic sense, as living on the spectrum of the respective rings. As
in Chapter III, we will generally think of G-bundles in Tannakian terms, as tensor functors from Rep ;G to
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vector bundles; and over an affine or affinoid base, vector bundles will always correspond to finite projective
modules, so the notion of G-bundle is rather insensitive to the underlying geometric formalism.

Also note that in the case of Div%, the local Hecke functor is only defined on a certain full subcategory

of affinoid perfectoid S — Div%, namely those where Dy is affinoid; but any S — Div% admits an open
cover by such by Proposition so we have still defined the functor on a basis.

PrROPOSITION VI.1.7. The local Hecke stack HCkG,Divg', (resp. HCkG,Div‘{, , Tesp. HCkG,Divg( ) is a small

v-stack. There is a natural isomorphism of étale stacks over Divg, (resp. over Div‘{/, resp. over Divgl()

HCkG,Divgl, = (LL. 4 G)\(LDivgl, G)/(LgiviG)

Div§,
(resp.
%CkG,Divdy = (L;&vdy G)\(LDide G)/(ngdy G),
resp.

Div VX
+

Divg,’
to check this modulo powers of the ideal Zg, where the result is Proposition By the Tannakian
formalism, it follows that the category of G-bundles also satisfies v-descent, so one can descend &1, £>. The
isomorphism between &; and &; over BDivg} (S) (resp. over Bpiye (S), resp. over Bpyya (S)) is then given

+ + : Tt
PROOF. The category of vector bundles over BDivgl, (resp. B BDing( ) satisfies v-descent: It is enough

by a section of an affine scheme over the respective ring, which again satisfies v-descent. Smallness follows
from the argument of Proposition [III.1.3
Any G-bundle over Bgivgl; (S) is étale locally on S trivial. Indeed, if S is a geometric point then

Bg. 4 (S) is a product of complete discrete valuation rings with algebraically closed residue field, so that all
IVy
G-torsors are trivial. In general, note that triviality of the G-torsor over Bgivg} (S) is implied by triviality

modulo Zg (as one can always lift sections over nilpotent thickenings). Then the result follows from [GRo3|
Proposition 5.4.21]. Trivializing £ and &, étale locally then directly produces the given presentations. [J

Similarly, one can define the Beilinson-Drinfeld Grassmannians.

DEFINITION V1.1.8. Let G be a reductive group over O (resp. over F, resp. over E). The Beilinson-
Drinfeld Grassmannian GrG,Divg} (resp. GrG,Divgl, , Tesp. GrG,DivdX ) is the functor sending an affinoid per-
fectoid S — Divgl, (resp. S — Dive, resp. S — Div%, assuming again that Dy is affinoid) to the groupoid
of G-bundles £ over Bgivg} (S) (resp. over Bgrivdy (S), resp. over Bgivg( (9)) together with a trivialization of

€ over BDivg} (S) (resp. over Bpiya (S), resp. over Bpiya. (S)).

PropPOSITION VI1.1.9. The Beilinson-Drinfeld Grassmannian GrG,Divﬁ, (resp. GrG,Dide , resp. GrG,Divg( )

is a small v-sheaf. There is a natural isomorphism of étale sheaves over Div:“)l, (resp. over Dive, resp. over
sud
Div%) .
GrG,Divgl, = (LDivg}G)/ (LDivg) G)
(resp.

GrG,Div?, = (LDiv% G)/(L$1V§1/G)7
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resp.

Grg pive, = (LDivg( G)/(Lavg( G).)

PROOF. The proof is identical to the proof of Proposition O
The positive loop group LJSivﬁﬂ G admits the natural filtration by closed subgroups

+ >m +
(LDivgj G) = LDivg) G

defined for all m > 1 by the kernel of

we refer to these as the principal congruence subgroups of L$iv§, G. Similar definitions of course apply also

over Div{ and Div%. For d = 1, one can easily describe the graded pieces of this filtration (and again the
result also holds for Div} and Divl).

PropPOSITION VI1.1.10. There are natural isomorphisms
LI—‘Siv1 G/(LI—;V1 G)Zl = G<>
y y
and
(L O /(Lo 671 = (Lie G)O )
lVy IVy
where {m} signifies a “Breuil-Kisin twist” by 72! /Z5" 1.

Here G is defined as in [[Sch17a| Section 27, before Proposition 27.5], and sends S = Spa(R,R") to a
choice Rf of untilt of R, and an element of G(R?).

PRrOOF. The first equality follows directly from the definitions, while the second comes from the expo-
nential. O

For general d, we still have the following result.
ProposITION VI.1.11. For any d and m > 1, the quotient
+ >m + >m~+1
(LDivgl, G) /(LDivg, G)
sends a perfectoid space S — Div:“)l, with corresponding Cartier divisor Dg C Yg with ideal sheaf Zg to
(Lie G ®o, I8 /T5)(5)

where 7¢' /T¢' *!isaline bundle on Dg. This is representable in locally spatial diamonds, partially proper,
and cohomologically smooth of /-dimension equal to d times the dimension of G.

Moreover, one can filter

(LEV;G)ZW/(LE@GPT"H X Div¢, (Divy)

with subquotients given by twists of

(Lle G)<> XDivi},ﬂ'i (DIV%))d
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where 7; : (Div3,)? — Div}, is the projection to the i-th factor.

PROOF. The description of the subquotient follows from the exponential sequence again. To check that
it is representable in locally spatial diamonds, partially proper, and cohomologically smooth, we can pull
back to (Div%,)d, and then these properties follow from the existence of the given filtration. For thisin turn,
note that over (Div%;)d, we have d ideal sheaves Z1, ..., 7, and one can filter Opg by Op, /L1, I1 /Z1 T,

cewTi---Zy1/Iy - - - I, each of which is, after pullback to an affinoid perfectoid space .S, isomorphic to

Ogr- o

One can also show that the first quotient is cohomologically smooth, but this is slightly more subtle.
PROPOSITION VI.1.12. For any d, the quotient

Lgivdy G/(Lav?} G)=! — Div§,

parametrizes over a perfectoid space S — Divgl, maps Dg — G. For any quasiprojective smooth scheme Z
over O, the sheaf

T, — Div},
taking a perfectoid S over Divgj to maps Dg — Z (of locally ringed spaces) is representable in locally

spatial diamonds, partially proper, and cohomologically smooth over DivSi) of {-dimension equal to d times
the dimension of Z; in particular, this applies to this quotient group.

PROOF. The description of the quotient group is clear. To analyze 7'z, we first note that if Z is an affine
space, then the result holds true, as was proved in the previous proposition. In fact, after pullback via the
quasi-pro-étale surjective morphism (Div%;)d — Div?;, there is a sequence of morphisms

Tan =Wy — Wa — -+ — Wyyq = (Div},)?

where, for S affinoid perfectoid with S — W, giving rise to the untilts (S?, e Sfl) € (Div},)%(9),
Wi xw,,, S — Sislocally on S isomorphic to Ag’ﬁo.

If Z — Z is any separated étale map between schemes over Op, we claim that T, — T is also
separated étale. For this, we analyze the pullback along any S — T given by some perfectoid space S and
amap Dg — Z (of locally ringed spaces). Then D’ = Dg xz Z' — Dy is separated étale (here, the fibre
product is taken as in [Hubg4, Proposition 3.8]), and the fibre product T/ X 7, S parametrizes S’ — S with
alift Dgy — D' over Dg. By Lemma [VI.1.13|below, this is representable by a perfectoid space separated
étale over S. In case Z' — Z is an open immersion, it follows that 7, — T’ is injective and étale, thus an
open immersion.

Now note that for any geometric point of 7'z, the corresponding map Dg — Z has finite image, and
is thus contained in some open affine subscheme. It follows that 7'z admits an open cover by 7 for affine
Z'. If Z is affine, then one sees directly that Tz is representable in locally spatial diamonds and partially
proper by taking a closed immersion into Af,  for some n. For cohomological smoothness, we observe that
we can in fact choose these affines so that they admit étale maps to A%E, as again we only need to arrange

this at finitely many points at a time. Now the result follows from the discussion of A%E and of separated
étale maps. O
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LEMMA VI.1.13. Let S be a perfectoid space with a map S — Divsl, giving rise to the Cartier divisor
Dg C Ys. Let D' — Dg be a separated étale map. Then there is a separated étale map S — S such that
for T — S, maps T' — S’ over S are equivalent to lifts D7 — D’ over Dg.

PROOF. By descent of separated étale maps [[Sch17a, Proposition 9.7], we can assume that S is strictly
totally disconnected. Exhausting D’ by a rising union of quasicompact subspaces, we can assume that D’ is
quasicompact. In any geometric fibre, D’ is then a disjoint union of open subsets (as any geometric fibre is,

up to nilpotents, a finite disjoint union of untilts Spa(CEi , Cf"_)), and this description spreads into a small
neighborhood by [Sch17a, Proposition 11.23, Lemma 15.6]. We can thus reduce to the case that D’ — Dy is
an open immersion. Now the lemma follows from the observation that the map |Dg| — |S|is closed. [

VI1.2. Schubert varieties

Now we recall the Schubert varieties. Assume in this section that G is a split reductive group over O
(or over E, but in that case we can always choose a model over OF). Fix a split torusand Borel T’ C B C G.
Note that we can always pass to the situation of split G by making a finite étale extension of O resp. E;
this way, the results of this section are useful in the general case. Similarly, the cases of Xg and Y reduce
easily to the case of Vg, so we only do the latter case explicitly here.

Assume first that d = 1. In that case, for every geometric point S = Spa(C,C") — Div%, = Spd Op
given by an untilt S* = Spa(C*, C**) of S, one has Bg, , = B5(C*) and BDiV§, = Bgr(C") for the usual
IVy

definition of BJ, and By (relative to Op). Recall that Bj, (C*) is a complete discrete valuation ring with
residue field C*, fraction field Bgg (C*), and uniformizer &. It follows that by the Cartan decomposition

GBx(CY) = || GBRHECEHuEGBRECY),

peX(T)+

so as a set

HCkG,Divij(S)/g = X*(T)+7

the dominant cocharacters of 7. Recall that on X, (7T")", we have the dominance order, where y > 1 if
w — 1 is a sum of positive coroots with Zx-coefficients.

REMARK VI1.2.1. Since we work over )V and do not restrict ourselves to Y, we include the case of the

Cartier divisor 7 = 0. For this divisor, C* = C and B}, (C*) = Wp,,(C).
DEFINITION V1.2.2. Forany p € X, (T)", let
HCkG’,Divﬁ,,gu - HCkG,Divﬁ,

be the subfunctor of all those maps S — HckG,Di\%} such that at all geometric points S’ = Spa(C,C*") — S,
the corresponding S’-valued point is given by some i/ € X, (T)" with i/ < ;1. Moreover,

GrG’,Div&, <u - GrG,Divij

is the preimage of HCkG,Divi,,gu C HCkG,Divi,'

Recall the following result.
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ProposITION V1.2.3 ([SW20, Proposition 20.3.6]). The inclusion
Heke pivt, < © ek pivt,

is a closed subfunctor and

7'[Ckc:,Div§, = I%mHCkG,Divi,,Su;

thus, similar properties hold for GrG’Di‘%} . Here, the index category is the partially ordered set of j/’s under

the dominance order, which is a disjoint union (over 71 (G)) of filtered partially ordered sets.

The map GrG’DiV%} <u Divj, is proper and representable in spatial diamonds.

PROOF. It is enough to prove the assertions over GrG,Divﬁ, as this is a v-cover of HCkG,Div&, . Then
[SW20| Proposition 20.3.6] gives the results, except for the assertion that

GrG7Div§, = 1% GrG,Di@,g,; .

For this, note that the map from right to left is clearly an injection. For surjectivity, note that for any
quasicompact S with a map S — GrG,Div%, , only finitely many strata can be met, as the meromorphic

isomorphism of G-bundles necessarily has bounded poles. This, coupled with the fact GrG,Div§, — Div),
is separated while GrGDiV& <u — Divy, is proper, implies that the map | |, GrG,Divﬁ, <u GrG,Div; isa
v-cover, whence we get the desired surjectivity. O

In particular,
HCkG,Div;,u = HCkG,Divly,gu\ U HCkG,Divly,g;/ - HCkG,Divly,gu
w<p
is an open subfunctor, and similarly its preimage GrGDiV%} uC GrGDiV%} <y~ By the Cartan decomposition,
the space HCkG,Divi, u has only one point in every geometric fibre over Divj,. This point can in fact be
defined as a global section
 Divl
(1] : Divy, — GrG pivl, 4
given by u(§) € (LDiv;{, G)(S) whenever ¢ is a local generator of Zg; up to the action of Lgivl G, this is
y
independent of the choice of €.
PROPOSITION VI.2.4. The map
. Divi
(1] : Divy, — HCkG7DiV§;,u
given by f is a v-cover. This gives an isomorphism
~ )41 +
HCkG,DiV%;,M = [DlVy/(LDivi} G)H}
where (L1

Divi)
the principal congruence subgroups

G)u C LSN%} G is the closed subgroup stabilizing the section [1] of Grg pivl, /Divj,. Recalling

+ >m +
(LDiv§, G) = LDiv%,G’
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we let
(L—iD_iv%} G)Em = (LSN%}G)“ n (ng%}G)Z’m C (Lglv%}G)”
Then
+ + >1 ~ —\< + + >1 ~ O
(LDivi,G)“/(LDivi,G)M - (Pu )" C LDivi,G/(LDivﬁ,G) =G
and
(ng&)c;)gm /(Lgivly(;)gm“ >~ (Lie G)ggm{m} C (nglya)zm /(Lgivly G)ZM ! =~ (Lie G)%{m},

where P,” C G is the parabolic with Lie algebra (Lie () ,<o, and (Lie G),<m C Lie G is the subspace on
which p acts via weights < m via the adjoint action.

In particular,
~ 7+ +
Grg,pivl, u = LDiv; G/(LDivly G

is cohomologically smooth of ¢-dimension (2p, y1) over Div%,.

PROOF. We first handle the case G = GL,, with its standard upper-triangular Borel and diagonal torus.

.. . . +
In that case, i is given by some sequence k; > ... > k,, of integers, and GrG,Divﬁ, , parametrizes BDiv; -
lattices
— n
=C BDiv%,

that are of relative position y at all points. Let S = Spa(R, R™) be an affinoid perfectoid space with a
map S — Divi, = Spd O given by an untilt S* = Spa(R?, R**) over O of S. By the proof of [SW20)
Proposition 19.4.2], the R!-modules

Filz(RF)" = (2N BR(R)")/ (€2 NEBR(R)")

are finite projective of rank equal to the number of occurrences of —i among k1, . . ., ky,. Localizing, we may
assume that they are finite free. We may then pick abasisey, ..., e, of (R*)" so that any Fil5 (R*)" is freely
generated by a subset eq,...,ey,, of e1,...,e,. Lifting e,, ,41,...,6y,, toelementsof f,, ,41,...,fn, €

£EN BIR(Rﬁ)”, and setting gn, ,+1 = & ' fai 41 - - o Gy = €' fn,, o equivalently g; = &% f; for j =
1,...,n, onesees that fi,..., f, form a Bj (R¥)-basis of Bj; (R*)",and g1,. .., g, will form a BJ, (R*)-
basis of =. Thus, changing basis to the f;’s, one has moved = to the lattice

EMBR(RY) @ ... 6 BL(RY).
This is the lattice corresponding to [1] € Grgr,, piv, showing that the map

o1
Divy, — %CkGLn,Divi,,u

is indeed surjective.

Moreover, the stabilizer (L;&Vi} GLy), of B (R) & ... & ¢* B (RY) in L$iv§, GL,, is the set of
all matrices A = (4;5) € GL"(Bgivi,) such that for i < j, A;; € ¢rkihi Bl—givﬁ,' This easily implies the
description of

(Lgivly GL,), /(Lgivly GL,)>' = (P;)® c GLS
and

(L GLp)Z™/(LE | GLy)Z™ ™ = (LieGL, )Y, {m} C (LieGL,)" {m}.

Div, Div}, p<m
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The description also implies that (L;V%} GL,),, contains Lgiv%} P, and (L;givﬁ, U,)Z"9) for any positive
root a.

In general, picking a closed immersion of G into GL,, (compatible with the torus and the Borel), one
sees that

and

(LgivlyG)Em/(L;VlyG)Em“ C (Lie Q)9 {m} C (LieG)®{m}

as these subquotients embed into the similar subquotient for GL,,. Moreover, one sees that (L$iv1
»

tains Lgivﬁ, P, and (Lgivﬁ, U,)Z*@) for any positive root a. These imply that the two displayed inclusions

G, con-

are actually equalities.

A consequence of these considerations is that the map
LBIV:%} G/(L$1V§G)” — L]—glvi) GLn /(L$1v§; GLn)M

is a closed immersion (as this happens on all subquotients for the principal congruence filtration). The
target isisomorphic to GrGLn,Div;{, v Which contains GrG,Div%, . asa closed subspace (by [SW20, Proposition

20.3.7]). We see that we get an inclusion

+ +
LDivi,G/(LDivijG)“ - GrG,Divly,u C GrGLn,Divﬁ,,u

of closed subspaces, with the same geometric points: This implies that it is an isomorphism (e.g., as the map
is then necessarily a closed immersion, thus qcgs, so one can apply [Schi7a, Lemma 12.5]). From here, all
statements follow. O

REMARK VI.2.5. The map
GrG,Di"ﬁw - Lgiv§G/(L$iv§G)“ - LEV;G/(LRV;G% = (G/Py)®
is the Bialynicki-Birula map, see [CS17].

Passing to general d, we first note that any geometric fibre of
..d
HCkG,Divg, — Divy,

is isomorphic to a product of geometric fibres of HCkG,Div;{, — Div%,. More precisely, if f : Spa(C,C") —

Divg, is a geometric point, it is given by an unordered tuple Spa(C’iﬁ7 C'ZH), i € I with |I| = d, of untilts
over Of. Some of these may be equal, so one can partition I into sets I, ..., I, of equal untilts. Then we
really have r untilts, given by maps f1,..., f, : Spa(C,C*) — Div%,, and one has an isomorphism

7_[CkG',Din XDivSl,,f Spa(C7 C+> = H HCkG,DiV%} XDiV%;,fz’ Spa(C, C+)7

v
=1
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and similarly

LE%G XDive,, f Spa(C,CT) = l_[1 LgivlyG XDivl,. f; Spa(C,C"),

LDivg}G ><Divg},f Spa(07 C+) = H LDiVi;G XDiV%;,fi Spa(C, C+),

i=1
T

GrG,Divg) XDiv},,f Spa(C,CT) = HGTG,Div§, XDivl, f; Spa(C,C™).
i=1

Indeed, it suffices to prove this on the level of the positive loop and loop group, where in turn it follows
from a similar decomposition of Bg.vd after pullback, which is clear.
Wy

In particular, we can define the following version of Schubert varieties.

DEFINITION VI1.2.6. For any unordered collection f1e = (1;)jes of elements ; € X, (T)" with
|J| =d,let
,HCkG’,Divg,,ﬁu. C HCkG,Div%

be the subfunctor of all those ' — HckGDiv; such that at all geometric points Spa(C,Ct) — S, then

equipped with an (unordered) tuple of d untilts Spa(C’iti ; Cl”), i € I with |I| = d, there is some bijection
between 1) : I = J such that the relative position of £; and &; at Spa(Cf , C’,EH_) is bounded by

>
jesCl  =Ct
Let
Gre pive, < © GTG pive,
be the preimage of HCkG,Divgl, <ue C HCkG,Divgl, .
ProrosITION VI.2.7. The inclusion
Heke pive, <pe © Heke pivg,

is a closed subfunctor. The map GrGDivg) ’ — Divg, is proper, representable in spatial diamonds, and of

<pe
finite dim. trg.

PRrOOF. This can be checked after pullback to (Div%,)d. Then it follows from [SW20] Proposition
20.5.4]. O

Moreover, we have the following result. Here, we let
(LJgivgl} G) = L$ivdy G/ (L$lv§) G) =
be the quotient by the principal congruence subgroup.

ProprosITION VI.2.8. For any e = (p4j);es as above, the action of Lgivng on GrG,Divg,,S,u. factors

over (L$iv§} G)<™ where m is chosen so that for y = EjeJ 1, all weights of 1 on Lie G are < m.
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PrROOF. We need to see that the action of (L;ivd G)=™ is trivial. As everything is separated, this can
y

be checked on geometric points, where one reduces to d = 1 by a decomposition into products. Then it

follows from Proposition O

VI1.3. Semi-infinite orbits

For this section, we continue to assume that G is split, and again we only spell out the case of Divgl,;
analogous results hold for Div{- and Div%, and follow easily from the case presented.

Previously, we stratified the affine Grassmanian using the Cartan decomposition, the strata being affine
Schubert cells. We now use the Iwasawa decomposition to obtain another stratification by semi-infinite
orbits.

Fix a cocharacter A : G,, — T C G, inducing a Levi M with Lie algebra (Lie G)\—0, a parabolic
Py = P} with Lie algebra (Lie G) >0 and its unipotent radical Uy with Lie algebra (Lie G)>0. We get an
action of the v-sheaf G,, (taking an affinoid perfectoid space S = Spa(R, R™") of characteristic p to R*)
on GrG,Divg, via the composition of the Teichmiiller map

H Gy — Lgivdme’

the map
+ oyt +
LDiviA ’ LDivg,Gm — LDivSi,G

and the action of L$iv31, G on GrGDng} . We wish to apply Braden’s theorem in this setup. For this purpose,
we need to verify Hypothesis To construct the required stratification, we use the affine Grassman-

nian

associated to the parabolic Py. Note that this admits a map
Grp, pivg, = GIar, pive, = GI7, pive,
where M), is the Levi quotient of P\ and M is the maximal torus quotient of M) (the cocenter). Then

Gryz, Divé, admits a surjection from a disjoint union of copies of (Div%,)d parametrized by X, (M, )%. While

there are many identifications between these copies, the sum 71 := Zle 1; € X.(M)) defines a well-
defined locally constant function

(VL3.1) Gryy, v, — X (M)).

More precisely, for Spa(C,Ct) — Gryz, Div{, 3 geometric point, let Cﬁ, cee C! be the corresponding
distinct untilts with 1 < r < d. Then

Grﬂ)\,DiVSI} X Divé, Spa(C,C") = 1:[1 GYMA,D% X Div}, Spa(C,C™)
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where the morphism Spa(C,C") — Div%, is given by C’f on the i-th component of the product. This is
identified with

[ X-(315) x Spa(C,C™)

i=1
and the weighted sum morphism X, (M )" — X,.(M ) (weighing each term with the multiplicity of C’f
as an untilt of C' in the morphism Spa(C,C") — Divgl;) defines thus a function

GrMA,Divg, X Divé, Spa(C,CT) — Xy (M)
This defines the locally constant function of (VI.3.1).

For v € X, (M)) let
Grp, pive, © GIp, pivd
be the corresponding open and closed subset obtained as the preimage.
PROPOSITION VI.3.1. The map
GrPA,DiV§; = I_I Gr;)\,Divgj — GrG,Divgl,
v .

Py,Div§,
has closed image in Gr ..« . The action of G,,, via LT\ on Gr .4 extends to an action of the monoid
g G,Div§, Py.Div§,

is bijective on geometric points, and it isa locally closed immersion on each Gr Py Divd, TheunionJ,, ., Gr

Al and the G,,,-fixed points agree with Gr My, Divd-

Applying this proposition also in the case of the inverse G,,-action, and pulling back to a relative

Schubert variety, verifies Hypothesis in this situation.

PrOOF. The action of G, on Py via conjugation extends to an action of the monoid A!. Applying
loop spaces to this observation and the observation that the map LDiVSl; Py — Grp, Divé, is equivariant for

the action of L;ivd Gy, on the source via conjugation and on the target via the given action (as we quotient
R
by the right action of L$iv§} P)) gives the action of the monoid Lavd A, and thus of A! via restricting to

Teichmiiller elements. As everything is separated, this also shows that G,,,-fixed points necessarily lie in
the image of LDivg, M), thus the G,,,-fixed points agree with Gr My, Divé,-

Bijectivity of the map
GrP)\,Divgl, - GrG,Divgl,
on geometric points follows from the Iwahori decomposition. It remains to prove that the map is a locally
closed immersion on each Gr;A Divd” and the union over v/ < v is closed. Picking a closed embedding
vy
into GL,,, this reduces to the case G = GL,, and by writing any standard parabolic as an intersection of
maximal parabolics, we can assume that Py, C GL, is a maximal parabolic. Passing to a higher exterior
power, we can even assume that Py C GL, is the mirabolic, fixing a one-dimensional quotient of the
. . . o + .
standard representation. In that case, GrGLn,Divg, parametrizes finite projective B, , -modules M with

TP ~ pn . . .
an identification M ® B, BDiVSl; = BDivg, , and Gr Py,Divy, parametrizes such M for which the image
v

. . . . . +
LC BDivdy of M in the quotient Bgivgl, — BDiv§, :(x1,...,2p) — X, is a line bundle over BDivg,' It also
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suffices to prove the result after pullback along (Div},)? — Divg,. Now the result follows from the next
lemma. O

In the following, the “relative position” of a B -lattice L C B to the standard lattice BT C B refers
to the image under the map

Ger’Divg} — X, (Gm) =7
defined above.

LEMMA V1.3.2. Let S = Spa(R, R") bean affinoid perfectoid space over F, with untilts S? = Spa(Rg, R§+)
over Op fori = 1,...,n. Let § € Wo,(R") generate the kernel of 6, : Wp,(R') — R§+ and let
£ =& ---&,. Let BY be the £-adic completion of W, (R1)[%;] where @ € R is a pseudouniformizer,

(]
and let B = BJF[%}. Finally, let
LCB

be a finitely generated B*-module that is open and bounded, i.e. there is some integer N such that ¢¥ B C
Lc&NBtcB.

Foranym € Z,let S,, C S be the subset of those points at which the relative position of L to BT C B
is given by m. Then U, ,/,,, Sy is closed, and if S;;, = S then the B*-module L is a line bundle.

PrOOF. We can assume that L C BT via multiplying by a power of £. Let s € S be any point, corre-
sponding toamap Spa(K (s), K(s)T) — Sy,. Let B be the version of BT constructed from (K (s), K (s)™).
Then By is a finite product of discrete valuation rings, and the image L of L ® g+ B in B is necessarily
free of rank 1. Then s € S, if and only if the length of B /L, as B -module is given by m. Localizing
on S if necessary, we can find an element ! € L C B whose image in Lj is a generator. In a neighborhood
of s, the element [ generates a submodule L' = BT -1 C L whose relative position to B is bounded above
by m at all points by the next lemma, and then the relative position of L C B is also bounded above by m
at all points as L' C L. This gives the desired semicontinuity of the stratification (noting that as L is open
and bounded, only finitely many values of m can appear). If S,,, = S, then the containment L’ C L has to
be an equality, and hence L = L’ is generated by [/, so L is a line bundle. O

LEMMA VI.3.3. In the situation of the previous lemma, let f € B be any element, and consider the
map
S| = Zzo U{oc}
sending any point s of S to the length of B /f as B -module. This map is semicontinuous in the sense
that for any m > 0, the locus where it is < m is open.

PROOF. For any i = 1,...,n, one can look at the closed subspace S; C S where the image of f in Rg
vanishes. On the open complement of all .S;, the function is identically 0. By induction, we can thus pass
to a closed subspace S; C .S, where we can consider the function f; = {fz ; the length function for f is then
the length function for f; plus one. This gives the result. O

ExaMPLE VI1.3.4. Suppose A € X,(T') is regular dominant. Then Py, = B. We then obtain the
stratification by semi-infinite orbits

S, =G

v
T .
B ,D1v§}
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forv € X, (T). One has S, — GrGDiV% , a locally closed immersion, and
GrG,DivSl, = U Gr%,Div§
veX,(T)
(disjoint union) at the level of points.

We can now apply Theorem|[IV.6.5/ Here, we also use the opposite parabolic Py’ ¢ G. If S — Div%, is
pPpPLy PP P A hY

a small v-stack, we denote
Grg,s/pivg, = GIg pivg, Xpivg, S
and similarly
7-[CkG,S/Divdy = HCkG,DiVSI} XDiVSl} S.
Forany A € D (Grg g /Divd; A), we call A bounded if it arises via pushforward from some finite union
GrG,S/DiVSl”SLL. C GrG,S/DiV%' We let
Det(GrG,S/Divdy»A)bd C Der(Grg,5/pive - A)
be the corresponding full subcategory.

CoOROLLARY VI.3.5. Let § — Divg, be any small v-stack. Consider the diagram
GrPA,Div§
% K“'
GrG,Divgl, GYMA,Divg,
\‘& /

GrP; Divg,

and denote by ¢ etc. the base change along S — Divgl,. Consider the full subcategory
Det(GrG,S/Divgj’ A)Gm-mombd C Det(GrG,S/Divg}7A)bd

ofall A € Det(GrG’ S/Divd;” A) that are bounded and G,,,-monodromic in the sense of Definition

, A)Gm-monbd the natural map

R(pg)+Rlas) = R(pd)(a5)"
is an equivalence, inducing a “constant term” functor

m-mon,b b
CTP,\ : Det(GrG7S/DivgjaA)G d — Det(GrMA7S/Div§,7A) d.

On D et(GrG,S/Divg,

This functor commutes with any base change in S and preserves the condition of being universally locally

acyclic over S (which is well-defined for bounded A).

ProoF. This follows from Proposition and Theorem [IV.6.5} Proposition and Proposi-
tion[IV.6.14 ]
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ExaMPLE VIL.3.6 (Follow-up to Example [VL.3.4). In the context of Example [V1.3.4} suppose d = 1.
Then, Grp ¢ /Div}, = X.(T) x S, and the corresponding semi-infinite orbits are denoted by S, C GrG,Divﬁ,

for v € X, (T). Thus,
CTp(A) = @ R@.)(Als,)

veX.(T)

withp, : S, X Divl, S—=S5CGrpg /Divl, the embedding indexed by v.

As a final topic here, let us analyze more closely the semi-infinite orbits in the special fibre, i.e. for
the Witt vector affine Grassmannian Gry ™ (so that (Gry ") = Grg spar, /Divl, ), which is an increasing

union of perfections of projective varieties over IF, by [BS17], cf. also [Zhu17]. Forany A € X, (T') asabove,
we have the semi-infinite orbit

Sy = LU - [\] C Gr¥*t.

ProposITION VI1.3.7. Forany p € X, (T)7, the intersection Sy N Grgigu is representable by an affine

scheme.

PRroOF. Picking a closed immersion G — GL,,, one can reduce to G = GL,,. In that case, there is an
ample line bundle £ on Grg’itt constructed in [BS17]. We first claim that the pullback of £ to Gr%’itt is
trivial. Indeed, recall that if Spec R — Gr'™* corresponds to a lattice = C Wo,, (R)[2]", then L is given

by det(7 "W, (R)/Z) for any large enough m, using the determinant

det : Perf(Wp,, (R) on R) — Pic(R),

which is multiplicative in exact triangles. On Gr)y ™!, one has a universal filtration of = compatible with the

standard filtration on the standard lattice, which induces a similar filtration on =/7™ Wy, (R), where all
the graded quotients are locally constant (and constant on S). This means that the line bundle is naturally

trivialized over each connected component Sy of Griy ™.

We claim that this section over S) extends uniquely to a section over the closed subset | J,,, Sy that

vanishes over the complement of S, showing that the intersection of Sy with each Grgigu must be affine.

To see this, by the v-descent results of [BS17], it suffices to check that for any rank 1 valuation ring V' with
amap Spec V' — Gry ' whose generic point Spec K maps into S), the section of £ over Spec K extends to
Spec V' and is nonzero in the special fibre precisely when all of Spec V' maps into S). Now the filtration

OZEK’()CEKJC...CEKJL:EK

with
Exi = Zx N Wo, (K)[£]' € Wo, (K)[+]'

has the property that

Ex,i/EKio1 =1 Wo,(K)
for the cocharacter A = (A1,..., \,). Moreover, the filtration by the Z ; extends integrally to the filtra-
tion

0==EyCcz1C...CcE, =2
with

Ei=ENWo,(V)[F)' € Wo,(V)I[7]',
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which is still a filtration by finite projective W, (V')-modules by [SW20| Lemma 14.2.3]. The injection of
=/Zi—1 into Wo,, (V)[2] (projecting to the i-th coordinate) has image contained in

Wo, (V)2 Nt iWe, (K) = 1 Wo, (V),

so we get natural injections =;/=;_1 < 7 W, (V), that are isomorphisms after inverting 7 or [a] for a
pseudouniformizer a € V. Now the relevant line bundle can be written as the tensor product of the line
bundles given by the determinants of the complexes

™ Wo, (V)/(Z:/Zi_1) € Perf(Wo, (R) on R).
These line bundles are indeed naturally trivial over K as the perfect complex is acyclic there. Now this
complex is concentrated in degree 0, and is torsion, so admits a filtration by complexes of the form V' /a =
[aV — V] for pseudouniformizers a € V. The associated line bundle on V is then given by the alternating
tensor product V ®y (aV)~! = @'V, and the natural section by 1 € a~'V. We see that the section is
indeed integral, and that it is nonzero in the special fibre if and only if all the above complexes are acyclic,
equivalently if =;/Z; 1 — 7 Wp, (V) is an isomorphism. But this is precisely the condition that all of
Spec V maps into S). O
The union A (2p ) <d Sy C Gr\évitt is closed, thus so is
U Sy N Grgfgﬂ - Grgig# .
A (2o <d
For d = (2p, u), thisis all of Grgfgu, while for d = —(2p, 1) it contains only a point, corresponding to [)]

for X the antidominant representative of the Weyl orbit of 1. Also, only d of the same parity as (2p, i) are
relevant. By Proposition [VI.3.7} the successive complements

U snedsy U sineds = || sine,
>\,<2P,)\>Sd >\,<2P,)\>Sd—2 >\,<2p,)\>:d

are affine. This means that at each step, the dimension can drop by at most 1. However, in (2p, i) steps, it
drops by (2p, ). We get the following corollary on Mirkovié-Vilonen cycles, cf. [MV07, Theorem 3.2],
and [GHKR10], [Zhu17} Corollary 2.8] for a different proof based on point counting, the classical Satake
isomorphism, and the Kato-Lusztig formula [Kat82], [Lus83].

CoroLLARY VI1.3.8. The scheme S) N Grgigu is equidimensional of dimension (p, 1 + A).

VI1.4. Equivariant sheaves

Now we go back to the setting of general reductive groups G over O (resp. over F if we work over

Div{. or Div%). As usual, let A be some coefficient ring killed by some integer n prime to p. We want to
study Det(—, A) for the local Hecke stack

_ 7+
HCkG,Divgl, = LDivdy G\ GrG,Divg,

or its versions for Div{ and Div%. Neither this nor its bounded versions Hck Divd, <jte (say, when G is

split) is an Artin stack as Lgivd G is not finite-dimensional. However, Proposition [VI.2.8/shows that on the

bounded version, the action factors over a finite-dimensional quotient.
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First, we observe that on the level of Det(—, A), one can then forget about the rest of the action.

PROPOSITION VI.4.1. Let H be a group small v-sheaf over a small v-sheaf S that admits a filtration
H=™ C H by closed subgroups such that, v-locally on S, for each m > 1 each quotient H="/H=""*!
admits a further finite filtration with graded pieces given by (Aéﬁ)Q for some untilt S* of S (that may
depend on the graded piece). Let X be some small v-sheaf over S with an action of H that factors over
H<™ = H/H=™ for some m > 0. Then the pullback functor

Det(HS™\X,A) — Det(H\ X, A)

is an equivalence.

PrOOF. Both stacks live over the classifying stack [H <"\S] of H<™ over S. Applying descent along
S — [H<"\S], one reduces to the case that H <" is trivial. In that case, the map X /H — X/H<™ = X
admits a section s : X — X /H, and it is enough to prove that s* is fully faithful. Doing descent once
more, it is enough to prove that for any affinoid perfectoid space S’ over S over which a filtration by Al’s
exists, pullback

Det(S', A) — Der(S” x H, A)

is fully faithful. Replace S by S’ andlet f : H — S be the projection. We need to see that for all
A € De (S5, A), the map

A— Rf.ffA
is an isomorphism; doing this for all S, it is enough to check it on global sections, i.e.
RI'(S,A) — RI'(S x H, f*A)

is an isomorphism. Using Postnikov towers, we can assume that A € DJ(S,A). We can write H as a
filtered colimit of subgroups H; C H such that each H; is a successive extension as before, but now the
quotients are balls inside each A;u. In particular, each H; is a spatial diamond, and it is enough to prove
that

RT(S, A) = RT(S x Hj, f*A)

is an isomorphism for all j. Now each H; = Liinm Hfm is an inverse limit of spatial diamonds, so by
[Sch17a| Proposition 14.9] it is enough to prove that

RI(S,A) — RT(S x H™, fn A)
is an isomorphism for all m and j. But this follows easily from each H ]<m being a successive extension of
balls inside A}gﬁ. O
Using hyperbolic localization, we can prove the following important conservativity result.

PROPOSITION VI.4.2. Assume that B C G is a Borel. Let § — Divgl) be any small v-sheaf. Let
A € De(Hekg g /Divd, A) with support quasicompact over S. Assume that the hyperbolic localization

CTpg(A) = 0 of the pullback of A to GrG,S/Divgl) vanishes. Then A = 0.

The similar assertion holds with Div¢. and Div% in place of Divgl,.
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PRrOOF. Note that the formation of CT g commutes with any base change in S, by Corollary
We can thus assume that S = Spa(C, C'") is strictly local. Up to replacing d by a smaller integer, removing
double points, we can assume that the map S — Divg, is given by d distinct untilts 5’? overOg,i=1,...,d.
Let E'|E be an extension splitting G, assumed unramified in our situation where we work over )). We can
then lift all Sf to Opy, and thereby reduce to the case of split G. The corresponding geometric fibre

Heke s /pivg,

has a stratification enumerated by 1, . .., pug € X.(T)*, with strata

d
[S/(HI(LSivi) G X Div}, S)].
1=
If Aisnonzero, we can find a maximal such stratum on which A is nonzero. Now we apply Corollary|VI.3.5
see Example|V1.3.6| One has an isomorphism

Over the copy of S enumerated by the antidominant representatives of (the Weyl group orbits of) 1, . . ., fin,
the functor CTp is the pullback of A to a section of the stratum corresponding to p1,. .., i, € X (T)"
(which, as we recall, correspond to a maximal stratum where A is nonzero). This shows that the restriction
of A to a section over this maximal stratum is zero. This gives the desired contradiction, so A = 0. O

VI1.5. Affine flag variety

At a few isolated spots, it will be useful to use the affine flag variety, the main point being that the
Schubert varieties in the affine flag variety admit explicit resolutions of singularities, given by Demazure
resolutions (also known as Bott-Samelson resolutions). It will be enough to appeal to these in the setting
of a split reductive group G, with a reductive model over O and Borel B C G defined over O, for d = 1,

and for a small v-stack S — Div%, factoring over Spd O¢ where C' = E, so we restrict attention to this
setting.

Consider the base change G4 of G to A = Wp,(O). We have Fontaine’s map § : A — O¢, and we
can define an “Iwahori” group scheme Z — G 4, flat over A, whose points in a ker f-torsionfree A-algebra R
are given those elements g € G(R) such that §(g) € G(R®4 O¢) liesin B(R® 4 O¢). Similarly, for any
parabolic P C G containing B, we get a “parahoric” group scheme P — G 4, flat over A, whose pointsin a
ker f-torsionfree A-algebra R are those g € G(R) suchthat §(g) € P(R®4Oc¢). In particular, this applies
to the parabolics P; corresponding to the simple reflections s;; let P; be the corresponding parahorics. Still
more generally, for any affine simple reflection s;, one can define a parabolic P; — G 4 flat over A, and such
that Z — G 4 factors over P;. (The construction of these parahoric group schemes over A can be reduced to
the case of W, (k)[[u]] via a faithfully flat embedding W, (k)[[u]] < A along which everything arises
via base change, and then one can appeal to the work of Bruhat-Tits [BT84} Section 3.9.4].)

DEFINITION VI.5.1. In the situation above, including a small v-stack S over Spd O¢, mapping to Div},
let
}7@75 — S

be the étale quotient LG /L"Z, where LTZ(R, Rt) = I(B;R(Rﬁ)).
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Note here that as S lives over Spd O, any Spa(R, RT) over S comes with an untilt Rf over O, in
which case B}, (R*) isan A = Wo,,(O¢)-algebra, so that Z( B (R*)) is well-defined.

PROPOSITION VI.5.2. There is a natural projection map

Ha,s = Grg s/pivy,

that is v-locally isomorphic to a product with (G/B). In particular, it is proper, representable in spatial
diamonds, and cohomologically smooth.

PrOOF. This follows from the identification L*G/L*T = (G /B), which follows from the definition,
and the similar properties of (G/B)® — Spd Op. O

We analyze the stratification of /¢ g into L™ Z-orbits. Let N(T') C T be the normalizer of T, and
W = N(T)(Ba(C"))/T(Bf(C"))

be the affine Weyl group, for any complete algebraically closed field C’ over O with a map C* — C”;
this is naturally independent of the choice of C’. As T(Bgr(C"))/T (B3 (C")) = X, (T), there is a short
exact sequence

0— X (T) =W = W — 0,

where W is the usual Weyl group of G.
PrOPOSITION VI.5.3. The decomposition of F; s(C’) into LTZ(C")-orbits is given by

Flgs(C) = |_| LYI(C
weW

PrOOF. If C' lives over E, we can choose an isomorphism Bgr(C’) = C’((£)) and the result follows
from the classical result. If C’ lives over the residue field IF, of E, this reduces to the assertion for the Witt
vector affine flag variety, for which we refer to [Zhu17]. O

Recall that W acts on X,(T). Fixing the alcove a corresponding to the Iwahori group Z, one gets
a set of affine simple reflections s; as the reflections along the faces of the alcove; these generate a normal
subgroup W,ge C W. Letting Q C W denote the stabilizer of the alcove, there is a split short exact sequence

1o Wg— W= Q1.

One gets the Bruhat order on W: If w; = Wi ow; € W = Wy x Q for i = 1,2 are two elements, then
w1 < wy if w1 = wo and in one (hence every) presentation of wsy as a product of affine simple reflections,
w is obtained by removing some factors.

DEFINITION VI.5.4. For w € W, the affine Schubert cell is the subfunctor Hlaws C Flg,s of all
maps Spa(R, R™) — Fl¢ s that on all geometric points lie in the L1 Z-orbit of w. The affine Schubert
variety is the subfunctor ¢ <, s of all maps Spa(R, R*) — Fl¢ g that on all geometric points lie in the
L1 T-orbit of w’ for some w' < w.

THEOREM VI.5.5. For each w € W, the subfunctor Fla<ws C Fas is closed, and Flg <y 5 —
Spd Oc¢ is proper and representable in spatial diamonds, of finite dim. trg. The subfunctor g, s C
FlG <w,s is open and dense.
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ProOOF. We will prove the theorem by constructing the Demazure resolution of Fg < 5. Write w =

wow € W = W x , and fix a decomposition wy = Hé-:l

minimal length, so [(w) = [(wp) = [. We write w for the element w with such a choice of decomposition.

s;; as a product of affine simple reflections of

For each affine simple reflection s;, we have a corresponding parahoric group P; — G 4 corresponding

to the face of a; one has L*P;/L1T = (P1)?.
DEFINITION VI.5.6. The Demazure variety corresponding to w is the étale sheaf
Demy,s = LTP,, M T LT, T T [tp, JIYT - S,
equipped with the left L™ Z-action and the L Z-equivariant map
Demy, s — Flg,s

given by (p1,...,p1) — p1--- D - w.

It is clear from the definition that Dem; — S is a successive (P')¥-fibration over S, and in partic-
ular is a spatial diamond, proper over S of finite dim. trg. As g s — S is partially proper, it follows
that the image of Dem,;, 5§ — F¥¢ g is proper. Moreover, the image can be identified on geometric points,
and we see that Demy, s — Flg <w s is surjective, Flg <u,s C Flg s is closed, and Flg < s is proper
over S. In particular, /g , s C Fq,<w,s is open, as the complement is a finite union of closed subfunc-
tors. As Flg,s — Grg,s is locally a product with (G/B )¢, it follows from [SW20, Theorem 19.2.4] that
FlG.s XGrg.s Gra,<p,s is a spatial diamond, and thus so is /G <w,s, as it is a closed subspace for y large
enough.

Also, by checking on geometric points and reducing to the classical case, the map Demy;, 5 — G <w,s
is an isomorphism over ¢ ., 5 whose preimage is given by
\ LTT) x" T (LtP,

+ + LTT LTT 7+ + +
(LTPs \ L") x Lo X (L Psil\L 7)/L"T.

i1 ig

This implies that g, 5 C Flq,<w,s is dense, as desired. As usual, a consequence of this discussion is that
the Bruhat order is independent of the choice of . O

Using Demazure resolutions, one can prove that the standard sheaves on the affine flag variety are
universally locally acyclic.

ProposITION VI1.5.7. For any w € W, let Jw  Faw,s — FlG <w,s be the open embedding. Then
Juw A € Det(Flg <w,5,A) is universally locally acyclic over S.

ProoF. Using Proposition it suffices to prove the same for j,, : FlG .5 — Demy, 5 and j,1A.
Then j,,1 A can be resolved in terms of A and all ¢, 4, A for
T i - Demgy g — Demy, g

the closed immersion from another Demazure variety, corresponding to a subword of @' of w; note that
combinatorially, we are dealing with the situation of a normal crossing divisor at the boundary. By coho-

mological smoothness of all Demg, g — S and Proposition[[V.2.11} the result follows. O
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VI.6. ULA sheaves

We will be interested in universally locally acyclic sheaves on the local Hecke stack.
DEFINITION VIL.6.1. Let S — Divgl, be any small v-stack. An object
Ac Det(HCkG,S/DivSl,?A)
is universally locally acyclic over S if it is bounded, and its pullback to
GrG,S/Divg@
is universally locally acyclic over S.

Let
DG (Hekg ypivis A) C Der(Hekg g/pive s M)

be the corresponding full subcategory.

This definition is a priori not symmetric in the two bundles &), £ parametrized by the local Hecke
stack. However, we can check that it actually is.

PROPOSITION VI.6.2. Consider the automorphism
sw : Hekg g pive, = Hekg s pivg

switching &1 and €. Then A € Der(Hckg o /Divg,» A) is universally locally acyclic over S if and only if

sw* A is universally locally acyclic over S.

ProoF. Fix any large enough substack U C Hckg, ¢ /Divd, quasicompact over S containing the support
of A. Let (LDivg, G)u C LDivgl, G be the preimage of U. Universal local acyclicity after pullback to Gr, Divé,

is equivalent to universal local acyclicity after pullback to
(LDivgl, G)U/(La\,% G) =m
for any m > 0, by Proposition and Proposition We need to see that this is equivalent to

universal local acyclicity after pullback to
(L$iv$ G)Zm\(LDivg, Gu

for any m > 0. For this, we note that these two pro-systems in m are pro-isomorphic. By the next
lemma, the transition maps back and forth are also cohomologically smooth, which implies the desired
equivalence. O

In the following lemma, we call a map f universally locally acyclic if A is f-universally locally acyclic.

LEMMA VI1.6.3. Let
Xy B oxs Box, xR x
be surjective maps of locally spatial diamonds that are compactifiable and of locally finite dim. trg. Assume
that foo fi and f; o f2 are cohomologically smooth. Then fj is universally locally acyclic. If f; is universally

locally acyclic and fj o f; is cohomologically smooth, then f; is cohomologically smooth. Thus, if fj o fi,
fi1 0 faand fs o f3 are cohomologically smooth, then fj and f; are cohomologically smooth.
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We would expect that f3 : X4 — X3 should be unnecessary in order for fj to be cohomologically
smooth.

PROOF. We claim that for any map ¢go : Yo — Xo, with pullbacks g; : ¥; — X, and ﬁ Y = Y,

the natural transformation

P ! | px

foRgo — Ray fo
is an isomorphism. Indeed, we have natural maps

P FsRab > FiFi Ralfi — FeRobi i — RASITL S

and the composite of any two maps is an isomorphism. By the two-out-of-six-lemma, this implies that all
maps are isomorphisms. By surjectivity of f and fo, this implies that f Rgg) — Rg!1 f¢ is an isomorphism.
Applying this with Y, = X and to the constant sheaf A then shows, by the criterion of Theorem
that A is fo-universally locally acyclic.

Now assume that f; is universally locally acyclic and fj o f; is cohomologically smooth, then
R(foo h)'A= [TRfA @ RAA

is invertible. This implies that both tensor factors are invertible, and in particular R fiA is invertible, so
f1 is cohomologically smooth. For the final statement, we now know that the hypotheses imply that fj
and f; are universally locally acyclic, so the displayed equation implies that fy and f; are cohomologically
smooth. 0

Using the conversativity result Proposition we can characterize universally locally acyclic sheaves
in terms of their hyperbolic localization. Note that we can always reduce to the case of quasisplit G by étale
localization on S.

PROPOSITION VI1.6.4. Let B C G be a Borel with torus quotient 7. Let S be a small v-stack with a map
S — Divgl,, and let

A € Der(Hekg g /piya» M)
Then A is universally locally acyclic over S if and only if the hyperbolic localization
CTp(A) € Det(GrT,S/Divdy LA
is universally locally acyclic over S. This, in turn, is equivalent to the property that
Rrr 5+CTR(A) € Det(S, A)

is locally constant with perfect fibres.

Here
7,5 ¢ Gy gpive, = S

is the projection.
PROOF. The forward direction follows from Corollary[VI.3.5and the ind-properness of 77 g and Corol-

lary[[V.2.12] For the converse direction, we may assume that S is strictly totally disconnected and G is split.
Note that to prove universal local acyclicity of 4, it is enough to prove that the map

pi RAom(A, Rl gA) @ psA — RAom(p} A, RpyA)
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is an isomorphism (by Theorem . (Implicitly, we pass here to a bounded part of HCkG,Divgl, and re-
place the quotient by Lgivd G by a finite-dimensional quotient in order to be in the setting of Artin stacks.)
y

By Proposition applied to G x G, it is enough to prove this after applying CT 5- g, where B~ is
the opposite Borel. Using that hyperbolic localization commutes with exterior tensor products, and Propo-

sition|IV.6.13} this translates exactly into the similar isomorphism characterizing universal local acyclicity
of CTp(A). The final statement follows from Proposition O

In the case of one leg, one can completely characterize universally locally acyclic sheaves.
PROPOSITION VI1.6.5. Assume that G is split. Let §' — Div%, be any small v-stack. Consider
A € Det(Heke 5piv, A)b,

Then A is universally locally acyclic over S if and only if for all 1 € X, (7)™, the restriction of A to the
section [u] : S — Hckg g /Divd, 18 locally constant with perfect fibres in De (.S, A).

If G is not split, a similar characterization holds, by applying the result étale locally to reduce to the
case of split G. Again, there is also the obvious version for Divi- and DivY.

PROOF. First, we prove that if all fibres are locally constant with perfect fibres, then A is universally
locally acyclic. This easily reduces to the case of j,, ;A where

Ju + /HCkG,Div%},,u — ,HCkG,Div%,

is the inclusion of an open Schubert cell, and S = Div%,. We can also argue v-locally on Div%, and so

base change to the case S = Spd O¢. In that case, Proposition and Proposition show that it

suffices to prove the similar assertion for the affine flag variety, where it follows from Proposition|V1.5.7
Now for the converse, we argue by induction on the support of A. On a maximal Schubert cell Gr(; ¢ /Div,

where A is nonzero, its restriction is universally locally acyclic, and as on the Hecke stack this stratum is
the classifying space of a (pro-)cohomologically smooth group, it follows that the restriction of A along the
section [u] : S — Hckg g /Divd, 18 locally constant with perfect fibres. Replacing A by the cone of

’]M!A|HCkG,S/Div§),M — A7

the claim follows. O
In the following corollaries, we no longer assume that G is split.
COROLLARY VI.6.6. Let S — Div%, be any small v-stack. Then
DgLA (HCkG,S/Div; A)

is stable under Verdier duality and — ®% —, R#omp(—, —) as well as j15*, Rj.j*, jiRj', Rj»Rj' where
j is the locally closed immersion of a Schubert cell. Moreover, all of these operations commute with all

pullbacks in S.

PROOF. Stability under Verdier duality and compatibility with base change in S follow from Corol-
lary For the other assertions, one can reduce to the case that G is split by working locally on



208 VI. GEOMETRIC SATAKE

S, where it follows from the previous proposition, and juggling with the six functors, and the stalkwise
characterization of the previous proposition. ]

CoroLLARY VI1.6.7. For a complete algebraically closed extension C' of E with residue field £, taking
S =SpdOc¢, S =SpdC and S = Spd k, the functors

ULA ULA ULA
Dg (HCkG,SpdC/Div§,a A) < Dg (HCkG,Sdec/Div§,7 A) = Dg (HCkG,Spdk/Div§a A)
are equivalences.
PrOOF. Use that the formation of R.7#om commutes with any base change in .S, and that the category

of locally constant sheaves with perfect fibres on any such S is equivalent to the category of perfect A-
modules. O

In fact, the previous results extend to the case of general d as long as S — Divsl, has image in the open

subset (DiVSl;);,g C Divg; where all untilts are distinct. After passing to a finite étale cover of .S, we can then

in fact assume that S maps to (Div%))i.

PROPOSITION V1.6.8. Assume that G is split. Let S — (Div%,);fé — DiVSl; be a small v-stack. Consider
A € Det(Hekg g /Divi A)bd,

Then A is universally locally acyclic over S if and only if for all pu1, ..., ug € X (7)™, the restriction of
A to the section [ue] : S — Hekg g /Divd, is locally constant with perfect fibres in D¢t (.S, A).

The category
DgLA (HCkG,S/Divg, )

is stable under Verdier duality and — ®% —, R5#omp(—, —) as well as jij*, Rj.j*, jiRj', Rj.Rj' where
Jj is the locally closed immersion of a Schubert cell. Moreover, all of these operations commute with all

pullbacks in S.

PrROOF. We have the decomposition

d
HCkG,S/Divg, = H ,HCkG,S/mDivi,
=1

where m1,...,m5 : § — Div%, are the d projections, and the product on the right is taken over S. One
can then stratify according to Schubert cells parametrized by tuples ;14 = (i1, ..., ftq) and the above
arguments imply the result. Here, in the beginning, to see that j,,1A is universally locally acyclic, one uses
that exterior tensor products preserve universal local acyclicity, see Corollary[IV.2.25} to reduce to the case
of one leg. O

V1.7. Perverse Sheaves

For any small v-stack S — Divsl,, we define a (relative) perverse ¢-structure on

Det(HCkG,S/Divg, AP
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DEFINITION/PROPOSITION VI.7.1. Let S — Divgl, be a small v-stack. There is a unique ¢-structure
(PD=Y,7 D=9 on Det(HCkG,S/Divgl, , AP such that

A € D" (Hekg spive » M)
if and only if for all geometric points Spa(C, C") — S and open Schubert cells of

HCkG,spa(C,Cﬂ /Divd,»

parametrized by some p1, ..., € X (T)T (where r is the number of distinct untilts at Spa(C, C*) —
Divg,), the pullback of A to this open Schubert cell sits in cohomological degrees < — Y7 (2p, ;).

PROOF. We note that on any bounded closed subset of Z C HCkG,Divﬁ, there is a presentable stable
oo-category Det(Z X Divé, S, A) refining the derived category, and the given class of objects is stable under

all colimits and extensions (and is generated by a set of objects). Thus, the existence and uniqueness of the
t-structure follow from [Lur16) Proposition 1.4.4.11]. Moreover, one easily checks that when enlarging Z,
the inclusion functors are ¢-exact, so these glue to a ¢t-structure in the direct limit. O]

Let
Perv(Hekg, g pivi s A) © Der(Heke g/piya - A)™
be the heart of the perverse ¢-structure. On it, pullback to the affine Grassmannian is fully faithful.

PRrOPOSITION VI1.7.2. The pullback functor

Perv(?-[ckGS/Divg},A) — Det(GrG,S/Di\,g},A)bd

is fully faithful.
Moreover, if

Ae pDeStO(/HCkG,S/Div@a A)*dand B € pDeZtO(%CkG,S/Divg}aA)bd,

then R7#omy (A, B) € Dezto(’HckG,S/Dng}, A)bd,

PrOOF. For the final statement, we need to see that if C' € Degt*l(HckG S/Divg,» M), then there are

no nonzero maps C' — R %omy (A, B); equivalently, there are no nonzero maps C' ®% A — B. But this
follows from the simple observation that C' ®% A liesin D=1,

Now using this property of R.7Zomp (A, B), descent implies that it is enough to see that if A, B €
Perv(Hck g /Divd, A), then any map between their pullbacks to Gr; ¢ /Divé, is automatically invariant un-

der the action of Lgivd G. This follows from Lemma|VI.7.3applied to a finite-dimensional approximation
y
of

+
Gre s/pivg, XD1V§LD1\,$G — Grg 5/pivg, - u

We used the following lemma on actions of connected groups on étale sheaves.
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LEMMA V1.7.3. Let f : Y — X be a compactifiable cohomologically smooth map of locally spatial
diamonds with a section s : X — Y. Assume that all geometric fibres of f are connected. Then for all

A e D3°(X,A), the map
HO(Rff*A) = HO(A)

given by evaluation at the section s is an isomorphism.

PROOF. Note that
Rf.f*A = R#om(RfRf'A, A)
where RfiRf'A sits in cohomological degrees < 0 with ° = A. Indeed, this reduces easily to the case
of discrete A, and then to A = Fy, and can be checked on geometric stalks. But if S = Spa(C,C™") and
i: {s} = S is the closed point, then i* RfiRf'F, € D(F;) with dual
RHom(i*RfiRf'Fy, Fy) = RU(Y, f*i,F)

which sits in degrees > 0 and is equal to [F; in degree 0, as the geometric fibres are connected. Using the
section, we get RfiR f 'A 2 A @ B for some B that sits in cohomological degrees < —1, and the lemma
follows. 0

Unfortunately, it is a priori not easy to describe the category P D=". It is however possible to describe
it via hyperbolic localization. This also implies that pullbacks in S are ¢-exact.

PROPOSITION V1.7.4. Forany S’ — S — Divsl,, pullback along
Heke siypivg, = Heka s pivg
is t-exact for the perverse t-structure. Moreover, if G is split, then
CTB . Det(HCkG’S/Divdy, A)bd — Det(GrT,S/Divdy7 A)

satisfies the following exactness property. There is the natural locally constant map GrTDng} — X.(T)

measuring the sum of relative positions, and by pairing with 2p, we get a locally constant map deg :
Gr,, Divé, Z. Then CTp[deg] is t-exact for the perverse t-structure on the source, and the standard

t-structure on the right. As CT p[deg] is conservative, this implies in particular that
Ae ngo(HCkG,S/Divg,a A)bd (resp. A € pDeZtO(HCkG,S/Divdya A)bd)
if and only if
CT(A)[deg] € D5 (Gry. g ppes. A) (resp. CTs(A)deg] € DZ*(Gry g g A)).

PROOF. To prove t-exactness of pullbacks, we need to see that pullback commutes with ¢-truncations.
By descent, it is enough to check that this holds v-locally on S; this allows us to reduce to the case that G
is split. It is then enough to prove t-exactness of CT g[deg], as by conservativity of CT p[deg]| (see Proposi-
tion this gives the characterization in terms of the ¢-structure in terms of CT g[deg], and the latter
characterization is clearly preserved under pullback (as hyperbolic localization commutes with pullback,

see Corollary [VI.3.5]).

We can assume that S — Divg, lifts to S — (Div%,)d. We have a stratification of S into finitely
many strata i, : S, < S, obtained by pulling back the partial diagonals of (Div3,)?. Accordingly, we get
triangles expressing A as a successive extension of 44i’ A resp. Riq Riy, A; if A € PD=0 (resp. A € PD>0),
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then also all 3% A € PD=0 (resp. Rig.Ri, A € PDZ0). This allows us to reduce to the cases of 44’ A
and Ri,. Ri', A. As hyperbolic localization commutes with all functors by Proposition we can then
reduce to the case that S = S, for some a. Reducing d if necessary, we can then assume that S maps into
the locus of distinct untilts (Div%;)i C (Div},)?®. There is then a stratification in terms of open Schubert
cells

Jue * Hekg s/pivd, ue > MK 5/iv,
parametrized by e = (pi1, .., tta), i € X«(T)T. Now A € PD=" if and only if all
jh A€ D=
ford,, = Z?:l (2p, 11;), and dually A € PD=Y if and only if all
Rj, A€ D= e,
Using excision triangles, we can then assume that
A= juApes Ape € D=~ (HCkG,S/Divgl,,,u.?A)

resp.

A= RjuusAus, Ayy € D77 %e (HCkG,S/DiVSl, A).

,/14.7

Moreover, filtering by cohomology sheaves, we can actually assume that A, is concentrated in degree
—d,,, . Recall that

[1e] S — HCkG,S/Divg,,u.

is a v-cover, and the automorphism group of the stratum is an inverse limit of smooth and connected groups
(as follows from Proposition|V1.2.4]and the Kinneth formula); this implies that for complexes concentrated
in one degree, pullback under [11,]* is fully faithful, cf. Lemma[V1.7.3] We can thus assume that A,,, comes
via pullback from some B € D(S, A) concentrated in cohomological degree —d,,,. Note that at this point,
the desired statement (that CT p(A)[deg] sits in the correct degrees) can be checked after pullback along
Spa(C,C") — S, so we can assume S = Spa(C,C™) is strictly local, and it is enough to check that
CTp(A)[deg] sits in the correct degrees in the fibre over the closed point of S. This fibre in turn depends
only on the restriction of A to the fibre over the closed point of .S, by Proposition We can thus
assume that B is in fact constant. We can assume A = Z/nZ for some n prime to p, and then by dévissage
that A = [ for some ¢ # p. One can then further reduce to the case B = Fy[d,,]. Also, by the Kiinneth
formula, we can then reduce to the case d = 1. Thus, finally

A = juF(2p, 1))
resp.
A = R]M*}Ff[<2p7 :U’>]7
and we want to see that CTp(A)[deg] € D=0 (resp. CT(A)[deg] € D="). By Proposition it
suffices to handle the first case. Note that A is now universally locally acyclic, and the claim can be checked
in the universal case S = Div},. As GrT,Div%, — Divj, is a disjoint union of X, (T) many copies of Div},
and the image is universally locally acyclic, thus locally constant, it is in fact enough to check the result

after pullback to the special fibre S = SpdF, — DiV%;, where

~ Witt\
GrG,Spd]Fq/Div%, = (Grg™)”.
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Using [Schi17a, Section 27], we can now translate all computations to the setting of schemes. Let A €

X.(T) be any element, giving rise to the semi-infinite orbit Sy C Gry'™, i.e.

S,\ = Grgitt XGrqvgitt [)\]
By Corollary the dimension of Sy N Grgf; is bounded by (p, A + ). The restriction of
CTg(juFel(20, 1))
to [A] € Gr\¥i™ is given by
RT((Sx N Gegli)g, Fo)[(20, 1))
and thus sits in degrees < 2(p, A + p) — (2p, u) = (2p, \), giving the desired bound. O
We note that if d = 1, G is split,and S = Spd k — Div%, for k = Fq, then under the full inclusion
bd
Perv(Hekg spak/pivl,s A) C Det(Gre spar/mivt,» M)
the identification Gr; g,q, /Div}, = (Grg{i,;t)o and the full embedding
Det(Grgi];t, A)bd — Det(GrG,Spd k/DiVi,’ A)bd
from [Sch17a, Proposition 27.2], the category
Perv(Hckg spak/pivy, s A)
identifies with the full subcategory
PervL+G(Grg’2t, A) C Det(Grgi,:t, A)bd

of LT G-equivariant perverse sheaves on Grg%t; this was considered by Zhu [Zhu17] and Yu [Yu22]. In
particular, this discussion implies the following result that we will need later.

PROPOSITION V1.7.5. Assume that G is split, so that for any € X, (7)™ we have the inclusion
I+ Hekg pivt, < Heke pivg,
of the open Schubert cell, of dimension d,, = (2p, ;). Then
pju!A[du] = pHO(ju!A[du])v pRju*A[du] = pHO(RjM*A[dM])

are universally locally acyclic, and their image under CT p[deg] is locally finite free over A. Their formation
commutes with any base change in A. The natural map

PRjuA[dy)(dy) — D(PjuAldy])
is an isomorphism.

Moreover, if A is a Z-algebra, then there is some integer a = a(u) (independent of A) such that the
kernel and cokernel of the map

PHY (G A[d)]) = PHO(RjunAldy])
are killed by ¢°.

We remark that the final statement ultimately makes use of the decomposition theorem (and thus re-
quires the degeneration to the Witt vector affine Grassmannian).
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Proor. Consider A = j,A[d,] € PD=C, which is universally locally acyclic. Then CT 5(A)[deg] sits
in degrees < 0, and is universally locally acyclic. Moreover, its degree 0 part is locally finite free over A.
Indeed, this can be computed in terms of the top compactly supported cohomology group of the Mirkovié-

Vilonen cycles Sy N Grgjjt, which (as for any separated variety) is finite free over A. As CTp(A)[deg] is

t-exact, this implies that A’ = PH?(A) has the property that CT 3(A’)[deg] is locally finite free over A. Ap-
plying Verdier duality and using Proposition[[V.6.13] we see that CT g(ID(A))[deg] = D(wiCT p(A)[deg])
(where wy is the longest Weyl group element), which then sits in cohomological degrees > 0, and is finite
free in degree 0, with degree 0 parts also under Verdier duality. This shows that the natural map

PRjuA[dy)(dy) — DFhuA[dy])

is an isomorphism. The proof also shows that the formation commutes with any base change in A.

For the final statement, we can first of all reduce by universal local acyclicity and Corollary|VI1.6.7/to
the same statement on Gryy . By base change, we can assume that A = Z /¢ 7, and we can even formally
pass to the inverse limit over IV, and then invert /; it is thus enough to show that on the perfectly projective

Witt
scheme Grg; )", the map

i Qeldy) — P RjuiQeld,]

is an isomorphism. This follows from [Zhu17, Lemma 2.1], cf. also [Gaio1] Proposition 1], [Lus83]. Let us
recall the argument. It is enough to prove injectivity, as then surjectivity follows by Poincaré duality (as the
two sheaves are Verdier dual, as we have already proved), using that we are working with field coefficients

now. Let j,1.Qy[d,] be the image of the displayed map (i.e., the intersection complex of Gr\g,i,;‘fgu). It is

enough to see that for i : Grgh,;t <u Grgfj,;fS , the complementary closed, that ¢* j,1.Qy[d),] liesin D=2,

Indeed, we have a short exact sequence

0— . K — pju!@f[du] - ju!*@ﬁ[du] =0
for some perverse sheaf K on Grg’i’:qﬁ but this gives a map i*5,,1,Q¢[d,] — K[1], so if 5,1, Q¢[d,] €
PD<~2, then necessarily K = 0.

To prove that i*,1,Q[d,] € PD="2, it suffices to prove that all geometric fibres of j,1.Q[d,] are
concentrated in degrees of the same parity as d,; indeed, any other stratum in Grg j <, has dimension of
the same parity as d,,, so the trivial bound i*j,,1.Q¢[d,] € PD="! gets amplified by one on each stratum
for parity reasons. This parity claim about the intersection complex can be checked smooth locally. We
have the smooth map fﬁgigt — Grgf,:t from the Witt vector affine flag variety, and choosing the element
w in the Iwahori-Weyl group corresponding to the generic stratum on the preimage of the Schubert cell,

we get the smooth map FUg &~ — Gr¥ it ,- It is thus enough to prove the similar claim about the

intersection complex of F{Yf_ . Choosing a reduced expression @ = s1 - s, - w as above, we get the

Demazure-Bott-Samuelson resolution
Tw - DemwWltt — ]:Eg};t<w.

This has the property that all geometric fibres admit stratifications into affine spaces, cf. [Zhu17, Section
1.4.2]. In particular, all geometric fibres of Ry, Qy sit only in even degrees. On the other hand, by the
decomposition theorem, the intersection complex is a direct summand of R7,«Qy[d,,], giving the claim. [
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As a consequence of Proposition [V1.7.4} we see, perhaps surprisingly, that containment in ? D=° can be
checked in geometric fibres over S. (Note however that we are using a relative perverse ¢-structure.) This
gives a complete justification for calling it a relative perverse ¢-structure.

COROLLARY VI.7.6. Let § — Divg) be any small v-stack and let
Ae€ Det(Hd{G,S/Divé’ A)bd.

Then A € ?DZ" if and only if this holds true after pullback to all strictly local Spa(C,Ct) — S. In

particular,

Ae PerV(HCkG,S/Div§,7 A)
if and only if for all strictly local Spa(C, C*) — S, the pullback of A to Hek spa(cc) /Divs, is perverse.
Also note that over geometric points, we are simply considering the usual perverse ¢-structure corre-

sponding to the stratification in terms of open Schubert cells, and then ? D=" admits its usual characteriza-
tion in terms of !-restriction to the open Schubert cells.

ProOF. It suffices to check after a cover, as pullback is ¢-exact. This allows us to reduce to the case that
G is split. But then it follows from the condition in terms of the hyperbolic localization. O

V1.7.1. The Satake category. We also get the following characterization. The condition asked here is
stronger than perversity.

PROPOSITION VI.7.7. Let S be any small v-stack over Divgl, and assume that G is split. Then
A€ Dg" (Hekg g /i )

has the property that A is a flat perverse sheaf (in the sense that A ®% M is perverse for all A-modules M)
if and only if

Rrr.CTp(A)[deg] € Det(S, A)
is étale locally on S isomorphic to a finite projective A-module in degree 0.
ProoF. The functor Rmp.CTp(A)[deg] preserves universally locally acyclic sheaves and hence takes

values in sheaves that are locally constant with perfect fibres. By Proposition |V1.7.4/and as any bounded
part of GrT,Divgl, — Divg; is finite over the base, the condition A € P D="isequivalent to R77,CT p(A)[deg] €

D=0, The flatness then ensures that this is locally isomorphic to a perfect complex of Tor-amplitude [0, 0],
i.e. a finite projective A-module in degree 0. O

In the following definition, S — Divsl, is any small v-stack, and G is general.
DEerFINITION VI1.7.8. Let
Sat(Hekg 5/pivg s A) © Det(Hekg s /pive A)

be the full subcategory of all objects that are universally locally acyclic and flat perverse.
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This definition has the virtue that it is invariant under switching sw*. Let us give some examples of
objects in the Satake category, when d = 1. Assume for simplicity that G is split. For any u € X, (T),
we get the open Schubert cell

ju : 7-[C](G,Divi,,u - /HCkG,Divﬁ,
of dimension d,, = (2p, 11). The following proposition gives the analogue of highest weight modules in the
Satake category.
PROPOSITION V1.7.9. The perverse sheaves
pju!A[du] = pHO(j#!A[du])v pRju*A[du] = pHU(RjM*A[dM])

lie in the Satake category Sat(HCkG,Div§, AN).

Proor. This follows from Proposition [V1.7.7|and Proposition |V1.7.5 O
DEFINITION/PROPOSITION VI1.7.10. The functor

Rma gy Sat(HCkG,S/Divgl,7A) — Det(S,A)

of pullback to Gr; ¢ /Divé; and pushforward along 7¢,s : Grg ¢ /Divd, S takes values in complexes
C € De(S, A) such that all H?(C) are local systems of finite projective A-modules, and each functor

H (R .5x) : Sat(HckGS/Dng},A) — LocSys(S, A).
is exact.

Let
Fas= @Hi(RﬂG’S*) : Sat(HCkG,S/Divgl,?A) — LocSys(S, A).
€L
The functor F; g is exact, faithful, and conservative. Moreover, if f : A — Bisamapin

Sat(’HCkG,S/Divdy A)

such that ker Fig g(f) is a direct summand of F; g(A), then f admits a kernel in Sat(HCkG,S/Divg,’A)i

similarly for cokernels.

The final statement in particular ensures the condition of “existence of coequalizers of F; g-split par-
allel pairs” appearing in the Barr-Beck theorem.

REMARK VI.7.11. It is not clear whether there are natural isomorphisms F g(sw*A) = Fg s(A), so
this fibre functor is (at least a priori) destroying part of the symmetry. What makes this question slightly
delicate is that it is asking for extra structure, and ideally one would like to produce this structure in a clean
way; it is conceivable that one can reduce to geometric points and then use the affirmative answers we give
later under stronger assumptions on S.

PROOF. Localize on S to reduce to the case that G is split, and fix a Borel B C G with torus 7. Using
the stratification of Gr into the strata S, we get a filtration on R7g 5.A whose associated graded is given
by @, Rp,1A|s, . Restricting to connected components of Gr and for A in the Satake category, these are
concentrated in degrees of the same parity, so the corresponding spectral sequence necessarily degenerates.

Thus, most of this follows from Proposition [V1.7.7|and Proposition Faithfulness of Fiz g reduces

to conservativity and the Barr-Beck type assertion, so it remains to prove the Barr-Beck type assertion.
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For this, consider the kernel of f in the category of all perverse sheaves on Hck, ¢ /Divd- We need to see

that this is still universally locally acyclic, and flat perverse. These properties can be checked after applying
hyperbolic localization, shift by deg, and pushforward to S (using various ¢-exactness properties), where
they follow from the assumption of being a direct summand. O

The Satake category also carries a Verdier duality functor. Again, it is not clear that this functor com-
mutes naturally with sw* (we will settle it later under stronger assumptions on S).

PROPOSITION VI1.7.12. The image of the fully faithful functor
Sat(Hekg s/pive,s A) = Det(Grg /pive s A)
is stable under Verdier duality ]D)GrG,S/Div : /5- The induced functor
D . Sat(HCkG,S/DIV% 5 A)OP — Sat(HCkG,S/Dlvdy 5 A)

is an equivalence, with D? = id. Moreover, it makes the diagram

op D
Sa’f(HCkG,S/Divg,’A) P— Sat(HCkG,S/Divdyv A)

iFG,s \LFG,S

LocSys(.S, A)°P el LocSys(S, A)

commute naturally.

PrOOF. The Verdier dual D(A) € Det(Gr; g /Divd,» A) can actually be defined already in Det(Hck; o /Div,» A)bd

by using Verdier duality along bounded subsets of Hckg — [*/LTG]. It follows from Verdier duality that
it commutes with the passage to cohomology, i.e. the functor Fz g, and from this one can deduce that it is

flat perverse and hence lies in the Satake category. Biduality follows from Corollary O

Moreover, the formation of the Satake category is compatible with constant term functors. We define
a locally constant function
degp, : Gry; piye — Z
gp M ,D1v§)

as the composite of the projection to X, (M) considered before and the map X.(M ) — Z given by pairing
with 2pc — 2pp.

PROPOSITION V1.7.13. Let P C G be a parabolic with Levi M. Let S — Divg; be any small v-stack.

Consider the diagram
q P
Gre s/pivg, — Grp s/pive, = Gra/,5/Dive, -
Then the functor Rpg1g%[deg ] defines a functor
CTp,s[degy] : Sat(?—[ckQS/Divg},A) — Sat(HCkM,S/Divg,v A).

These functors are compatible with composition, i.e. if P’ C P is a further parabolic with image Q C M
and Levi M’, then there is a natural equivalence

CTpr,s[degp | = CTq,sldegg] 0 CTps[degp] : Sat(HCkG,S/Div§}7A) — Sat(HCkM',S/Divgl}» A)

(and for triple compositions, the obvious diagram commutes).
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PROOF. Let A : G, — G bea cocharacter such that P = P,. This induces in particular a Levi splitting
M < P as the centralizer of \. We can then divide the diagram

s s
GrG,S/Divg, — GrP,S/Divg, — GrM,S/Divg, .
by L$ivd M to see that one can refine Rpg¢§ into a functor
RY
Det(HCkG,S/Divg,a A) — Det(HCkM,S/Divg, ,A)

via first pulling back to Lgivg, M\ Grg 4 /Divd,* It is clear that these functors are compatible with composi-
tion.

We want to see that the image is contained in the Satake category. First, by Proposition [IV.6.14} we
see that the image is universally locally acyclic. Now the claim follows from Proposition |V1.7.7/and the

compatibility with composition (used for the Borel B C P), after passing to an étale cover to assume that

G is split. O
VI1.8. Convolution

For any d and small v-stack S — Divdy, the category
Det(HCkG,S/Divgj )

is naturally a monoidal category. Indeed, with all loop groups taken over Divgl,, there is a convolution
morphism

Heke pivi, X pivi, Heke piyt, ¢~ LTG\LG xUCLG/LTG Y LTG\LG/LTG = Heke pivg

where the morphism a is an L™ G-torsor, and the right morphism is ind-proper (its fibres are the fibres of
GrG,Div§ — Divg;). If one denotes by ag and bg the pullbacks along S — Divgj, one can then define the

convolution product x on

Der(Hekg piya » )™
via Ay x Ay = Rbg.a5 (A1 X Ag) for Ay, Ag € Det(’HckS/Dng] , A)P4, Tt is easy to see that this is associative
by writing out the corresponding convolution diagrams with multiple factors.

In fact, modulo the problem that [Div},/ Lg. . G] = [Div}/ LDivgl, G] is not representable in locally
IVy

spatial diamonds (only ind-representable), the category Dei(Hckg /Divé, A is precisely the category of
endomorphisms of [Divsl, / L$iv§} G] X Divd, S in the 2-category Cr defined in Subsection 1V.2.3.3, for T’ =
[Divg, / LDiVSi; G] X Divé, S. This problem is corrected by passing to bounded sheaves — one can extend the

formalism to the case of maps that are ind-representable in locally spatial diamonds, with closed immersions
in the ind-system, using categories of bounded sheaves as morphisms.

Convolution interacts nicely with the classes of sheaves we have previously singled out. In particular,
it preserves (flat) perverse sheaves; this observation goes back to Lusztig [Lus83].

PROPOSITION VI.8.1. Let Ay, Ay € Det<HCkS/Div3@7 A)bd,

(i) If A1 and As are universally locally acyclic, then A; x As is universally locally acyclic.
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(i) If A; and A5 liein ?PD=0 then A; x Ay € PD=0,
(iii) If Ay, Ag € Sat(HCkG,S/Div§,7A)’ then also A1 x A € Sat(HCkG,S/Divgjv A).

PRrOOF. Part (i) follows from Proposition and Proposition For part (ii), we first make
some reductions. Namely, the claim can be checked if S = Spa(C, C'") is strictly local and G split. More-

over, by a dévissage one can assume that A; and A are the !-extensions of the constant sheaves on open
Schubert cells; in particular, these are universally locally acyclic. By the Kiinneth formula one can then
reduce to the case d = 1. In that case, we can pass to the universal case S = Div%,. Over (Divi,)z, we can

consider the moduli space 7-[~ckG7(Div§) )2 of G-bundles &, &1, &, over B(TDivﬁ, 2 together with isomorphisms

+ 1 + 1
(DivL )2 [7;] and between £ and & over B(DiV%})Q [7;], where 71,7y C Oy are
the ideal sheaves parametrizing the two Cartier divisors. Away from the diagonal, this is isomorphic to
Hekg (Div},)2 /Div3, while over the diagonal it is isomorphic to

between & and £ over B

+

ngivly G\Lpiy1 G N Lpi1 G /Lg%c.
There are two natural projections
p1,D2 " 7'[CkG,(DivlyP — Heke pivy,
keeping track of &) and & resp. £; and &, and a projection
m : Hekg pivt)2 = Heke Div)2/ivz,

keeping track of & and €. One can the form B = Rm.(pj A1 ®H& p5A2). Recall that we reduced to the case
that A and Ay are moreover universally locally acyclic. By Proposition and Proposition

one sees that also
B € Dg"*(Hekg piv 2 /pivz » A)-
Away from the diagonal, this is simply the exterior tensor product of A; and Ay and in particular lies

in PD=<0. Looking at CTp(B)[deg], we get a universally locally acyclic sheaf on (a bounded subset of)
GrT,(Divi) )2/Din, whose restriction away from the diagonal lies in degrees < 0. This implies that the whole

sheaf lies in degrees < 0: As any bounded subset of Gr, (Div,)2/Divd, is finite over (Div%,)Q, it suffices to

check this for the pushforward to (Div%,)z. But this pushforward is locally constant with perfect fibres,
and the complement of the diagonal is dense.

Thus, using Proposition|V1.7.4} the restriction of B to the diagonal lies in ? D<". But this restriction is
precisely A; % Ay, giving the desired result. Finally, part (iii) easily follows from (i), (ii), and the observation
that convolution commutes with Verdier duality. O

V1.8.1. Dualizability. Next, we observe that all objects are dualizable.

PropPOSITION VI.8.2. All objects of the monoidal category Sat(Hck g /Divg,’ A) are (left and right)
dualizable. The right dual of A € Sat(HCkG,S/Div§,>A) is given by sw*D(A) where sw : HCkG,Di% =
HCkG,Divg, is the switching isomorphism (induced by inversion on LDivgl, Q).

REMARK VI.8.3. In the classical setting, this is asserted without indication of proof in [MV07} end of
Section 11].
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ProoF. All objects of DULA(HckG S/Divd,” A) are left dualizable, with right dual given by sw*ID(A):

This follows from Proposition(modulo the technical nuisance that everything is only ind-representable
here; everything adapts to that setting). Here, sw simply arises by swapping source and target. Also note
that the condition of being universally locally acyclic is invariant under sw* by Proposition [VIL.6.2} so also
using Proposition the functor sw*ID(A) preserves the Satake category. O

REMARK VI1.8.4. Again, we stress that all results above also hold if G is reductive over F, and we replace
Divg, with Div{. or Div%. Indeed, the case of Div{. follows from the case of Divgl; as it is an open subset,
at least if G admits a reductive model over Og. In general, this happens étale locally, making it possible to
reduce to this case. Then the case of Div% follows from the case of Div§. asany map S — Div% can locally
be lifted to a map S — Div{ in such a way that the corresponding pullbacks of the local Hecke stacks are
isomorphic.

VI.9. Fusion

Now let G be a reductive group over E. From now on, we fix the base field k = F, and work on the
category Perfy,. For brevity, we define for any finite set I with d = |I| the local Hecke stack

Hek = Heke pivd, Xpive, (Divi)"
and correspondingly
Grf; = GrG pivd X Divi. (Div)".
DEFINITION VI.9.1. For any finite set /, the Satake category
Sat’(A)

is the category Sat(#ck5, A) of all
A € De(Hekl, A)

that are universally locally acylic and flat perverse over (Div ) .
By Proposition we get a (not yet monoidal) fibre functor
FT: Satl(A) — LocSys((Divi)?, A).
The target category LocSys((Divy)?, A) is in fact very explicit.

PROPOSITION V1.9.2. The category LocSys((Div )’, A)is naturally equivalent to the category Repy;, 1 (A)

of continuous representations of W on finite projective A-modules.
PRrOOF. This is a consequence of Proposition|IV.7.3 O

For any map f : I — J of finite sets, there is a natural monoidal functor Sat,(A) — SatZ(A). Indeed,
there is a natural closed immersion Grf, x (Divl)! (Divy)” < Gr{, so pull-push along

Grl « Grf X (Divl )T (Divy)’ — Gré
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defines the desired functor (noting that this preserves the required equivariance condition)[] It is easy to see
that this functor is compatible with composition of maps of finite sets. Moreover, the functors Sat’,(A) —
Sat{,(A) make the diagram

Rel:’w}{J (A) — RePWé (A)
commute naturally, where the lower functor is pullback under W — Wi.

Actually, the functor I + Sat’(A) has further functoriality, given by the fusion product. Namely, for

finite sets I, . . ., I, with disjoint union I = I Ul ... Ll I}, there is a natural monoidal functor
Satl (A) x ... x SatF (A) — Sath(A),
functorial in I3, ..., I and compatible with composition. To construct this, let

j : (Divi)fk c (Divy)!
be the open subset where x; # x;; whenever 4,7 € I = I, U... U I} lie in different I;’s, and let
Satg" T (A) € DG (Hek x i1y (Div )0tk A)

Divl
be defined similarly as Sat5 (A).
PropOsITION VI1.9.3. The restriction functor
5 Sath(A) — Satg Tk (A)
is fully faithful. Similarly,
4* : LocSys((Div})!, A) — LocSys((Div )l A)
is fully faithful.

PrOOF. For the first part, it suffices to prove that for all A € Sat’(A), the natural map
A — PHO(Rj.j*A)
is an isomorphism. Leti : Z < (Div})! be the complementary closed. It suffices to see that i.i' A € PD>2.
Working locally to reduce to the case G split, and applying the t-exact hyperbolic localization functor
R77,CTp[deg], taking values in local systems of finite projective A-modules on Sat’,(A), this follows from

the observation that i,i'A € D>2, which follows from the observation that Z admits a stratification (by
partial diagonals) with smooth strata of /-codimension > 1 inside the smooth (Div}/)’.

This final argument in fact proves directly the second part. O]

On the other hand, over (Div&)kh’“"l’“, one has

k
. . - I;
Hck ><(Divk)z(Dlvﬁ()I’h"“’I’“ = | | Hek x
j=1

svl V1,1
I1; (Divk)% (Divy) )

1We thank Tony Feng for pointing out that on Hecke stacks the map is not a closed immersion.
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so there is a natural monoidal functor
Satg (A) x...x Satg“(A) N Satgh"“’lk (A)

given by exterior product. Actually, recall that when forming symmetric monoidal tensor products, there
are implicit sign rules when commuting factors. We change these here by hand. Namely, note that each

Hek(y = (Hekg)™™ U (Hekg)*™

decomposes into open and closed subsets given by the even and the odd part; the even part contains those
Schubert varieties for which d,,, = >_,(2p, f1;) is even, while the odd part contains those for which d,,,
is odd. Note that the dominance order can only nontrivially compare elements with the same parity, so
these are really open and closed subsets. Also note that it follows from Proposition[VL.7.4]that for sheaves
concentrated on the even (resp. odd) part, the functor F is concentrated in even (resp. odd) degrees. Now
we impose that when forming the above exterior product, we introduce a minus sign whenever we commute
two sheaves concentrated on the odd parts. A different way to say it is that there is a natural commutative
diagram

Satg} (A) x ... x Satck(A) Satlif 1k (A)

\L(FII,...,FUC) J/FI;Il""‘Ik
LocSys((Divi )/, A) x ... x LocSys((Divi )%, A) 2 LocSys((Divi ) litTk A)

functorial in I, ..., I}, and under permutations of the sets I1, ..., Iz. Indeed, note that the functors '/
invoke a shift by deg, which exactly introduces this sign rule. This in fact pins down this choice of signs
by faithfulness of the functors.

DEFINITION/PROPOSITION V1.9.4. The image of
Satd (A) x ... x Stk (A) — Satl Tk (A)
lands in Sat% (A) C Satgh""’lk (A), defining the fusion product

% Satd (A) x ... x Sat¥(A) — Sath(A),

a functor of monoidal categories, functorial in Iy, . . ., I}. It makes the diagram
Satl (A) x ... x Sat(A) : Sat5(A)
l(FIl,...,FIk) J/Fz

LocSys((Divi )1, A) x ... x LocSys((Divi )%, A) 2 LocSys((Divi)!, A)

commute functorially in I, . .., I} and permutations of I1,. .., Ij.

PROOF. We can define a convolution local Hecke stack

Hek T 5 (Divk)!
+
(Divi)!
& after inverting Z; for all ¢ € I, for j = 1,..., k. Here Z; C Oxg is the ideal defining the i-th Cartier

as follows. It parametrizes G-bundles &, ..., &, over B together with isomorphisms of £;_; and
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divisor. There are natural projections
P Hckgh"“’]k — ’Hckg, j=1,...,k
remembering £;_1 and £;, and
m : Hek ot s Hekl,
remembering & and &. Given A4; € Satg (A), one can then define
B = Rm,(piA; &% ... @% piAr) € De(Hckl, A).
This is still universally locally acyclic, by Proposition and Proposition After pullback to

(Divi)fif11k | the map m is an isomorphism, and we simply get the exterior product of all A;. More-
over, working locally to reduce to the case G is split, we see that Ry, CT(B)[deg] is a local system
of finite projective A-modules, as it is locally constant with perfect fibres, and over the dense open subset
(Div )31 Tk the perfect complex is a finite projective module in degree 0. This means that B € Sat’,(A),
as desired. O

In particular, for any finite set I, this structure makes Sat’,(A) into an E,-monoid object in monoidal
categories, functorially in I, by using the composite

SatL(A) x ... x Sath(A) — SatZ-HI(A) — Sath(A),

using the functor corresponding to the natural map / LI... 111 — I. Recall that F,-monoid structures on
monoidal categories are the same as symmetric monoidal category structures refining the given monoidal
category structure. Thus, each Sat’,(A) has become naturally a symmetric monoidal category with the
fusion product, refining the monoidal convolution product; and everything is functorial in I. Moreover,

by the final part of Definition/Proposition [V1.9.4} the functor
FT: SatlL(A) — LocSys((Divi)!, A) = Repyy1 (A)
is a symmetric monoidal functor, functorially in I.

A consequence of these symmetric monoidal structures are the following natural isomorphisms.

CoROLLARY V1.9.5. For A € Sat},(A), there are natural isomorphisms
Fl(sw*A) = FI(A), D(sw*A) = sw*D(A).

~

Moreover, D is naturally a symmetric monoidal functor, and D o F! = (F!)* as symmetric monoidal
functors.

PrOOF. By Proposition all A € Satl,(A) are dualizable, with dual sw*D(A). In a symmetric
monoidal category, this means that there are natural isomorphisms
sw'Dsw*D(A) = A.
As both sw* and ID are self-inverse, this amounts to the commutation of D and sw*.

Also, as F'! is symmetric monoidal, it follows that F/(sw*ID(A)) and F(A) are naturally dual. But
by Proposition the dual of F!(A) is also F/(ID(A)). Replacing D(A) by A, we find a natural
isomorphism F!(sw*A) = FI(A).

Finally, it is easy to see that the whole construction of the fusion product is compatible with Verdier
duality, making Verdier duality a symmetric monoidal functor, compatibly with the fibre functor. O
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Moreover, the constant term functors are compatible with the fusion product. More precisely, given a
parabolic P C G with Levi M, we have the constant term functors
Cng[degP] - Satl (A) — Sat,(A).
PROPOSITION VI.9.6. For any finite set I decomposed into finite sets I = I U ... Ll I}, the diagram
Satl (A) x ... x Sat (A) ———— Sat5(A)
l(CTIPl [degP],.‘.,CT;k [degp]) iCT{D [deg ]
Sat?l (A) x ... x Satlk (A) ——— Sat},(A)

commutes functorially in I and permutations of [y, ..., Ij.

PROOF. After passing to the open subset (Div})/i/t-7k, this follows from the Kiinneth formula, so
Proposition |V1.9.3|gives the result. O

In particular, the functor
CTf;[degP] - Sath (A) — Satd (M)
is naturally symmetric monoidal with respect to the fusion product. Moreover, everything is compatible
with composition, for another parabolic P’ C P.

VI.10. Tannakian reconstruction

Our next goal is to construct a group scheme whose category of representations recovers the sym-
metric monoidal category Sat’,(A). More precisely, we want to use some relative Tannaka duality over
Repy, 1 (A). To achieve this, we need the following proposition. Given any finite and Galois-stable subsets

W; C X.(T)*,i € I, closed under the dominance order, we have a quasicompact closed substack
HCkIG,(WZ)Z - HCkIG
and we get a corresponding full subcategory

ProposITION VI.10.1. The functor
Fl. Saté(Wi)i(A) — RepWé (A)
admits a left adjoint L{Wz')i’ satisfying the following properties.
(i) There is a natural isomorphism
Li,,(V) = Ly, () @V, V € Repyy1 (A),
where 1 € Repy;, 1 (A) is the tensor unit, and we use that Sat(;(A) is tensored over Repy,, 1 (A).

(ii) There is a natural isomorphism
Ll (1) 2 sier L (1)
as the fusion of Li{,;,f (1) e Satg}wi (A).
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(iii) If I = {i} has one element and W = W}, then the left adjoint is the restriction of the left adjoint to

F' = @Hm(RWG*) : Perv(?—lck{G}W, A) — Mody,, (A).

ProOF. It is enough to find the value L{ Wi (1) satisfying (ii) and (iii). Indeed, then the formula in (i)

defines the left adjoint in general. Assume now that (iii) holds, and let us denote Py, = LI{/V]; (1). Then for
part (ii) we first observe that

= EB H™(Rmgs) : Perv(?—[cké(Wi)i,A) — Shve((Divi)!, A)

admits a left adjoint, and this left adjoint evaluated on the unit, Pyy,),, is generically on (Div%)! given by
an exterior tensor product of the corresponding left adjoints for I being a singleton. Indeed, note that there
is a natural map
Pay,y, = *ier Pw,

adjoint to the section of

F" (%icr Pw,) = Dicr F'(Pw,)
given by the exterior tensor product of the classes given by (iii). To check that this is an isomorphism
generically, we can by étale descent reduce to the case that G is split. In that case, one can make the left
adjoint explicit in terms of the left adjoint to hyperbolic localization. Writing hyperbolic localization as
a composite of !-pullback and *-pushforward, this left adjoint is then given in terms of *-pullback and !-
pushforward, and the perverse PH". As generically, everything decomposes geometrically into a product,
it follows from the Kiinneth formula that the left adjoint commutes with exterior products. But as any
B € Satl, (Wi)s (A) is equal to PH°(Rj.j* B) as in the discussion of the fusion product, we see that

F''(B) =2 Hom(Py,),, B) = Hom(Pyy,),,"H"(Rj.j* B))
= Hom(Pyy,),, Rjxj* B)
= Hom(j* Pw,),,J" B)
= Hom(j* *;er Pw,,j"B)
(*ier Pw,,PH°(Rj.j* B)) = Hom(*;e; Pw,, B).

=~ Hom

It remains to prove part (iii). We can assume that A = Z/(“Z, using base change. Note first that

F' = @Hm<Rﬂ'G*) : Perv(?—lcké}w, A) — Modw,, (A)

admits a left adjoint L{;,, by the adjoint functor theorem. We need to see that when evaluated at the unit,
Py = Ly, (1) is universally locally acyclic, and flat perverse. By the characterization of these properties,
it suffices to show that F/(Py) € Modyy,, (A) is a representation on a finite projective A-module. This does
not depend on the Wy-action, so we can check these things after pullback along Spd C' — Divl, where C
is a completed algebraic closure of E. In particular, we can assume that G is split. For any open Schubert

cell
Ju  Hekaspac — Hekaspaow
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for ;1 € W, of dimension d,, = (2p, i), we can compute
Hom (P, Rjp-Ald,)) = F'(RjucAld, ).
By Proposition [V1.7.9} this is a finite free A-module. Using adjunction, we thus see that
Hom ("5, P, A[d,])

is a finite free A-module for all 4 € W. Now ?j Pyy is concentrated on an open Schubert cell Hckg spa ¢,
which is covered by Spd C, and concentrated in degree —d,,. It is thus given by the constant sheaf M d,,]
for some A-module M, and we know that Hom (M, A) is finite free over A. As we reduced to A = Z/{™Z,
this implies that M is free.

Now argue by induction on W, and take a maximal element 1 € W;let W = W \ {u}. We get an
exact sequence

0= K —=Pjuj,Pw — Py —Q—0

in Perv(Hckg spa o, A) supported on W. In fact, we necessarily have Q = Py (as they represent the same
functor), for which we know by induction that F”(Q) is a finite free A-module. We claim that K = 0.
As K lies in the kernel of ¥jj,,1j;, Pw — P Rj.j,, Pw, it follows from Propositionthat {°K = 0 for
some a independent of A. Using functoriality of the construction for A’ = Z/¢*7°Z — A = Z/(°Z and
that 7jj,1j;, Py lies in the Satake category (so in particular it is flat over A), we see the image of K’ in K is
equal to 0. On the other hand, as all constructions are compatible with base change, the map K’ — K had
to be surjective. It follows that K = 0, as desired. (Alternatively, we could have reduced to Z,-coefficients,
in which case Pj 15, Pw — P Rjpj,, Pw is injective (as the kernel is both /-torsion free and killed by /),
implying K = 0 directly.) O

Now we use the following general Tannakian reconstruction result. This is essentially an axiomatiza-

tion of [MV07, Proposition 11.1]. Recall that a symmetric monoidal category is rigid if all of its objects are
dualizable.

PROPOSITION VI.10.2. Let A bearigid symmetric monoidal category, and let C be a symmetric monoidal
category with a tensor action of 4. Moreover, let

F:C— A

be a symmetric monoidal A-linear conservative functor, such that C admits and F’ reflects coequalizers of
F'-split parallel pairs. Assume that C can be written as a filtered union of full subcategories C;, stable under
coequalizers of F-split parallel pairs and the A-action, such that F'|¢, is representable by some X; € C.

Then
H = @F(Xi)v € Ind(A)

admits a natural structure as a bialgebra (with commutative multiplication and associative comultiplica-
tion), and C is naturally equivalent to the symmetric monoidal category of representations of # in A. If C
is rigid, then H admits an inverse, i.e. is a Hopf algebra.

Here, the symmetric monoidal category of representations of H is the category of comodules over H as
a coalgebra, endowed with the symmetric monoidal structure coming from the commutative multiplication

on H.
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ProoF. Consider F; = F'|¢, : C; — A. This admits the left adjoint A — A ® X, as
Hom¢, (A ® X;,Y) & Homg, (X;, A" @Y) 2 F(AY®Y) 2 AY @ F(Y) 2 Hom(A, F(Y)).

By the Barr—-Beck monadicity theorem, it follows that C; is equivalent to the category of modules over the
monad

A FA® X;) 2 A® F(X;).
Note that the monad structure here is equivalently turning F'(X;) into an associative algebra 4; € A, and
its category of modules is the category of modules over A;. Passing to duals, we note that F'(X;)" is a
coalgebra, and its category of comodules is equivalent to the category of modules over A;, i.e. to C;. Now
we can take a colimit over ¢ and see that

H= Ii?mF(Xi)V

is naturally a coalgebra whose category of comodules in A is equivalent to C. The functor is the following:
Any X € C defines the object F'(X) € Aand for any i large enough so that X € C;amap F/(X)®X; — X
(by adjunction), thus a map
FX)® F(X;) 2 F(F(X)® X;) = F(X),
and hence dually we get the map
F(X)— F(X)® F(X;)" — F(X)® H.

Moreover, for any i, j there is some k such that
C® Cj C C:
indeed, C; (resp. C;) is generated by X; (resp. X ;) under tensors with .4 and coequalizers of F'-split parallel
pairs, so C; ® C; is generated by X; ® X; under these operations. Thus, for any & such that X; ® X; € Cy,
we actually have C; ® Cj C Cy. Let X}, € Cj, represent F|c, ; then we have a natural map
X=X, X g
Indeed, this is adjoint to a map 1 — F(X; ® X;) = F(X;) ® F(X}), for which we use the tensor product
of the unit maps 1 — F'(X;), 1 — F(Xj). This means that there is a natural map
HoH=lnF(X;)" © F(X;)" 2linF(X;©X;)" = lin F(X;)" =H,
which turns H into a commutative algebra, where the unit is induced by the maps X; — 1 adjoint to
1= F(1) € A (inducing maps 1 = F(1) = F(X;)¥).

It is a matter of unraveling definitions that this makes 7{ into a Hopf algebra whose symmetric monoidal
category of representations in A is exactly C. If C is rigid, one also sees that A admits an inverse. Indeed,
one can write
and the switching of the two factors defines the desired involution on 4. Here 7#Zom € A denotes the
internal Hom over A. O

We can apply Proposition to Sat5(A) to get Hopf algebras
HE(A) € Ind(RepWé (A)).
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PROPOSITION V1.10.3. The exterior tensor product

Dics : [[sath (A) — Sath ()
el

R HE () = HE ().

i€l

induces an isomorphism

Proor. Thisisa consequence of the construction of the Hopf algebras together with Proposition(ii),

noting that
*ier Ai) = Q) F(A O
el

We see that all information about the categories Sat’,(A) is in the Hopf algebra
Ha(A) = HEH (M) € Ind(Repyy, (A)).

Note also that the construction of H/(A) is compatible with base change in A, so it is enough to consider
the case A = Z/nZ with n prime to p. In fact, note that we can formally take the inverse limit over n to

define R
Satg (Zp) = &ln Satg(Z/TLZ)

n
with a fibre functor into

RepCOnt /) = lim Repy;, (Z/nZ),
n

the category of continuous representations of 1¥'z; on finite free Z? = lim 7 /nZ-modules, yielding a Hopf
algebra

He € Ind(Repi™(27)).

This can equivalently be thought of as an affine group scheme G over 7P, with an action of W, that isin a
suitable sense continuous.

VI.11. Identification of the dual group

Our goal is to identify G with the Langlands dual group of G. Recall that the universal Cartan of G
defines a cocharacter group X, as an étale sheaf on Spec(FE), i.e. equivalently a finite free abelian group
X together with an action of the absolute Galois group of F, and in particular of Wg. It comes with the
W -stable set of coroots ®V C X, and the subset of positive roots <I>Jvr. Dually, we have the cocharacters
X* and dominant Weyl chamber (X*)* C X*, and the roots ® C X*, containing the positive roots
®, C ®. These data give rise to a pinned Chevalley group scheme G' over Z” (or already over Z, but we
will only consider it over Z”) corresponding to the dual root data (X*, ®, X, ®). Being pinned, there are
distinguished torus and Borel T C B C G, isomorphisms X*(T') 2 X, under which the positive coroots
®Y correspond to the weights of T on Lie B/ Lie T, so

Lie B/LieT = P LieU,
acdy
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for root subgroups U, C B. Moreover, one has fixed pinnings
1, : Lie U, = 7P

for all simple roots a. We want to endow G with a Wg-action. We already have the Wg-action on
(X*,®, X,,®"), but we need to twist the action on the pinning. More precisely, let us write the pinning
instead with a Tate twist as

g : Lie U, Zp(l).
Then W acts naturally on the pinning as well, and thereby induces an action of Wg on G.
We aim to prove the following theorem. Recall that we write G for the Tannaka group arising from

the Satake category. Generally, we will denote by — various objects defined via the Satake category, while
by — we will denote objects formally defined as Langlands duals.

THEOREM VI1.11.1. There is a canonical Wg-equivariant isomorphism G = G.

We note that the formulation of this theorem is slightly more precise than the formulation in [MVo7],
where no canonical isomorphism is given. Also, we handle the case of non-split groups. Note that in

particular, G only depends on G up to inner automorphisms; this is not clear.

To prove the theorem, we can work over Z, for some ¢ # p: Indeed, the statement of the theorem is
equivalent to having isomorphisms over Z/nZ for all n prime to p (by the Tannakian perspective), so the
reduction follows from the Chinese remainder theorem.

We will now first prove the theorem when the group G is split; more precisely, if we have fixed a split
torus and Borel 7' C B C G and trivializations of all simple root groups U, C B. Afterwards, we will
verify that the isomorphism does not depend on this pinning (essentially, as pinnings vary algebraically,

while automorphisms of G /Z, form an (-adic group), and finally use Galois descent to deduce the result in
general.

Note first that if G = T is a torus, then Gr, Divl, = Xx (T) x Divl,, and it is clear that Saty is just
the category of X, (7')-graded objects in Rep{"*(Z). This implies that T = T is the dual torus with
X*T) = X.(T).

We have the symmetric monoidal constant term functor

CTp|deg| : Satg — Satr,

and it commutes with the fibre functors by the identity @, H'(Rngs«) = H(Rr7.CT p[deg]). This gives
rise to a W p-equivariant map 7' = T — G. Using the objects A,, = ?j,1Zy[d,,], whose pi-weight space is

1-dimensional, we see that the map T — G must be a closed immersion.

We have the following information about the generic fibre é@[, following [MV07, Section 7]. First, it
follows from Proposition [V1.7.5|that its category of representations Sat;(Qy) is given by

SatG Qg GBRepmnt Qg ® A

(Here
Sate(Qr) = Sata(Z)[4],
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where Satq(Z¢) = lim Satq(Z/ (™7).) The category of representations of (7, as an abstract group
scheme is then given by

Sat(Qp) ®Repcont Q) Vect (Qp) = @Vect Q) ® A,

and in particular is semisimple. As A, x A,/ contains A, as a direct summand and X' is finitely gen-

erated as a monoid, we see that Sat;(Qy) has a finite number of tensor generators. This implies that \éQz
is of finite type by [DM82, Proposition 2.20]. Moreover, it is connected as Sat;(Q/) does not have non-
trivial finite tensor subcategories (as for any A, with i # 0, the tensor category generated by A,, contains

all A,,,,), cf. [DM82, Corollary 2.22]. As Satc(Qy) is semisimple, we even know that \G/@e is reductive by
[DM82 Proposition 2.23]. For any simple object A,,, the weights of A, on To, — \éQe are contained in the
set of all A € X, = X*(T') such that the dominant representative of )\ is bounded by x4 in the dominance
order, and contains f (Wlth welght 1). This implies that TQe — GQe is a maximal torus of GQe We can
also define a subgroup Bc Gas the stabilizer of the filtration associated to the cohomologlcal gradmg of
F (stabilizing the filtration P M7+ on the fibre functor F = @,, R™m¢.); then BQz C GQz isa

m<z
Borel.
Now we analyze the case G = PGLjy. In that case, we have the minuscule cocharacter i : G,, — G
giving rise to the minuscule Schubert cell GrGVDin = DwX Then

F(A,) = HOP') @ H*(P') = Zy © Zy(-1)

as W p-representation. Thisisa representation of (7, giving a natural map ¢ — GL(Z;®Z¢(—1)). We claim
that thisis a closed immersion, with image given by SL(Z;$Z¢(—1)). Note that T acts on Zy®Zy(—1) with
weight £1, and in particular lands inside SL(Z; @ Z¢(—1)). As G, is reductive of rank 1, it necessarily
follows that

Gg, — SL(Q¢ & Q(-1))

is an isomorphism, and integrally we get a map (¢ — SL(Z; & Z¢(—1)). This gives a map \ém — SL(F, &
Fy(—1)). Let H C SL(F; & Fy(—1)) be the closed subgroup that is the image of \é[g‘e. Note that the
irreducible representations of Gr , are in bijection with dominant cocharacters, corresponding to the simple

objects By, = j,u:Fy on Grg spac; each By, has a highest weight vector given by weight pi. It follows that
H satisfies the hypothesis of the next lemma.

LEMMA VI.11.2. Let H be a closed subgroup of SLy /IF; containing the diagonal torus such that its set
of irreducible representations injects into Z>( via consideration of highest weight vectors. Then H = SL,.

PrOOF. Using a power of Frobenius, one can assume that H is reduced, and thus smooth. By [DM382,
Corollary 2.22] and consideration of highest weight vectors, one also sees that H must be connected. Then
H is either the torus, or a Borel, or SLy. The first cases lead to too many irreducible representations. ]

Thus, the map éFe — SL(F, & F¢(—1)) is surjective. Together with the isomorphism on the generic

fibre, this implies formally that G — SL(Zy @ Z¢(—1)) is an isomorphism by the following lemma (used
on the level of the corresponding Hopf algebras).
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LEMMA VI.11.3. Let f : M — N be a map of flat Z;-modules such that M /¢ — N /{ is injective and
M[3] = N[3] is an isomorphism. Then f is an isomorphism.

PrOOF. As M is flat, f : M — N is injective; moreover, for any x € N there is some minimal k
such that /*n = f(m) lies in the image of M. But if k& > 0, then m lies in the kernel of M /¢ — N /¢, a
contradiction. i

The subgroup B c Gisthen given by the Borel stabilizing the line Zy C Z; & Zy(—1). Its unipotent
radical is the space of maps Zy(—1) — Zy, which is canonically isomorphic to Zy(1). This finishes the
proof of the theorem for G = PGLo.

If now G is of rank 1, we get the map G — (g = PGLy, where the isomorphism G,q = PGLj is
uniquely determined by our choice of pinning. The map

GrG,DiV}( - GrGad,Divk

is an isomorphism when restricted to each connected component, inducing an isomorphism

Grg pivt, = m1(G) Xy (Go) GT

2a,Divk
Here of course m1(Gaq) = Z/27Z. This implies that Satg can be equivalently described as the category
of A € Satg,, together with a refinement of the Z/2Z-grading to a m1(G)-grading. This implies that
G = G x"2 Z where Z is the split torus with character group 71 (G). Thus, one gets an isomorphism
G = (3 also in this case, including the isomorphism 1), on the root group.

Coming back to a general split group G, let a be any simple coroot. We now look at the corresponding
minimal Levi subgroups M, C G properly containing 7', with parabolic P, C B. We have the symmetric

monoidal constant term functor
CTp,[degp | : Satg — Satyy,,

commuting with the functors to Sat7. This induces a map M, — G, commuting with the inclusion of
T into both. In particular, passing to Lie algebras, we see that a € X, = X*(7) is a root of G, and
a’ € X* =X, (T) is a coroot of G. Moreover, if s, € W is the corresponding simple reflection for G, we

also see that it Sq € W, the Weyl group of the reductive group GQz Using this information for all a, we see
that W C W, and that under X, = X*(T) resp. X* = X, (T), we have
3V c ®(Cg,), ® C ¥V(Cg,)-
Moreover, for any irreducible object A, € Sati(Qy), the weights of A, are contained in the convex hull of
the W-orbit of 1. This implies that these inclusions must be isomorphisms — indeed, the directions of the
edges emanating from g, for u regular, correspond to @(é(@é). Together with the isomorphisms on simple
root groups, we get a unique isomorphism
Go, = Go,-
Under this isomorphism, the map M, = M, — G is compatible with the map M, — G induced by
Langlands duality. It follows that
G(Zy) € G(Qe) = G(Q)
isa subgroup containing all M,(Z;). But these generate G(Zy), so G(Z;) C G(Z). Now pick a repre-
sentation G — GL ~ (given by some object of Sat(;) that is a closed immersion over Q. By the inclusion
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G(Zy) C G(Zy), we see that the map Go, = \éQé — GLy extends toamap G — GLy. By Lemma
this is necessarily a closed immersion, at least if £ # 2 or G is simply connected. We can always reduce to
the case that (7 is simply connected by arguing with the adjoint group G,4 (whose dual group Gaais simply
connected) first, as in the discussion of rank-1-groups above. It then follows that G — GLy factors over
G < GLy;, giving a map G — G thatisan isomorphism in the generic fibre, and surjective in the special
fibre (as any Fy-point of G lifts to Zy, and then to \é(Zg)), and hence an isomorphism by I_emma

LEMMA VI.11.4 ([PY06) Corollary 5.2]). Let H be a reductive group over Zy, H' some affine group
scheme of finite type over Zy, and let p : H — H' be a homomorphism that is a closed immersion in the
generic fibre. Assume that ¢ # 2, or that no almost simple factor of the derived group of H@z is isomorphic

to SO9y, 11 (e.g., the derived group of H is simply connected). Then p is a closed immersion.

This finishes the proof of Theorem when G is split, and endowed with a splitting. Now we
prove independence of the choice of splitting. For this, we note that in fact the cohomological grading
on I alone determines T C G as its stabilizer, and B C G as the stabilizer of the associated filtration. It
remains to check that the isomorphisms

1, : Lie U, = Ze(1)

are independent of the choices. For this, consider the flag variety ¥ over F, parametrizing Borels B C G.
Each such Borel comes with its torus 7', which is the universal Cartan and thus descends to E. Equivalently,
note that tori over /¥ are equivalent to étale Z-local systems, and as /¥ is simply connected all of them come
via pullback from F; this then gives the so-called universal Cartan T over E, which is split as G is split.
Let a be a simple coroot of GG. At each point of F¥, we get the corresponding parabolic P, O B, with Levi
M,. Let F, — F¥ parametrize pinnings of My, i.e. isomorphisms of U, with the additive group; this is a
G y-torsor. Over F¥,, the universal group M, is constant, with adjoint group M, .q = PGL3. Consider

S = .7:"50/302 — Spd E /" = Div.
Applying the constant term functor for P, over S gives a symmetric monoidal functor
Sat(HCkG,Divﬁ( XDivﬁ( S, Zg) — Sat(/HCkMa,Divﬁ( XDivﬁ( S, Zg);

here, being symmetric monoidal is verified by repeating the construction of the fusion product after the
smooth pullback S — Divl. Both sides admit fibre functors to LocSys(S, Z;); this contains LocSys(Div,, Z,) =
Repff[’/‘;‘;(Zg) fully faithfully, and we can consider the symmetric monoidal full subcategories on which the
fibre functors land in this subcategory. As the constant term functor is compatible with fibre functors, it
induces a symmetric monoidal functor on these full subcategories, which are then easily seen to be equiv-
alent to Sat; and Sat); (reconstructing both starting from Schubert cells). This shows that the constant
term functor Satg — Satjy, is naturally independent of the choice of Borel, reducing us to the rank 1 case.
In the rank 1 case, we can then further reduce to PGLj, and we have the minuscule Schubert variety, which

is the flag variety 77 = P! of G =2 PGLy. There are canonical isomorphisms
HO(FU) = Ze, HA(FU) = Ze(-1),
and U, is canonically isomorphic to Hom(H?2(F), HO(F¥)) = Z,(1).

Thus, we have shown that if G is split, the isomorphism G = G is canonical. Finally, the general case
follows by Galois descent from a finite Galois extension E'|E splitting G.
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VIL.12. Chevalley involution

Any Chevalley group scheme G comes with the Chevalley involution, induced by the map on root data
which on X, is given by p1 — —wo(p) where wy is the longest Weyl group element. Under the geometric
Satake equivalence, this has a geometric interpretation: Namely, it essentially corresponds to the switching
equivalence sw*. Note that one can upgrade

sw* : Sat5(A) — Satl(A)

to a symmetric monoidal functor by writing it as the composition of Verdier duality and the duality functor
sw*D in Sat’(A); moreover, this symmetric monoidal functor commutes with the fibre functor F/ (as

symmetric monoidal functors), cf. Corollary [V1.9.5/ Thus, sw* induces an automorphism of the Tannaka
group G, commuting with the Wg-action.

ProposITION VI.12.1. Under the isomorphism G = @ with the dual group, the isomorphism sw* is
given by the Chevalley involution, up to conjugation by p(—1) € Ga4(Zy).

REMARK VI1.12.2. There is a different construction of the commutativity constraint on Satg, not em-
ploying the fusion product, that relies on the Chevalley involution — this is essentially a categorical version
of the classical Gelfand trick to prove commutativity of the Satake algebra. For the Satake category, this
construction was first proposed by Ginzburg [Gin9o], who however overlooked the sign p(—1). Zhu's
proof [Zhu17] of the geometric Satake equivalence for Gryy ™" used this approach, taking careful control
of the signs; these are related to the work of Lusztig-Yun [LY13]. We remark that Zhu gives a different

construction of the commutation of sw* with the fibre functor, using instead that the two actions (on left

and right) of H*([x/L" G|, Qy) on H*(Hckg, A) agree for A € Sat;(Qy).

PROOF. We note that this is really a proposition: The statement only asks about the commutation of a
certain diagram, not some extra structure. For the statement, we can also forget about the Wg-action. In

particular, enlarging F, we can assume that G is split. As in the proof of Theorem one can reduce
to the case that G is adjoint, so G is semisimple and simply connected. We also fix a pinning of G.

Now, being pinned, G has its own Chevalley involution § : G — G, and by the functoriality of
all constructions under isomorphisms, the induced automorphism of Satg corresponds to the Chevalley
involution of G. In other words, we need to see that the automorphism 6*sw* : Sat; — Satg (which is
symmetric monoidal, and commutes with the fibre functors) induces conjugation by 5(—1) on G.

We claim that the natural cohomological grading on the fibre functor /' : Satg(A) — Repy, (A) is
compatible with sw*. In other words, we need to see that in Corollary|V1.9.5) the isomorphism F'(A) =

F(sw*A) is compatible with the grading, which follows from its construction. In particular, it follows
that the automorphism of G restricts to the identity on the corresponding cocharacter 2p : G,, C G.
This implies already that it preserves T and the Borel B (as the centralizer and dynamical parabolic). Any
such automorphism of Gis given by conjugation by some element s € Tad C éad. We need to see that
s = p(—1). Equivalently, the automorphism acts by negation on any simple root space U, of G.

We claim that the symmetric monoidal automorphism 6*sw* : Satg — Satg (commuting with the

fibre functor) is compatible with the constant term functors CT p, for any standard parabolic P > B, and
the similar functor on Levi subgroups. Let 6’ be the composition of § with conjugation by wy. We know, by

the proof of Theorem that any inner automorphism of GG induces the identity on G. Thus, it suffices
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to prove the similar claim for #”*sw* : Satg — Satg. Let P~ C G be the opposite parabolic of P; then
¢'(P~) = P, and the induced automorphism of the Levi )M is given by the corresponding automorphism
¢, defined similarly as 6’. Now Proposition and the fusion definition of the symmetric monoidal
structure (along with the definition of sw* as the composite of Verdier duality and internal duality) give
the claim.

These observations reduce us to the case G = PGLy. We note that in this case the Chevalley involution

is the identity, so we can ignore §. We have the minuscule Schubert variety i, : Grg,, = P! C Grg and
the sheaf A = i,,,Z[1](3) € Sat¢ (assuming without loss of generality /g € A to introduce a half-Tate

twist), and we know GG = SL(F(A)), where
F(A) = F(A)1 @ F(A)—1 = H'(P')(3) ® H*(P')(3).

The image of A under sw* is isomorphic to A itself; fix an isomorphism. Then on the one hand

F(A) = F(sw"A)
as the functor sw* : Sat; — Satg commutes with the fibre functor F, while on the other hand

F(sw*A) 2 F(A)
as the two objects are isomorphic. We need to see that the composite isomorphism is given by the diagonal
action of (u, —u) for some u € Z (this claim is independent of the chosen isomorphism between A and
sw*A). We already know that the isomorphism is graded, so it is given by diagonal multiplication by
(u1, ug) for some units uy, up € Z; .

Recall that the first isomorphism is constructed as the composite of Verdier duality and internal duality
in Sat. Now the Verdier dual of A is A itself (because of the half-Tate twist), and the Verdier duality pairing

F(A)@F(A)*)Zg
is the tautological pairing; in particular, restricted to F'(A)_; ® F'(A); and F'(A); ® F'(A)_; it is the same

map, up to the natural commutativity constraint on Z;-modules. It follows that the internal dual A" of A
is also isomorphic to A, and picking such an identification we need to understand the induced pairing

F(A) @ F(A) — F(1) = Zy,

and show that when restricted to F'(A)_; ® F/(A); and F'(A); ® F(A)_1, the two induced maps differ by
a sign (up to the natural commutativity constraint); this claim is again independent of the chosen isomor-
phism between A" and A. But this is a question purely internal to the symmetric monoidal category Sat¢ =2
Rep(SLy) with its fibre functor. In there, we have the tautological representation V' = Z? = Zypey D Zyes,
and it has the determinant pairing V' ® V' — Z; as SLy-representation, realizing the internal duality. The
determinant pairing is alternating, so takes opposite signs on (e, e2) and (ea, 1), as desired. O






CHAPTER VII

Du(X)

In order to deal with smooth representations of G(E) on Q,-vector spaces (not Banach spaces), we
extend (a modified form of) the 6-functor formalism from [Schi7a] to the larger class of solid pro-étale
sheaves. The results in this chapter were obtained in discussions with Clausen, and Mann has obtained
analogues of some of these results in the case of schemes. (Strangely enough, in some respects the formalism
actually works better for diamonds than for schemes.)

More precisely, we want to find a “good” category of (Qy-sheaves on [x/G(FE)] that corresponds to

smooth representations of G(E) with values in Q/-vector spaces, and extends to a category of (Qy-sheaves
on Bung with a good formalism of six operations that allows us to extend the preceding results for étale
torsion coefficients. The first idea would be to take pro-systems of étale torsion sheaves as Z-coefficients
and invert formally /; this formalism is easy to construct, see [Sch17a) Section 26]. This would give rise to
continuous representations of G(E) in Qy-Banach spaces, and we do not want that:

e supercuspidal representations of G(F) in Q-vector spaces are defined over a finite degree extension of
Qy, and after twist admit an invariant lattice that allows us to complete them ¢-adically, but we do not want
to make such a choice.

e we want to construct semi-simple Langlands parameters using the Bernstein center and not some /-adic
completion of it.

e in usual discussions of the cohomology of the Lubin-Tate tower, or more general Rapoport-Zink spaces,
it is possible to use Qy-coefficients while talking about usual smooth representations. We want to be able
to achieve the same on the level of Bung.

We could take Q-pro-étale sheaves. This would give rise to representations of G(E) (seen as a con-
densed group) with values in condensed Qy-vector spaces. This category is too big; there is no hope to
obtain a formalism of six operations in this too general context. We need to ask for some “completeness”
of the sheaves, for which we take inspiration from the theory of solid abelian groups developed in [CS].

The idea is the following. We define a category of solid pro-étale Qy-sheaves on Bung with a good
formalism of (a modified form of) six operations. More precisely, for any small v-stack, we define a full
subcategory

Da(X,Zs) C D(Xy, Zy),

compatible with pullback, and equipped with a symmetric monoidal tensor product (for which pullback
is symmetric monoidal). A complex is solid if and only if each cohomology sheaf is solid, and this can be
checked v-locally. The subcategory Du(X,Z,) is stable under all (derived) limits and colimits, and the
inclusion into D(X,,, Z,) admits a left adjoint. If X isa diamond, then Dg(X, Zy) is also a full subcategory
of D(Xgproet; Z¢). If X is a spatial diamond, then on the abelian level, the category of solid Z-sheaves is

235
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the Ind-category of the Pro-category of constructible étale sheaves killed by some power of /. In this way,
one can bootstrap many results from the usual étale case.

For any map f : ¥ — X of small v-stacks, the pullback functor f* admits a right adjoint Rf, :
Du(Y,Zy) — Du(X,Zy) that in fact commutes with any base change, see Proposition Similarly,
the formation of R.7#om commutes with any base change. Both of these operations can a priori be taken
in all v-sheaves, but turn out to preserve solid sheaves. This already gives us four operations.

Unfortunately, R fi does not have the same good properties as usual. In particular, if f is proper (and
finite-dimensional), R f, does not in general satisfy a projection formula. As a remedy, it turns out that for
all f, the functor f* admits a left adjoint

fu . D.(Y, Zf) — D.(X, Zg),

given by “relative homology”. This is a completely novel feature, and already for closed immersions this
takes usual étale sheaves to complicated solid sheaves. Again f; commutes with any base change, and also
satisfies the projection formula (which is just a condition here, as there is automatically a natural map).

When f is “proper and smooth”, one can moreover relate relative f; (“homology”) and R f. (“coho-
mology”) in the expected way. One also gets a formula for the dualizing complex of f in terms of such
functors. These results even extend to universally locally acyclic complexes. This solid 5-functor formal-
ism thus has some excellent formal properties. We are somewhat confused about exactly how expressive it
is, and whether it is preferable over the standard 6-functor formalism[] One advantage is certainly that f;
is more canonical, and even defined much more generally, than R f; (whose construction for stacky maps
requires the resolution of subtle homotopy coherence issues, and also can only be defined for certain (finite-
dimensional) maps). The main problem with the solid formalism is that a stratification of a stack does not
lead to a semi-orthogonal decomposition on the level of Dg.

On the other hand, for our concerns here, Dg(Bung, Zy) is much too large. On [x/G(F)] this gives

rise to representations of G(E) (as a condensed group) with values in solid Zj-modules. The category of
discrete (Q-vector spaces injects into the category of solid Z;-modules. In fact, Q;-vector spaces are the
same as Ind-finite dimensional vector spaces. Any finite dimensional Qy-vector space is complete and thus
“solid”. This means that if V' is a (Qy-vector space then it gives rise to the solid condensed sheaf V' ®@gm Qy
whose value on the profinite set .S is
lim Cont(S, W).
wcVv

finite dim.

The category of smooth representations of G(E) with values in discrete Qy-vector spaces injects in
the category of solid Qy-pro-étale shaves on [*/G(F)]. In fact, since £ # p and G(F) is locally pro-p,
representations of the condensed group G(E) on the condensed (Qy-vector space V' Bgise Qg are the same

as smooth representations of G(E) on V.

We then cut out a subcategory Dj;(Bung, Q¢) of Dg(Bung, Zy) that gives back the category of smooth
representations of G(F) in Q-vector spaces when we look at [#/G(E)]. (Of course, we can also stick with

Zy-coefficients.)

1One can also treat this 5-functor formalism as a 6-functor formalism in which f' = f* forall maps f,i.e. “all maps are étale”.
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VIIL.1. Solid sheaves

In the following, Z always denotes the pro-étale sheaf Z = Mn Z/nZ where n runs over nonzero

integers. We will quickly restrict attention to 7P = @ =1 Z/nZ, allowing only n prime to p.

(np
Let X be a spatial diamond. We have the associated quasi-pro-étale site Xqproet- Not all of its objects
are cofiltered limits of étale maps, but one has a fully faithful functor

Pro(X&®) — x&®

qproet

on the level of quasicompact and quasiseparated objects; this follows from [Sch17a] Proposition 11.23 (ii)].
Moreover, [Schi7a) Proposition 11.24] ensures that this full subcategory is a basis for the quasi-pro-étale
topology. In the following constructions we will often work in this subcategory.

For any quasi-pro-étale j : U — X that can be written as a cofiltered inverse limit of qcgs étale
ji 2 U; = X, welet X R
JoZe = lim ji\Z;
i

as the pro-system of the U; is unique, this is well-defined. Note that there is a tautological section of th over
U. Equivalently, if one writes Z[U] for the free pro-étale sheaf of Z-modules generated by U (noting that
j* admits a left adjoint on pro-étale sheaves, being a slice), there is a natural map Z[U] — im  Z[U;] = th

When X = Spa(C), juz is the sheaf denoted 2[[] ]® in [CS], and the same notation will be appropriate

here in general.

DEFINITION VIL1.1. Let F be a pro-étale sheaf of Z-modules on X. Then Fissolidifforall j : U — X
as above, the map
Hom(jyZ, F) — F(U)
is an isomorphism.
Let us begin with the following basic example. We note v/ : Xqproet — Xet the projection to the étale
site.

ProrosITION VII.1.2. For any étale sheaf F of Z/nZ-modules on X, v*F is solid.
ProOF. This is a consequence of [Sch17a| Proposition 14.9]. O

The notion of solid sheaf is well-behaved:

THEOREM VIL1.3. The category of solid Z-sheaves on X is an abelian subcategory of all pro-étale Z-
sheaves on X, stable under all limits, colimits, and extensions. It is generated by the finitely presented

objects juZ for quasi-pro-étale j : U — X as above, and the inclusion admits a left adjoint F +— F™ that
commutes with all colimits.

Let F be a pro-étale Z-sheaf on X. The following conditions are equivalent.

(1) The Z-sheaf F is finitely presented in the category of all pro-étale Z-sheaves, and is solid.
(2) The Z-sheaf F is solid, and finitely presented in the category of solid Z-sheaves.

(3) The Z-sheaf F can be written as a cofiltered inverse limit of torsion constructible étale sheaves.
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For any such F, the underlying pro-étale sheaf is representable by a spatial diamond. The category of F
satisfying (1) - (3) is stable under kernels, cokernels, and extensions, in particular an abelian category, and
is equivalent to the Pro-category of torsion constructible étale sheaves.

Moreover, the category of all solid Z-sheaves on X is equivalent to the Ind-category of the Pro-category
of torsion constructible étale sheaves.

QUESTION VIL1.4. If F isa pro-étale Z-sheaf on X whose underlying pro-étale sheaf is representable by
a spatial diamond, or even is just qcgs, is F necessarily solid? If so, these conditions would also be equivalent

to (1) - (3).
Let us remark the following lemma.

LEmMMA VIL.1.5. Any torsion constructible étale sheaf on the spatial diamond X is represented by a
spatial diamond.

PROOF. Let F — X be such a sheaf. We can find a surjection of étale sheaves 7' = P, jaZ/n;Z — F
for some quasicompact separated étale maps j; : U; — X and nonzero integers n; (where the direct sum
is finite). Then F’ is quasicompact separated étale over X, and thus a spatial diamond; and the surjective
map F' — F is also quasicompact separated étale, in particular universally open, and so also F is a spatial

diamond. O

Before starting the proof, we record a key proposition. Its proof is a rare instance that requires w-
contractible objects — in most proofs, strictly totally disconnected objects suffice.

PROPOSITION VIL.1.6. Let X be a spatial diamond and let F;, i € I, be a cofiltered system of torsion
constructible étale sheaves. Then for all j > 0 the higher inverse limit

RIlim F; =0,
i
taken in the category of pro-étale sheaves on X, vanishes.

PROOF. The pro-étale site of X has a basis given by the w-contractible Y — X, that is strictly totally
disconnected perfectoid spaces Y such that the closed points in |Y| are a closed subset and 7Y is an ex-
tremally disconnected profinite set; equivalently, any pro-étale cover Y 5 Y splits, cf. [BS15)} Section 2.4]
for a discussion of w-contractibility. Thus, it suffices to check sections on Y. In other words, we may assume
that X is w-contractible, and prove that

R lim F;(X) =0

for all j > 0. As X is strictly totally disconnected, sheaves on X are equivalent to sheaves on |X|.
Moreover, we have the closed immersion f : mpX — |X| given by the closed points, and pullback along
this map induces isomorphisms F;(X) = (f*F;)(m0X). Let S = mpX be the extremally disconnected
profinite set.

Then any torsion constructible sheaf on S is locally constant with finite fibres. In particular, f*F;
maps isomorphically to #om (#om(f*F;, S'), S') where S' = R/Z is the sheaf of continuous maps to
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the circle. (We could for the moment also use Q/Z, but it will become critical that S* is compact.) It
follows that

R im F;(X) = Extg(m%om(f*fi,g),g).
Thus, the result follows from the injectivity of S! as stated in the next lemma. O

LEMMA VIL.1.7. Let S be an extremally disconnected profinite set. Then the abelian sheaf R/Z on S
is injective.

PrOOF. First, we note that R/Z is flasque in a strong sense. Namely, if U C S is any open subset with
closure U C S, then U is the Stone-Cech compactification of U (as U C S is open by one definition of
extremally disconnected spaces, and then SU U (S \ U) — S admits a splitting, which in particular gives
a splitting of the surjection BU — U that is the identity on U, thus implying that 3U = U) and hence
any section of R/Z over U extends uniquely to U as R/Z is compact Hausdorff. Also, all sections over U

extend to S, as U is open and closed in S.

Let 7 < G be an injection of sheaves on S with a map / — R/Z. Using Zorn’s lemma, choose a
maximal subsheaf of G containing F with an extension of the map to R/Z. Replacing F by this maximal
subsheaf, we can assume that F is maximal already. If 7 — § is not an isomorphism, then it is not an
isomorphism on global sections (any local section not in the image can be extended by zero to form a global
section not in the image), so we can find a map Z — G such that 7' = F xg Z C Z is a proper subsheaf,
and we can replace G by Z and assume that F is a proper subsheaf of Z.

For each integer n, we can look at the open subset j,, : U,, C S where n € Z lies in F. On this open
subset, we have a map nZ — R/Z, and by the above this extends uniquely to j,, : U,, < S. The extension
JmZ — R/Z necessarily ag@with the restriction of the given map F — R/Z on the intersection
GO F a!Z, as this contains the dense subset j,,1Z and R /Z is separated. N

Thus, by maximality of F, we see that necessarily all U, are open and closed, hencesoareall V,, = Uy, \
Um<n Um. Thus V1, V3, ... C S are pairwise disjoint open and closed subsets such that 7 = &, nZ|y,.
But one can then extend to €D,, Z|y;, as the continuous maps from V;, to R/Z form a divisible group. By
maximality of F, this means that V}, is empty for all n > 1, and hence F = Z|y, is a direct summand of Z,
in which case the possibility of extension is clear. O

Now we can give the proof of Theorem|VII.1.3

PROOF OF THEOREM The Pro-category of torsion constructible étale sheaves is an abelian cat-
egory, and by Proposition the functor to pro-étale Z-sheaves is exact. It is also fully faithful: For
this, it suffices to see that if F;, i € I, is a cofiltered inverse system of torsion constructible étale sheaves and
G is any étale sheaf, then

@Hom(ﬂ, G)— Hom(mﬂ, g)

is an isomorphism. But the underlying pro-étale sheaf of each F; is a spatial diamond over X, so by [Sch17a)
Proposition 14.9] (applied with j = 0) we see that the similar result holds true when then taking homomor-
phisms of pro-étale sheaves (without the abelian group structure). Enforcing compatibility with addition
amounts to a similar diagram for @Z Fi X @Z Fi to which the same argument applies.
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We see that the Pro-category of torsion constructible étale sheaves is a full subcategory C of all pro-étale
Z-modules on X, stable under the formation of kernels and cokernels. All of these sheaves are solid: As
the condition of being solid is stable under all limits, it suffices to see that any étale sheaf is solid; this is

Proposition
Also, by [Sch17a, Lemma 11.22] and Lemma |VI1.1.5/all objects of C have as underlying pro-étale sheaf a
spatial diamond. Using Proposition [VIL.1.12{below (whose proof is direct), one also checks that C is stable

under extensions.

Next, we prove that (3) implies (1), so let F be in C; in particular, the underlying pro-étale sheaf is a
spatial diamond. Then for any pro-étale 7Z-module G, one can describe Hom(F, G) as the maps F — G
of pro-étale sheaves satisfying additivity and Z-linearity, i.e. certain maps F x F — G resp. F x Z — G
agree. This description commutes with filtered colimits (as for spatial diamonds Y/, the functor G — G(Y)
commutes with filtered colimits).

Now we can describe the full category of solid Z-sheaves. Indeed, using that ]hZ is finitely presented in
all pro-étale Z-modules by the previous paragraph, we see from the definition that the category of solid Z-
sheaves is stable under all filtered colimits. In particular, we get an exact functor from the Ind-category of

C to solid Z-sheaves. This is also fully faithful, as all objects of C are finitely presented. Moreover, Ind(C) is
an abelian category for formal reasons. We see that Ind(C) is a full subcategory of the category of pro-étale

Z-sheaves stable under kernels and cokernels, and all of its objects are solid. Conversely, any solid Z-sheaf
admits a surjection from a direct sum of objects of the form th € C, and the kernel of any such surjection
is still solid, so we may write any solid Z-sheaf as the cokernel of a map in Ind(C). As Ind(C) is stable under
cokernels, we see that Ind(C) is exactly the category of solid Z-sheaves.

As filtered colimits of solid sheaves stay solid, it is now formal that (1) implies (2), and (2) implies (3) as
C C Ind(C) are the finitely presented objects (as C is idempotent-complete). This finishes the proof of the
equivalences.

The identification with Ind(C) shows that the category of solid Z-sheaves is stable under kernels, cok-
ernels, and filtered colimits. The latter two imply stability under all colimits, and stability under all limits
is clear from the definition. One also easily checks stability under extensions by reduction to C (again,

cf. proof of Proposition [VIL.1.12)). For the existence of the left adjoint, note that it exists on the free pro-
étale Z-modules generated by U, with value j,Z, i.e.

~

Z[U™ = 4, Z.

As these generate all pro-étale Z-modules, one finds that the left adjoint F — F™ exists in general: one can

write any J as a colimit lim Z[|U,) and (hga Z|UL)"™ = lim Z[UL ™. O
We have the following proposition on the functorial behaviour of the notion of solid Z-sheaves.

PROPOSITION VIL1.8. Let f : Y — X be a map of spatial diamonds. Then pullbacks of solid Z-sheaves
are solid, and the functor f* commutes with solidification. Moreover, if f is surjective, and F is a pro-étale

Z-sheaf on X such that f*F is solid, then F is solid.

PrOOF. Recall that f* commutes with all limits (and of course colimits) by [Sch17a), Lemma 14.4]. To
check that f* commutes with solidification, it suffices to check on the pro-étale Z-modules Z[U| generated
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by some quasi-pro-étale j : U — X that is a cofiltered inverse limit of qcgs étale maps U; — X, and in that
case the claim follows from f* commuting with all limits,

fH(ZI01") = £ (mZU) = lim f*ZU] = Bm Z{f*U;) = ZIfU)".

In particular, applied to solid Z-sheaves on X, this implies that their pullback to Y is already solid.

Now assume that f is surjective and F is a pro-étale Z-sheaf on X such that f*F is solid. Let j : U =
&iini U; — X be a quasi-pro-étale map. We first check that

Hom(th7 F)— F(U)

is injective. Indeed, assume that g : jUZ — F lies in the kernel. Then after pullback to Y, this map vanishes
since f*Z[U]™ = Z[f*U]™. But for any quasi-pro-étale V. — X, the map F(V) — (f*F)(V xx Y) is
injective (using [Sch17a, Proposition 14.7] one has f*F(V xx V) = (A\F)(V xx Y) and we conclude
since V x x Y — V is a v-cover), so it follows that f = 0.

We see that an element of F(U) determines at most one map juZ — F, and this assertion stays true
after any pullback. By [Schi7a, Proposition 14.7], it suffices to construct the map v-locally; but it exists
after pullback to Y — X, thus proving existence. O

In particular, it makes sense to make the following definition.

DEFINITION VIL1.9. Let Y be a small v-stack and let F be a v-sheaf of Z-modules on Y. Then F is
solid if for all maps f : X — Y from a spatial diamond X, the pullback f*F comes via pullback from a

solid Z-sheaf on X gproet-

Regarding passage to the derived category, we make the following definition.

DEFINITION VIL1.10. Let X be a small v-stack. Let Dg(X,Z) C D(X,,Z) be the full subcategory of
all A such that each cohomology sheaf 7*(A) is solid.

As being solid is stable under kernels, cokernels, and extensions, this defines a triangulated subcategory.

~

If X is a diamond, one could alternatively define a full subcategory of D(Xgproet, Z) by the same con-
dition, and pullback from the quasi-pro-étale to the v-site defines a functor. This functor is an equivalence,
by repleteness (to handle Postnikov towers, cf. [BS15} Section 3]) and the following proposition that is an
amelioration of [Sch17a| Proposition 14.7] for solid sheaves.

PrROPOSITION VIIL.1.11. Let X be a diamond and let F be a sheaf of Z-modules on X gproet that is solid.
Let A : Xy = Xgproet be the map of sites. Then F* — RA A" F is an isomorphism.

PrOOF. We may assume that X is spatial (or strictly totally disconnected). Then F is a filtered colimit
of finitely presented solid Z—sheaves, and the functor R\, commutes with filtered colimits in D=°. We may
thus assume that F is finitely presented; in that case F is a cofiltered limit of torsion constructible étale
sheaves, and \* commutes with all limits by [Sch17a, Lemma 14.4]. Thus, we can assume that F is an étale
sheaf, where the claim is [Sch17a) Proposition 14.7]. O

Moreover, solid objects in the derived category satisfy a derived and internal version of Definition
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PROPOSITION VIL1.12. Let X be a spatial diamond. For all A € Dg(X, Z), the map
RAom(jyZ, A) — Rj.Aly

is an isomorphism for all quasi-pro-étale j : U — X.

PROOF. By taking a Postnikov limit, we can assume that A € Dg (X, Z), and then one reduces to
the case that A = F|[0] is concentrated in degree 0. Now by a resolution of Breen [Bre78, Section 3]

(appropriately sheafified), there is a resolution of any Z-sheaf G where all terms are finite direct sums of
sheaves of the form Z[Qi X 7 ]. If G is a spatial diamond, then all G' x 77 are spatial diamonds, hence

R#om(Z|G' x 77], F)

commutes with all filtered colimits. Appliedto G = juZ, Breen’s resolution then implies that R.7Zom(G, —)
commutes with all filtered colimits.

We may thus assume that F is finitely presented. But then Theorem [VII.1.3|implies that F is a limit of

constructible étale sheaves, so one can reduce to the case that F is an étale sheaf. But then Breen’s resolution
shows that

RAom(jyZ, F) = lim R#om(jaZ, F) = lim Rji.Flu,
and [Sch17a) Proposition 14.9] shows that this identifies with Rj.F|y. O
PROPOSITION VII.1.13. Let X be a spatial diamond. The inclusion
Da(X,Z) C D(Xqproet, Z)
admits a left adjoint
A A" D(Xgproets Z) — Da(X,Z).
Moreover, Dg(X,Z) identifies with the derived category of solid Z-sheaves on X, and A — A™ with the

left derived functor of F ++ F™. The formation of A — A", for A € D(Xgproet, Z), commutes with any
base change X’ — X of spatial diamonds.

ProOF. This follows easily from Proposition O

PrOPOSITION VII.1.14. Let X be a spatial diamond. The kernel of A — A™ is a tensor ideal. In par-

n .
ticular, there is a unique symmetric monoidal structure — ®“— on Dg(X,Z) making A +—+ A™ symmetric

monoidal. It is the left derived functor of the induced symmetric monoidal structure on solid Z-sheaves.
This symmetric monoidal structure commutes with all colimits (in each variable) and any pullback.

PROOF. To check that the kernel is a tensor ideal, take any quasi-pro-étale j : U — X written as a
cofiltered inverse limit of separated étale j; : U; — X, and any further quasi-pro-étale j' : U’ — X. Then

for any solid A € Dg(X,Z), we know by Proposition that the map
RAom (5,2, A) — Rj.Aly
is an isomorphism. Taking sections over U’ — X, this translates into

RHom(j,Z @5 Z[U'], A) - RHom(Z[U xx U], A)
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being an isomorphism. In other words, taking the tensor product of Z[U] — 5,7 with Z[U"] still lies in the
kernel, but these generate the tensor ideal generated by the kernel.

n .

It is now formal that there is a unique symmetric monoidal structure — @ — on Dg (X, Z) making A +
A™ symmetric monoidal (given by the solidification of the tensor product in all solid pro-étale sheaves).
As solidification commutes with all colimits, so does this tensor product. On generators j : U — X,

N TN R
j' 1 U" — X asabove, it is given by j,Z ®LjéZ = (j X x j')4Z, which still sits in degree 0; this implies that
the functor is a left derived functor. Moreover, this description commutes with any base change. ]

Moreover, the inclusion into all v-sheaves also admits a left adjoint, if X is a diamond. We will later
improve on this proposition when working with ZP-coefficients.

PROPOSITION VII.1.15. For any diamond X, the fully faithful embedding
Du(X,Z) C D(X,,7Z)

admits a left adjoint A > A™. The formation of A™ commutes with quasi-pro-étale base change X’ — X.

PROOF. Assume first that X is strictly totally disconnected. It suffices to construct the left adjoint on a
set of generators, such as the pro-étale sheaves of Z-modules generated by some strictly totally disconnected
Y — X. By [Schi7al Lemma 14.5], there is a strictly totally disconnected affinoid pro-étale j : Y/ — X
such that Y — X factors over a map ¥ — Y that is surjective and induces a bijection of connected
components. Then for any B € Dg(Y”,7Z), the map

RU(Y',B) = RI(Y, B)

is an isomorphism. Indeed, by Postnikov limits this easily reduces to B = F[0] for a solid sheaf of Z-
modules, and then to a finitely presented solid sheaf, and finally to a constructible étale sheaf, for which the
result is proved at the end of the proof of [[Sch17al Lemma 14.4]. This means that the left adjoint A — A™

when evaluated on Z[Y] exists and is given by j,Z.

The formation of Y/ — X from Y — X commutes with any quasi-pro-étale base change of strictly
totally disconnected X’ — X. This implies that A — A™ commutes with such base changes. By de-
scent, this implies the existence of the left adjoint in general, and its commutation with quasi-pro-étale base
change. 0

As usual, we also want to have a theory with coefficients in a ring A. As before, we assume that A is
constant in the sense that it comes via pullback from the point. In our case, this means that it comes via
pullback from the pro-étale site of a point, i.e. is a condensed ring [[CS], and we need to assume that it is

solid over Z; in other words, we allow as coefficients any solid Z-algebra A. Via pullback, this gives rise to
a v-sheaf of Z-algebras on any small v-stack X, and we can consider D(X,, A).

ExAMPLE VIL1.16. We may consider A = Z; as the solid condensed ring h_n>1 L[Q finite Or.

DEFINITION VIL1.17. Let Dg(X,A) C D(X,, A) be the full subcategory of all A € D(X,, A) such
that the image of A in D(X,,Z) is solid.
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On the level of co-categorical enrichments, we thus see that Dg (X, A) is the category of A-modules in
Du(X,Z). 1t is then formal that the inclusion Dg(X,A) C D(X,, A) admits a symmetric monoidal left
adjoint A — A", compatible with forgetting the A-structure.

REMARK VII.1.18. Let us briefly compare the present theory with the one developed in [CS]. Over a
geometric point X = SpaC, Du(X, Z) is the derived category of solid Z-modules in the sense of [CS].
For general A, we are now simply considering A-modules in Dg(X,Z). This is in general different from
the theory of Ag-modules, which would ask for a stronger completeness notion relative to A. Our present
theory corresponds to the analytic ring structure on A induced from Zg.

One might wonder whether for any analytic ring A in the sense of [CS] one can define a category
D(X, A) of “A-complete” pro-étale sheaves on any spatial diamond X. This does not seem to be the case;
it is certainly not formal. In fact, already for A = Zg, problems occur and there is certainly no abelian
category; it is still possible to define a nice derived category, though. For general A, defining D(X, A) also
seems to require extra data beyond the analytic ring structure on A.

VII.2. Four functors

Now we discuss some functors on solid sheaves. For this, we assume from now on that we work with
coefficients A given by a solid 7P -algebra (so we stay away from p-adic coefficients). For any map f : ¥ —
X of small v-stacks, we have the pullback functor f* : Dg(X,A) C Du(Y, A). This admits a right adjoint
Rf,; in fact, one can simply import R f, from the full D(Y, A):

PrOPOSITION VII.2.1. Let f : Y — X be a map of small v-stacks and let A € Dg(Y,A) C D(Y,A).
Then Rf,«A € D(X,,A) liesin Dg(X, A). In particular, Rf,« : D(Y,,A) = D(X,,A) restricts to a
functor Rf, : Du(Y,A) — Du(X, A) that is right adjoint to f*.

PROOF. We can formally reduce to the case A = ZP. The formation of Rf,, commutes with any
pullback (as everything is a slice in the v-site), so using Proposition we can assume that X is a
spatial diamond. Moreover, taking a simplicial resolution of Y by disjoint unions of spatial diamonds, and
using that Dg(X,Z”) C D(X,, ZP) is stable under all derived limits (as it is stable under all products), we
can also assume that Y is a spatial diamond.

We may assume A € Dg (Y, ZP) by a Postnikov limit, then that A = F0] is concentrated in degree 0,
then that F is finitely presented by writing it as a filtered colimit, and finally that F is a constructible étale
sheaf by writing it as a cofiltered limit. Now the result follows from [Sch17a| Proposition 17.6]. O

ProprosITION VII.2.2. For any small v-stack X, the inclusion
Da(X,A) C D(X,,A)
admits a left adjoint
A A" . D(X,,A) — Da(X,A).
The functor A — A™ commutes with any base change.

The kernel of A — A™ is a tensor ideal. In particular, there is a unique symmetric monoidal structure

- Q.{)H/(— on Dg(X,A) making A — A™ a symmetric monoidal functor. The functor — (;@HA— commutes
with all colimits (in each variable) and with all pullbacks f : ¥ — X.
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"
We note that in the case of overlap with previous definitions of A — A™ and — ®% —, the definitions
agree, by uniqueness of the previous definitions.

PROOF. Again, one can formally reduce to the case A = Z”. By descent, we can reduce to the case that
X is strictly totally disconnected. (Note that Y — Dg(Y, Z”) is a v-sheaf of co-categories — this is clear
for D(Y,,, ZP), and follows for Dy as being solid can be checked v-locally by Proposition |VII.1.8| Thus, if

the left adjoints exist v-locally and commute with base change, they assemble into the desired left adjoint,
cf. [Lur16} Proposition 4.7.4.19].) In this case, we already know existence of the left adjoint A — A™ by

Proposition

We check that the left adjoint A — A™ commutes with any base change f : Y — X. We already know
that pullbacks of solid objects stay solid, so we have to see that if A € D(X,,, Z?) satisfies A" = 0, then also
(fXA)® = 0. But this statement is adjoint to the statement that R f,,. preserves Dy, i.e. Proposition

We need to see that the class of all A € D(X,,,Z”) with A® = 0 isa ®-ideal. But we have seen that for
all f : Y — X, also f; Aliesin the corresponding class for Y, and then so does f, f; A (as pullback preserves
Da), where we write f,; for the left adjoint of f; (which exists as it isa slice). But f, /i A = A ®Hz“p fvuzp
by the projection formula for slices, so this gives the desired claim. O

. "
It turns out that for A = 7P, the functor — ®%— is actually almost exact. If one would work with
A = Fy-coefficients, it would even be exact.
PrOPOSITION VII.2.3. Let X be a small v-stack and A, B € Dg(X, 7P ) be concentrated in degree 0.
"
Then A ®"B sits in cohomological degrees —1 and 0.
If X is a spatial diamond and F = ]<an Fiand G = @j Gj are finitely presented solid 7P-sheaves

written as cofiltered limits of constructible étale sheaves killed by some integer prime to p, then the natural
map

1 . L
F® Q%R@E@) g;
4,J

is an isomorphism.

PROOF. It suffices to prove the final assertion, as the statement on A (E.QLB can be checked after pullback
to spatial diamonds, and then A and B can be written as filtered colimits of finitely presented solid 7p-
sheaves (and F; @' G; sits in degrees —1 and 0 as Z” has global dimension 1). Resolving F and G, we can
reduce to the case F = jth, G= jéZp . But their solid tensor product is indeed given by (j X x j’ )uZP . O

At this point, we have defined Dg (X, A) C D(X,, A) for any small v-stack X, and this subcategory is
preserved by pullback and pushforward, and in particular this gives such functors for Dg(X, A). Moreover,

n
Du(X, A) has a natural symmetric monoidal structure — ®% —, commuting with colimits in both variables,
and with pullbacks. Moreover, we have a functor

RAomp(—,—) : Da(X,A)°? x Da(X,A) — Da(X, A),
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a partial right adjoint to — (E.QHI{— as usual. Again, it can be obtained from the corresponding functor on
D(X,, A) via restriction. In fact, forall A € D(X,,A) and B € Du(X,A), one has R#omp (A, B) €
Du(X,A). This can be reduced to A = 7P and the case A = thp for some f : Y — X, and then it
amounts to Rf,.[*B € Da(X,ZP), which follows from Proposition

There is the following general base change result. We stress the absence of any conditions.
ProrosiTION VII.2.4. Let
Y’ L> Y
if ! J{f
x - x
be a cartesian diagram of small v-stacks. For all A € Dg(Y, A), the base change map
g*Rf.A— Rflg™A
in Dg(X', A) is an isomorphism.
Similarly, for any map f : Y — X of small v-stacksand all A, B € Dg(X, A), the map
[*Rom(A, B) — R#om(f*A, f*B)
in Du(Y, A) is an isomorphism.
PROOF. The base change is a direct consequence of Proposition noting that in the v-site, every-

thing is a slice (and hence satisfies base change). The statement about R.7#om follows similarly from the
compatibility with the R.7#om as formed on the v-site, as was noted above. O

The projection formula, however, fails to hold.

WAaRNING VIL2.5. If f : Y — X is a proper map of small v-stacks that is representable in spatial
diamonds with dim. trg f < oo, the map

ASVRf.B — Rf.(f*A &'B)

may fail to be an isomorphism for A € Du(X,7P) and B € Dg(Y,ZP). In fact, already if X = B is
a perfectoid ball and f = j : ¥ = SpaC’ — X is the inclusion of a point (whlch is quasi-pro-étale),
then this fails for A = thp and B = 7P. In fact, the map becomes ]th — Rj,ZP, which is far from an
isomorphism: For example, on global sections the left-hand side becomes 7P[—2], while the right-hand side
becomes Z7.

There is the following result on change of algebraically closed base field, an analogue of [Sch17a, The-
orem 19.5].
PRrOPOSITION VII.2.6. Let X be a small v-stack.

(i) Assume that X lives over k, where k is a discrete algebraically closed field of characteristic p, and k’/k is
an extension of discrete algebraically closed base fields, X’ = X X, k. Then the pullback functor

Da(X,A) — Da(X',A)
is fully faithful.
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(ii) Assume that X lives over k, where k is a discrete algebraically closed field of characteristic p. Let C'/k
be an algebraically closed complete nonarchimedean field, and X’ = X x, Spa(C, C™) for some open and
bounded valuation subring C* C C containing k. Then the pullback functor

Da(X,A) — Da(X',A)
is fully faithful.

(iii) Assume that X lives over Spa(C, C't), where C' is an algebraically closed complete nonarchimedean
field with an open and bounded valuation subring C* C C, C’/C is an extension of algebraically closed
complete nonarchimedean fields, and C'* C C” an open and bounded valuation subring containing C,
such that Spa(C’,C"") — Spa(C,C") is surjective. Then for X' = X Xg,(c,c+) Spa(C’, C'"), the
pullback functor

Da(X,A) — Da(X',A)
is fully faithful.

PROOF. We can assume A = Z”. Asin [Schi7a) Theorem 19.5], it suffices to prove (iii) and the restricted
case of (ii) where C is the completed algebraic closure of k((t)) (and hence C* = O¢).

Let f : X’ — X be the map. We have to see that for all A € Dg(X, ZP), the map
A— Rf.f"A

is an equivalence. This can be checked locally in the v-topology, so we can assume that X = Spa(R, R") is

an affinoid perfectoid space. By Postnikov limits, we can also assume that A € Dg (X, ZP), and then that A
is concentrated in degree 0. In case (iii), we can now conclude by writing A as a filtered colimit of finitely

presented solid Z”-modules, and these as cofiltered limits of constructible étale sheaves, noting that both
operations commute with R f, and f* (as f is qcgs in case (iii)), and hence reducing us to [Sch17a) Theorem
19.5].

It remains to handle case (ii) when C'is the completed algebraic closure of k((¢)). In that case X’ lives
over a punctured open unit disc D% over X, and fixing a pseudouniformizer @ € R, this can be written
as the increasing union of quasicompact open subspaces X! = {|t|* < |w| < [¢t|'/"} C X, with maps
fn: X], — X. It suffices to prove that for all n, the map

A= RfpfrA

is an isomorphism. These functors commute again with filtered colimits of sheaves, and hence the previous
reductions apply and reduce the assertion to the étale case, which was handled in the proof of [Sch17a
Theorem 19.5]. O

Asan application, let us record the following versions of Proposition and Corollary where
we fix an algebraically closed field k|, and work on Perfj,.
CoRrOLLARY VII.2.7. For any small v-stack X, the functor
U : Da(X x [x/Wg],A) — Da(X x Div}, A)

is fully faithful. If the natural pullback functor
Da(X,A) = Da(X x SpdE, A)

is an equivalence, then 9% is also an equivalence.
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PROOF. By descent along X — X x [*/Wg] this reduces to Proposition [VIL.2.6 O

COoRrOLLARY VIL.2.8. For any small v-stack X and finite set I, pullback along X x (Div!)! — X x
[/ %] induces a fully faithful functor

Da(X x [/Wg],A) = Du(X x (Div')’, A).
ProoF. This follows inductively from Corollary O

We also need a solid analogue of Theorem|IV.5.3} we only prove a restricted variant, however. As there,
work over Perfy, and let X be a spatial diamond such that X — x is proper, of finite dim. trg, and take
any spatial diamond S. As before, one can introduce the doubly-indexed ind-system {Uq}(4,0) C X X S,

well-defined up to ind-isomorphism; and then U, = (o, Uap and Uy = |J < Ua -

DEeFINITION VII.2.9. The functors
Rﬁ!-‘raRﬁ!— : DI(X X S, A) - DI(S7A)

are defined by
RBH_C = li_n>1RB*(ja!C‘Ua);

RB_C :=lim RB.(jnClu,)
b
for C € Du(X x S,A).

Here j,1 and jy denote the left adjoints to j; and j;. Let & : X x S — X be the projection.

THEOREM VII.2.10. Assume that C' = a* A for A € Dg(X, A), and assume that either A € Dg (X, A),
or that X — * is cohomologically smooth. Then

RB.C =0=Rp_C.

PROOF. We can assume A = ZP. All operations commute with any base change; we can thus assume
that S = Spa K where K is the complete algebraic closure of k((¢)). We observe that if X — * is coho-
mologically smooth, then BB, : Da(X X S,A) — Da(S, A) has finite cohomological dimension; this is
a statement about sheaves concentrated in degree 0. Any such B can be written as the countable limit of
Rjap« j;bB for the open immersions j,p : Ugp C X x S it is thus enough to show that pushforward
along U, ;, — S has finite cohomological dimension on solid sheaves. As U, ;, — S is qcgs, we can reduce to
finitely presented sheaves; these are cofiltered limits of constructible sheaves. For constructible sheaves, the
cohomological dimension is bounded, and each cohomology group (recall that S = Spa K  is a geometric
point) is finite by [Sch17a) Theorem 25.1]. Thus, the cofiltered limit stays in the same range of degrees.

It follows that we can assume that A € Dg (X, ZP). Arguing as in the proof of Theorem we can
then reduce to the case that X = Spa(R, R™) is an affinoid perfectoid space with no nonsplit finite étale
covers, and then to X = Spa K where K is still the completed algebraic closure of k((¢)). In that case, as
in the proof of Theorem one can make a more precise assertion on actual annuli; this statement is
compatible with passage to filtered colimits, reducing us to the case that A is a finitely presented solid sheaf.
For A € Du(Spa K, ZP), this means that A is a cofiltered limit of finite abelian groups killed by integers
prime to p. We can also pull this cofiltered limit through, reducing us to Theorem [[V.5.3} O
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VII.3. Relative homology
A unique feature of the formalism of solid sheaves is the existence of a general left adjoint to pullback,
with excellent properties. We continue to work with coefficients in a solid Z”-algebra A.
PrROPOSITION VIIL.3.1. Let f : Y — X be any map of small v-stacks.
(i) The functor f* : Da(X,A) — Da(Y, A) admits a left adjoint
The natural map
WL e« =
f(A®fB) — fLA @B
is an isomorphism for all A € Dg(Y,A) and B € Dg(X, A). Similarly, the map
R%om(f,A, B) = Rf.Rom(A, f*B)
is an isomorphism.

(ii) The formation of f; commutes with restriction of coefficients along a map A’ — A.

(iii) For any cartesian diagram
Y’ L Y
b
x 2 X
of small v-stacks, the natural map
fig" A= g" f,A
is an isomorphism forall A € Dg(Y, A).

PROOF. As f is a slice in the v-site, it is tautological that f; : D(X,,A) — D(Y,,A) admits a left
adjoint f,; : D(Y,,A) — D(X,,A). One can then define f, as the solidification of f,;. By general

properties of slices, the map
Ju(AK f*B) = fu Ak B

is an isomorphism. Passing to solidifications, using that that this is symmetric monoidal, then gives that
J(ASKFB) = f,A kB
is an isomorphism. The isomorphism
Ritom(f A, B) = Rf.Rom(A, f*B)
then follows by adjointness.

For part (ii), we can assume A’ = ZP, and check on generators. These are given by juzp ®Hip A for
j :Y' =Y. The claim then follows from the projection formula.

Part (iii) is obtained by passing to left adjoints in Proposition |VII.2.4 O
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Now if f is “proper and smooth”, we want to relate the left adjoint f, (“homology”) and the right adjoint
Rf. (“cohomology”). Thus, assume that f : Y — X is a proper map of small v-stacks that is representable
in spatial diamonds with dim. trg f < 0o, and cohomologically smooth, i.e. /-cohomologically smooth for
all ¢ # p (or just all £ relevant for A). In this case, we want to express R f, in terms of f,. Asa first step, we
show that R f, has bounded cohomological dimension.

PropoSITION VII.3.2. Let f : Y — X be a proper map of small v-stacks that is representable in spatial
diamonds with dim. trg f < o0, and cohomologically smooth. Then Rf, : Du(Y,A) — Du(X,A) has
bounded cohomological dimension and commutes with arbitrary direct sums. If X is a spatial diamond

(thus Y is) and F is a finitely presented solid 7P-sheaf on Y, then Rf.F is a bounded complex all of whose

cohomology sheaves are finitely presented solid Z?-sheaves on X.

PROOF. We can assume A = Z”. The commutation with arbitrary direct sums follows from bounded
cohomological dimension, as one can then reduce to the case of complexes concentrated in degree 0, where
Rf, commutes with all direct sums as f is qcgs. For the claim about bounded cohomological dimension,
we can argue v-locally, and hence assume that X is a spatial diamond. It suffices to prove that for all solid
7P-sheaves F on Y, the complex Rf.F is bounded; this reduces to the case of finitely presented solid Z?-
sheaves as R f, commutes with filtered colimits of sheaves. Now if F is finitely presented, it is a cofiltered
limit of constructible étale sheaves killed by some integer prime to p. As Rf, commutes with this limit,
it is now enough to see that R f, preserves constructible complexes and has bounded amplitude. But this
follows from cohomological smoothness, cf. [Schi7a| Proposition 23.12 (ii)]. O

Next, we prove a projection formula for R f,.

ProposITION VIL.3.3. Let f : ¥ — X be a proper map of small v-stacks that is representable in
spatial diamonds with dim.trg f < oo, and cohomologically smooth. Then for all A € Dg(Y,A) and
B € Du(X, A), the projection map

Rf.AGB — Rf.(A S f*B)

is an isomorphism.

PROOE. We can assume A = ZP. We note that R f«and (2.@]1‘ both have bounded cohomological dimen-
sion, so one easily reduces to the case that A and B are concentrated in degree 0. We can also assume that
X is a spatial diamond (thus Y is, too). Then we can write A and B as filtered colimits of finitely presented
solid ZP-sheaves, and reduce to the case that A and B are cofiltered limits of constructible étale sheaves
killed by some integer prime to p. In that case, it follows from Proposition[VIL.2.3|and Proposition|[VII.3.2]
that all operations commute with these cofiltered limits, and one reduces to the case that A and B are
constructible étale sheaves killed by some integer prime to p. Now it follows from [Sch17a, Proposition
22.11]. O

Moreover, the functor R f, interacts well with g, for maps g : X' — X.
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ProrosiTIiON VII.3.4. Let
v Loy

if’ lf
x4.x

be a cartesian diagram of small v-stacks, where f : Y — X is proper, representable in spatial diamonds,
with dim. trg f < oo and cohomologically smooth. Then the natural transformation

g RfLA — Rf.g A
is an isomorphism for all A € Dg(Y’, A).

PROOF. We can assume A = Z. By Propositionboth sides commute with Postnikov limits, so
we can assume A € DV, and then reduce to the case that A is concentrated in degree 0. We may assume
that X is a spatial diamond, and one can also reduce to the case X' is a spatial diamond, by writing A as
the geometric realization of h, hg" A for some simplicial hypercover hq : X — X' by disjoint unions of

spatial diamonds, and its pullback A : Y, — Y’ (and using Proposition [VII.3.2|to commute the geometric

realization with pushforward). Under these circumstances, one can write A as a filtered colimit of finitely
presented solid ZP-modules, and hence reduce to the case that A is a cofiltered limit of constructible étale

sheaves killed by some integer prime to p. By Proposition the complex Rf, A is then bounded
with all cohomology sheaves finitely presented solid Z”-modules. As g, preserves pseudocoherent objects,
it follows that the map g; Rf{A — Rf.g;A is a map of bounded to the right complexes in Da(X, 77) all
of whose cohomology sheaves are finitely presented solid Z”-modules. If the cone of this map is nonzero,
then by looking at its first nonzero cohomology sheaf, we find some nonzero map to a constructible étale

sheaf B on X, killed by some integer prime to p. Note that, using the usual étale Rf' functor, there is a
natural adjunction

RHom(Rf.g,A, B) = RHom(g;A, Rf'B) :

Indeed, it suffices to check this when g/ A is replaced by a finitely presented solid 7P-module, by a Postnikov
tower (and as all cohomology sheaves of géA are of this form). Writing this as a cofiltered limit of con-
structible étale sheaves killed by some integer prime to p, both sides turn this cofiltered limit into a filtered
colimit, so the claim reduces to the usual étale adjunction.

Applying R Hom(—, B) to the map gy Rf;A — Rf.g; A will thus produce R Hom(A, —) applied to
the base change map

Rf/!g*B . g/*Rf!B,
which is an isomorphism by [Sch17a, Proposition 23.12 (iii)]. O

Now we can describe the functor R f,. Indeed, consider the diagram

A
Y Ly xy Yy 2oy

-
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Then, under our assumption that f : ¥ — X is a proper map of small v-stacks that is representable in
spatial diamonds with dim. trg f < oo and cohomologically smooth, we have

Rfi A= RfimopApy A
= thﬂl*Ath
= thﬂl*Aqu?ﬂfA

|

= fyRmi (A g A ©K77A)
u

= fi(RmApA SR A).

We combine this with the following observation.

ProposITION VIL.3.5. Let f : Y — X be a proper map of small v-stacks that is representable in spatial
diamonds with dim. trg f < oo and cohomologically smooth. Then

R?Tl*Ath € Dg (Y, A)
is invertible, and its inverse is canonically isomorphic to

Rf'A = lim Rf'Z/nZ @3, A.

Thus, there is a canonical isomorphism
JoA = Rf.(AGKRS'A) : Da(Y,A) — Da(X, A).

Thus, we get a somewhat unusual formula for the dualizing complex. We remark that the fibres of
R4+ 4y ZP are given by the limit of RI'.(U,ZP) over all étale neighborhoods U of the given geometric
point.

REMARK VII.3.6. We see here that an important instance of R f ' admits an alternative description in
terms of g, functors. We are a bit confused about exactly how expressive the present 5-functor formalism is.
So far, we were always able to translate any argument in terms of a 6-functor formalism into this 5-functor
formalism, although it is often a nontrivial matter and there seems to be no completely general recipe.

PROOF. We can assume A = ZP. By the isomorphism Rf, = fj(Rm.A thp QIQH‘A), it follows that
Rf.: Da(Y,7P) — Du(X,ZP) admits a right adjoint, given by
A RAom(Rry ApZP, f*A).
We claim that this right adjoint maps Det(X,Z/nZ) into D (Y,Z/nZ) for any n prime to p, and thus

agrees with the right adjoint Rf' in that setting. Here, we use the embedding D,y C Dpg, cf. Section
VII.4.1 below. This claim can be checked v-locally, so we can assume that X is a spatial diamond. Then

R A fuZp € Da(Y,7P) is a bounded complex all of whose cohomology sheaves are finitely presented
solid, by Proposition|VIIL3.2jand as A f is quasi-pro-étale (so A fuZP is finitely presented solid). This implies
that R%om(Rwl*Athp, —) preserves Dt (Y, Z/nZ).

Thus, for any A € Det(X, Z/nZ), there is a natural isomorphism
Rf'A = RAom(Rri A pZP, f*A).
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Applied with A = Z/n’Z, this gives isomorphisms
Rf'Z/nZ = RAom(Rmy. A 7P, Z/n7T).

It remains to see that Rmi, A thp is invertible; more precisely, we already get a natural map
R?Tl*AfuZp — (Rf‘Zp)‘l
that we want to prove is an isomorphism. This can again be checked v-locally, so we can assume that X is
a spatial diamond. Then Rmy,A ¢y ZP is a bounded complex all of whose cohomology sheaves are finitely
presented solid; so as in the proof of Proposition [V1I.3.4} it is enough to check that one gets isomorphisms
after applying R./#om(—, B) forany B € De(Y,Z/nZ). But
R,%ﬂom(Rm*Athp, B) = Rwl*Rﬁom(Athp, Rm\B)
=~ }RTI‘IIB
> B @y g RI'Z/Z,
giving the result.

The final statement follows formally from the identification of Rm1.A ;A and the discussion leading
up to the proposition. O

VII.4. Relation to Dq;

Assume now that A is discrete. In particular, also being a Z?-algebra, we have nA = 0 for some 1 prime
to p. We wish to understand the relation between D¢ (X, A) and Dg(X, A), and the functors defined on
them.

VII.4.1. Naive embedding. For any small v-stack X, we have a fully faithful embedding
D(X,A) — Du(X,A)
as full subcategories of D (X, A). As usual, the adjoint functor theorem implies that this admits a right
adjoint Rxet : Dm(X,A) = Det(X, A). The full inclusion Det (X, A) C Du(X, A) is symmetric monoidal,
and compatible with pullback. Moreover, by [Sch17a, Proposition 17.6], it also commutes with Rf, if

f:Y — X is qcqs and one restricts to D; or in general f is qcgs and of finite cohomological dimension.
Moreover, one always has

RXetRf* = Rf*RYet-

Similarly, passing to right adjoints in the commutation with tensor products, we also have
RXetR%omD.(XA) (A,B) = R%’DmDet(X,A) (A, RxetB)

if A € Dy(X,A)and B € Du(X,A). If A is perfect-constructible, then for all B € Dg(X,A), one
actually has

Rz%”omDet(XA)(A, B) = R%omD.(XA) (A, B) .
by descent, it suffices to check this when X is spatial diamond, and then one reduces to A = j A for some

quasicompact separated étale map j : U — X. In that case, it follows from Rj, commuting with the
embedding D¢t (X, A) — Du(X, A), as it is qcgs and has cohomological dimension 0.
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VII.4.2. Dual embedding. For a small v-stack X, let DL(X, A) C De(X,A) be the full subcate-
gory of overconvergent objects. Recall that A € D¢ (X, A) is overconvergent if for any strictly local
Spa(C,CT) — X, the map

RI(Spa(C, C*), 4) — RI(Spa(C, Oc), A)
is an isomorphism.

PROPOSITION VII.4.1. Assume that A = Z/nZ with n prime to p. For any overconvergent A €
DL(X, A), let
AY = RAompg(x,0) (A, A) € Da(X,A).
Then the functor
DL(X,A)® — Dg(X,A): Ars AY
is fully faithful, t-exact (for the standard ¢-structure), compatible with pullback, and the map
A — RAompg(x a) (AY,A)

is an isomorphism.

PROOF. As the formation of R.7/om in the solid context commutes with any base change, all assertions
can be proved by v-descent, so we can assume that X is strictly totally disconnected. Then th(X JA) =
D(mpX,A). The heart of the standard ¢-structure is then an abelian category with compact projective
generators i,/ for open and closed subsets ¢ : S C mX, and the whole category is the Ind-category of
the constructible complexes of A-modules on myX (which are locally constant with finite fibres). Passage
to the naive dual is an autoequivalence on constructible complexes (as A is selfinjective), and thus embeds
the whole Ind-category fully faithfully into the Pro-category of constructible complexes of A-modules on
moX, which sits fully faithfully inside the category of finitely presented solid sheaves on X. This already
establishes that the functor is fully faithful and ¢-exact, and we already observed at the beginning that it
commutes with any pullback.

It remains to prove that
A— R%OIIID.(XJ\) (Av, A)

is an isomorphism. Again, we can assume A = Fy so that all operations are ¢-exact. Again, the statement
is clear if A is constructible, and in general it follows from Breen’s resolution that the Pro-structure on AV
dualizes to a filtered colimit on applying RZompg(x,1)(—; B). O

The functor A — A" isalso close to being symmetric monoidal. Note that it is lax-symmetric monoidal,
i.e. there is a natural functorial map

| |
AV @kBY = (Agk B)Y.

PROPOSITION VIL.4.2. Assume that A € D, (X, A) has finite Tor-amplitude over A = Z/nZ, i.e. for
all quotients A — Fy, the complex A @% F, € DI.(X,F,) is bounded. Then for all B € DJ,(X, A), the

maps
]
AY ®BY = (A% B)Y, A®; B — R#ompg(x.a) (A, B)

are isomorphisms.
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PROOF. The second follows from the first: Using Proposition [VII.4.1

"
RAompg(xa)(AY, B) = Riompg(x,a)(AY, RA#ompg xa)(BY, N)) = RA#ompgxa) (A @5BY, A),
which one can further rewrite to A ®% B assuming the first isomorphism.

We can assume A = [y, and that A is concentrated in degree 0. Now as functors of B, all operations
are t-exact, so we can reduce to the case that also B is concentrated in degree 0. We can assume that X
is strictly totally disconnected, and then DL(X ,F¢) 2 D(moX,Fy). Then A and B are filtered colimits
of constructible sheaves on 79X, and R.Zom(—,F/) is a contravariant autoequivalence on constructible
[Fy-sheaves on 7y X . Then the result follows by observing that A — A" simply exchanges the Ind-category
of constructible [Fy-sheaves on 7. X with its Pro-category. O

As noted above, the functor A — AV is compatible with pullback. Regarding pushforward, we have
the following result.

PROPOSITION VII.4.3. Let f : Y — X be a proper map of small v-stacks that is representable in spatial
diamonds with dim. trg f < oo. Let A € DI(Y, \) with dual AY € Dg(Y,A). Then there is a natural
isomorphism

(Rf.A)Y = frAY.
Note that R f, A is again overconvergent, by proper base change.

PROOF. One has
RAompg(xn) (fAY, A) = Rf.RAompg(y,a)(A”, A) = Rf.A,

so by biduality one gets a natural map
fAY = (REA)Y

we claim that this is an isomorphism. This can be checked v-locally on X, so we can assume that X is
w-contractible. One can assume A is bounded above (i.e. A € D™) as both functors take very coconnective
objects to very connective objects; by shifting, we can assume A € D=Y. Now using a Postnikov limit and
the assumption dim. trg f < 00, we can also assume that A € D, and hence reduce to A sitting in degree
0. Now we can choose a hypercover of Y by perfectoid spaces Y; that are the canonical compactifications
(relative to X)) of w-contractible spaces. One can then replace Y by one of the Y;, so assume that Y is
the canonical compactification of a w-contractible space. In particular, DL(Y,A) = D(mY, A), and all
operations can be computed on the level of 7o f : m9Y — 7o X instead. Here, the result amounts again to
the duality between Ind- and Pro-objects in the category of constructible sheaves on profinite sets. O

VII.5. Dualizability

It turns out that most of the results above on Poincaré duality hold verbatim if the assumption that f is
cohomologically smooth is relaxed to the assumption that [, is f-universally locally acyclic for all £ # p.
In fact, even more generally, one can obtain certain results comparing twisted forms of f; and R f. for any
f-universally locally acyclic complex A.

Assume that A is a quotient of Z” of the form im = 7/nZ where n now runs only over some integers
prime to p. If f : X — S is a compactifiable map of small v-stacks that is representable in locally spatial
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diamonds with locally dim. trg f < oo, we want to define the category DYLA(X /S, A) of f-universally
locally acyclic complexes with coefficients A as the limit of the full subcategories

DYYA(X /S, 7./n7) C De(X,Z/n7)

of f-universally locally acyclic objects in Det(X,Z/nZ), for n running over the same set of integers prime
to p. As usual, the limit should be taken on the level of co-categorical enhancements. One way to phrase
it without enhancements is to say that DYLA(X /S, A) is the category of all A € Dg(X,A) such that
A, = A®% Z/nZ lies in Det(X, Z/nZ) for all such n, is f-universally locally acyclic, and A is the derived
limit of the A,,.

Given such an A, in particular all A,, are overconvergent, and the functor

A AY = RAompgx a)(A,A) = R@AX € Da(X, A)

defines another fully faithful (contravariant) embedding
DULA(X /S, A)°P < Dg(X,A)

of f-universally locally acyclic complexes into Dg(X, A). We can also precompose with Verdier duality
Dx /5 to obtain a covariant fully faithful embedding

DU (X /S, A) = Du(X,A) : A Dy /s(A)".

ExampLE VIL5.1. Assume that S = SpaC is a geometric point, and X is the analytification of an
algebraic variety X®8/Spec C. Then any constructible complex on X8 is universally locally acyclic over

S, yielding a fully faithful embedding
Db (X, 7y) — DY (X /S, Zs) — Du(X,Zy),

embedding the usual bounded derived category of constructible Z,-sheaves on X*¢ into Dg(X,Z). The
image lands in bounded complexes with finitely presented solid cohomology sheaves; in fact, in compact

objects. Thus, this fully faithful embedding extends to a fully faithful embedding

Ind D4( X8, 7,) < Du(X,Z).
The category on the left is the one customarily associated to X?'8. This functor takes the sheaf i,Z, for a
point i : Spec C — X8, to the solid sheaf i,7;.

In many papers in geometric Langlands and related fields, one often finds the following construction.
If Y is a stack on the category of schemes over Spec C, let

D(Y,Z) := lim IndD2(X"8,Z)
Xals 5y

where X?!8 runs over schemes of finite type over Spec C, and the transition functors are given by R f'. This,
in fact, embeds naturally into Da(Y ©, Z;) via the previous embedding, noting that it intertwines R f* with
the usual pullback f* on solid sheaves. In fact,

Dy /s(RFFA)Y = (fDy/s(A))Y = f*Dy/s(A)Y

for amap f : X" — X?I8 of algebraic varieties over Spec C.
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Now for A € DYLA(X /S, A), we analyze the functor

fo(Dx 5(A)Y &5—) : Da(X,A) = Da(S, A).

We note that from the definition one sees that this functor commutes with all colimits, the formation of
this functor commutes with any base change, and it satisfies the projection formula. In fact, this functor

extends the functor Rfi(A ®% —).

PROPOSITION VIL5.2. Assume that A € DU (X /S, A) has bounded Tor-amplitude. Let Z/nZ be a
discrete quotient of A. For B € D¢ (X, Z/nZ), there is a natural equivalence

n
fi(Dx/s(A)Y @K B) = Rfi(Ay @37 B) € Der(S, Z/nZ).
PROOF. We can assume A = Z/nZ. Note that for any C' € D¢ (S, A), one has

R Homy (f;(Dx /s(A)" &§B),C) = RHom (D /s(A)" 4B, *C)
= RHomy (B, R#ompg(x ) (Dx,s(A)", f*C))
=~ RHomy (B, Dy s(A) ®F f*C)
= RHomy (B, R#omp, x A)(4, Rf'C))
=~ RHomy (A ®% B, Rf'C)
=~ RHomp (Rfi(A®% B),C).
Here, we use Proposition and Proposition In particular, there is a natural map

fu(Dx/s(A)Y &%B) - RA(A S B).

We claim that this is an isomorphism. This can be checked v-locally, so we can assume that S is strictly
totally disconnected. We can assume that X is a spatial diamond by localization. As the functor commutes
with all colimits in B, we can also assume that B = jiA for some quasicompact separated étale j : V' — X.
Replacing X by V, we can then even assume B = A.

Now Dx/g(A) lies in D* and then again Dy /g(A)" in D~. It follows that Dy /5(A)" is a complex
that is bounded above, and finitely presented solid in each degree. Thus f;Dy/, 5(A)Y is of the same form,
and so is the cone Q of fiDx,g(A)Y — RfiA. If Q is nonzero, we can look at the largest i such that
H'(Q) is nonzero. This is finitely presented solid, so a cofiltered limit of constructible étale sheaves. But

RHom(Q,C) = 0forall C € De(S,A), so it follows that indeed () = 0. O
If f is moreover proper, one can also prove the following version of A-twisted Poincaré duality.

ProposITION VII.5.3. Assume that f : X — S is a proper map of small v-stacks that is representable
in spatial diamonds with dim. trg f < oc. Let A € DYMA(X /S, A) with bounded Tor-amplitude. Then
there is a natural equivalence

V AL\~ v
fi(Dx/s(A)" ®x—) = Rf.RAompgx,n) (A", —)
of functors Dg(X,A) — Da(S, A).
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PRrOOF. First, we construct the natural transformation. Let 71, m2 : X xXg X — X be the two projec-
tions. Giving a map
"
fy(Dxs(A)Y ®5B) — Rf.RAompg(x.a) (A", B)
is equivalent to giving a map
* v AL oy AL 4V
[ fi(Dx,s5(A)" @xB) @yAY — B.
But " " " "
P fe(Dxs(A) &5B) @5AY 2= myms (Dx/s(A)" @5 B) ©xA
" "
= my(m3Dx/s(A)Y Qx5 B QErrAY).
Thus, it suffices to construct a functorial map
" "
T Dx /s(A)Y AV Q57riB — niB.
For this in turn it suffices to construct a natural map

]
mDx/s(A)Y @KmriAY — AyA

where A : X < X xgX is the diagonal. Here AyA = (A, A)" by Proposition|VIL4.3{and 75D x /5 (A)" Q.i)
R AY = (m3Dy 5(A) @ 7F A)Y by Proposition Thus, we have to find a map

AN = 3Dy /s(A) @F 1A
or equivalently a section of RA' (m3Dy /s(A) @ 71 A). But m3Dy /g(A) @ mf A = Room(ms A, RriA)

as A is f-universally locally acyclic, and then
RA'(m3Dy 5(A) @5 71 A) 2 RA'RAom(r3 A, Ry A) = Riom(A, A),

where we find the identity section.

To show that the map is an isomorphism, we can now localize on S, and in particular assume that S is
strictly totally disconnected. By the bounded assumption on A and finite cohomological dimension of f,
the functor R f, R7#om (A", —) commutes with all direct sums, and hence we can assume that B is finitely
presented solid (concentrated in degree 0). Then we can write B as a cofiltered limit of constructible étale
sheaves, and the left-hand side commutes with such limits; so we can reduce to B being a constructible étale

sheaf, where the result follows from Proposition VII.5.2/and Proposition [VII.4.1 O

From the perspective of using sheaves as kernels of induced functors, we have the following picture.
We can introduce a variant of the category Cg introduced above. Namely, for any small v-stack S, let us
consider the 2-category Cs m Whose objects are relatively 0-truncated small v-stacks X over S, and whose
categories of morphisms

Funcg g (X,Y) = Da(X x5 Y,A)

are given by solid complexes. Again, toany X € Cg u, We can associate the triangulated category Dg(X, A)
and to any A € Da(X xg Y, A) the functor

| ]
p2(A ®5p}) : Du(X,A) — Du(Y,A)

with kernel A. The composition in Cg g is defined by the convolution

| |
Du(X x5Y,A) x Da(Y x5 Z,A) — Du(X xg Z,A) : (A, B) > A% B = p13;(p}A p33B).
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We wish to compare Cg and Cg . Note that the naive embedding Det(X X s Y, A) — Dg(X xgY,A)
is not compatible with the convolution (as one employs Rmy3 while the other employs my3,). On the other

hand, we can restrict to the sub-2-category C; C Cg whose objects are only the proper X /.S representable
in spatial diamonds of finite dim. trg, and with

X x5 Y, A),

_ pf
Fuan (X’ Y) - Det,ftor(

where the subscript ftor stands for finite Tor-dimension over A. Then there is a fully faithful embed-
ding Cj; < CZg Where the superscript co means that we change the direction of the arrows within each

Funcg g (X,Y). Indeed, forany X,Y € C;, the functor A — A" defines a fully faithful embedding

Fung; (X,Y) = D!

et,ftor

(X xgY,A) = Dag(X xgY,\)? = Funcg?,.(X, Y).

This is compatible with composition by Proposition|VII.4.2(and Proposition [VII.4.3| This discussion leads
to another proof of Proposition|VII.5.3

CoroLLARY VIL.5.4. Let f : X — S be a proper map of small v-stacks that is representable in spatial
diamonds with dim.trg f < co. Let A € D¢t (X, A) be f-universally locally acyclic and of finite Tor-
dimension over A. Then AY € Du(X, A) = Func 4 (X, S) is right adjoint to

Dx,s(A)" € Da(X,A) = Funcg g (S, X).

In particular, the functor

Fi(AY ) : Da(X.A) = Da(8,4)
is right adjoint to the functor

Dy/s(4)" E5f"~ : Da(S,A) > Da(X, A).
s0
fo(AY E—) = Rf.RAomp(Dxs(A)Y,—) : Da(X,A) = Da(S, A).
Moreover, when applied to the Satake category, we get a fully faithful embedding

(Sath)°P s Dg(HckL, 7ZP) : A AY

compatible with the monoidal structure (and functorially in I'), where the right-hand side is given by

Funcy g ([(Div')k /L5 Gl [(Divh)x /L 1 G))

(Divi)! (Divi)!
for S = [(Div)!/ L(piy, )1 G]. Precomposing with Verdier duality, we get a covariant fully faithful em-
bedding
Sat; — Da(Hcké, ZP) : A Dy s(A)Y.

By Proposition [VII.5.2] when one uses objects in the Satake category as kernels to define Hecke operators,
this fully faithful embedding makes it possible to extend Hecke operators from De; to Dy.
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VII.6. Lisse-étale sheaves

The category Du (X, A) is huge: Already if X is a point and A = Fy, it is the derived category of solid
IFg-vector spaces, which is much larger than the category of usual discrete [Fy-vector spaces. When applied
to Bung, we would however really like to study smooth representations on discrete A-modules.

As coefficients, we will from now on choose a discrete Zy-algebra A for some ¢ # p, or rather the
corresponding condensed ring A := Z; ®7, o disc Agise. (For a technical reason, we have to restrict attention
to a particular prime ¢.)

It turns out that when X is an Artin v-stack, one can define a full subcategory Dy (X, A) C Du(X, A)
that when specialized to X = Bung has the desired properties. Here the subscript “lis” is an abbreviation

of “lisse” (french smooth), and is not meant to evoke lisse sheaves in the sense of locally constant sheaves,
but lisse-étale sheaves in the sense of Artin stacks [LMBoO].

DEFINITION VIL6.1. Let X be an Artin v-stack. The full subcategory Dy (X, A) C Du(X, A) is the
smallest triangulated subcategory stable under all direct sums that contains f;A for all maps f : ¥ — X
that are separated, representable in locally spatial diamonds, and /-cohomologically smooth.

In principle, one could give this definition even when X is any small v-stack, but in that case there
might be very few objects.

PROPOSITION VII.6.2. Let X be an Artin v-stack. The full subcategory Dy;(X, A) C Du(X, A)isstable

under — (E.QH&—. Moreover, if f : Y — X is a map of Artin v-stacks, then f* maps Dj;(X,A) C Da(X, A)
into Dy(Y,A) C Da(Y, A).

PROOF. As tensor products and pullbacks commute with all direct sums, it suffices to check the claim
on the generators gy A for maps g : Z — X that are separated, representable in locally spatial diamonds,
and /-cohomologically smooth. Now the result follows as pullbacks and products of such maps are of the
same form. 0

ProPOSITION VIL6.3. Let X bean Artin v-stack. The inclusion Dy;(X, A) C Dg(X, A) admits a right
adjoint
A A Dg(X,A) = Dy(X,A).
The kernel of A — Al is the class of all A € Dg(X, A) such that A(Y) = O forall f : Y — X that are

separated, representable in locally spatial diamonds, and /-cohomologically smooth.

ProOF. The existence of the right adjoint is formal. We note that the co-category Du (X, A) is not itself
presentable, but rather is the large filtered colimit of presentable co-categories Dy (X, A) for uncountable
strong limit cardinals ~ (restricting the v-site to x-small perfectoid spaces). Also note that Dy (X, A) is
contained in Du (X}, A) for some «: This can be checked when X isa spatial diamond and for the generators
fih = foZy ®Hie A when f : Y — X is in addition quasicompact, in which case f;Z, is the limit of
J4Z/0"Z all of which lie in Det(X, Z/™7Z), so we conclude by [Sch17a, Remark 17.4]. It follows that the
right adjoints to Dy;(X, A) — Du(Xy, A) for all large enough « glue to the desired right adjoint.

The description of the kernel is formal. O
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Using Proposition|VII.6.3} we can then also define R.7#omy;(A, B) € Dy(X, A)for A, B € Dy (X, A)
and R fiie« : Diis(Y, A) — Dyis(X, A) foramap f : Y — X of Artin v-stacks, satisfying the usual adjunction
to the tensor product and pullback.

The goal of passing to Dy, is to make sheaves “discrete” again. Recall the following result.

PrOPOSITION VIL.6.4. Forany condensed ring A with underlying ring A(x), the functor M > M® 4(,)
A induces a fully faithful functor
D(A(x)) — D(A)
from the derived category of usual A(x)-modules to the derived category of condensed modules over the
condensed ring A.

PrROOF. We need to see that for any M, N € D(A(x)), the map
RHomA(*)(M, N) — RHomA(M ®A(*) AN ®A(*) A)

is an isomorphism. The class of all M for which this happens is triangulated and stable under all direct
sums, so it suffices to consider M = A(x). Then it amounts to

N(*) = (N @40 A)(¥)

being an isomorphism, which follows from evaluation at * being symmetric monoidal. O

In particular, we have the following result for a geometric point.

PropoSITION VIL6.5. Let X = Spa C for some complete algebraically closed nonarchimedean field C.
Then Dy (X, A) = D(A), the derived category of (relatively) discrete A-modules.

PROOF. We need to see that for all separated /-cohomologically smooth maps f : ¥ — X of spatial
diamonds, one has fyA € D(A). This reduces to A = Zy. In that case, f;,Z; = @m foZ.J 0™ Z, where by
Proposition each

fZ/MT = RARF'Z/OMZ,
which is a perfect complex of Z/{™Z-modules, in particular discrete. Taking the limit over m, we get a
perfect complex of Zs-modules, which is in particular (relatively) discrete over Z;. O

When working with torsion coefficients, one recovers D.

PROPOSITION VII.6.6. Let X be an Artin v-stack, and assume that A is killed by a power of /. Then
Dy(X,A) C Du(X,A) is contained in the image of the naive embedding Det(X,A) — Du(X,A). If
there is a separated /-cohomologically smooth surjection U — X from a locally spatial diamond U, such
that Ue has a basis with bounded ¢-cohomological dimension, then it induces an equivalence Dj;s( X, A) =

D (X, A).

ProoF. If f : Y — X is separated, representable in locally spatial diamonds, and ¢-cohomologically
smooth, then fA = RARF'Aliesin Det(X, A), hence Dy;(X, A) C Det(X, A). To check equality, we can
work on an atlas, so by the assumption we can reduce to the case that X is a locally spatial diamond for
which X has a basis with bounded ¢-cohomological dimension. In that case Det(X, A) = D(Xe, A) by
[Sch17a) Proposition 20.17] (the proof only needs a basis with bounded cohomological dimension), which is
generated by jyA for j : U — X quasicompact separated étale, which is thus also contained in Dy;s(X, A).

O
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The most severe problem with the general formalism of solid sheaves is that stratifications of a space
do not lead to corresponding decompositions of sheaves into pieces on the individual strata. This problem
is somewhat salvaged by Dj;5(X, A): We expect that it holds true if X and its stratification are sufficiently
nice. Here is a simple instance that will be sufficient for our purposes.

PrROPOSITION VIIL.6.7. Let X be a locally spatial diamond with a closed point z € X, giving a cor-
responding closed subdiamond i : Z C X with complement j : U C X. Assume that Z = Spa('is
representable, with C an algebraically closed nonarchimedean field. Moreover, assume that Z can be writ-
ten as a cofiltered intersection of qcgs open neighborhoods V' C X such that RT'(V,Fy) = F,.

Then one has a semi-orthogonal decomposition of Dj;(X, A) into Dy (U, A) and Dy(Z, A) = D(A).

PrOOF. We may assume that X is spatial. We analyze the quotient of Dy;s(X, A) by jy Dy;s(U, A). This
is equivalently the subcategory of all A € Dy (X, A) with j*A = 0, as this is the right orthogonal of
JyD1is(U, A); the composite

Dlis(Xa A) — Dlis(Xv A)/]hDhs(U’ A) — Dlis(X7 A)

is given by A +— cone(j,j*A — A). This quotient is generated by the images of fyA for f : ¥ — X
cohomologically smooth separated map of spatial diamonds; under the embedding of the quotient category
back into Dy;s(X, A), this corresponds to the cone of jyj* fyA — fiA. Let M = i*fyA € Dy (Z,A) =
D(A), which in fact is a perfect complex of A-modules (by the proof of Proposition [VIL6.5). Then we

claim that there is an isomorphism

cone(jyj* fA = fyA) = cone(jyM — M).

To see this, it suffices to prove that there is some open neighborhood V' of Z such that fyA|y, = M, the
constant sheaf associated with M. We can reduce to A = Z;. As f;F is constructible, we can find some
such V for which f,[Fy|y = M /{. Picking such an isomorphism reducing to the identity at x, and choosing
V with the property RI'(V,Fy) = [Fy, we see that in fact the isomorphism lifts uniquely to Z/¢"Z for each
m, and thus by taking the limit over m to the desired isomorphism fyA|y = M.

Thus, the quotient of Dy;(X, A) by jy Dys(U, A) is generated by the constant sheaf A. Moreover, the
endomorphisms of A in the quotient category are given by the cone of

RT(X, j,A) = RT(X,A).

This is equivalently the filtered colimit of RI'(V, A) over all qcgs open neighborhoods V' of Z; we can
restrict to those for which RI'(V,F,) = F,. This implies formally that RI'(V,Z;) = Z,; by passing to
limits and then RI'(V,A) = A by passing to filtered colimits. Thus, we get the desired semi-orthogonal
decomposition. O

VIL7. Dlis (Bung)
Our goal now is to extend the results of Chapter V| to the case of Dy (Bung, A). This will notably
include the case A = Q,.

Thus, let again be E any nonarchimedean local field with residue field F, and G a reductive group over
E. We work with Perf), where k = I, and fix a complete algebraically closed nonarchimedean field C'/k.
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ProrosITION VII.7.1. Let b € B(G). The pullback functors
Dhs(Bunlé, A) — D]is([*/Gb(E)], A) — Dhs([Spa C/Gb(E)], A),

Dhs(Bun%, A) — DliS(Buan x SpaC, A) — Dy([SpaC/Gy(E)], A)

are equivalences, and all categories are naturally equivalent (as symmetric monoidal categories) to the de-
rived category D(G}(E), A) of smooth representations of Gj(E) on discrete A-modules.

PROOF. Recall that the map s : [x/G}(E)] — BunZ is cohomologically smooth and surjective; in fact,
its fibres are successive extensions of positive Banach—Colmez spaces. This implies that syA = A. This, in
turn, implies by the projection formula for s, that sys*A = A for all A € Da(Bun’,, A), thus giving fully
faithfulness. The same applies after base change to Spa C'. Moreover, using pullback under the projection
Bun’, — [/Gy(E)], we see that s* is also necessarily essentially surjective.

It remains to show that the pullback Djs([*/Gp(E)],A) — Dys([SpaC/Gy(E)], A) is an equiva-
lence, and identify this symmetric monoidal category with D(Gy(E), A). By Proposition the
functor Dy([*/Gy(E)],A) — Dys([SpaC/Gy(E)], A) is fully faithful. One can easily build a functor
D(Gy(E), ) = Dys([*/Gp(E)], A), and it is enough to see that the composite functor

D(Gy(E), A) — Diis([+/Go(E)], A) = Dys([SpaC/Gh(E)], A)

is an equivalence. Using that D(G(F), A) is generated by C-Indgb(E)A for K C G,(F) open pro-p, one

easily sees that the functor is fully faithful, so it remains to prove essential surjectivity. Using descent along
SpaC — [SpaC/G}(E)] and the equivalence Dy (SpaC, A) = D(A), any cohomology sheaf of an object
in Dy;s([Spec C'/Gp(E)], A) gives a representation of the condensed group G,(E) on a condensed A-module
of the form M ®z, . Z for some (abstract) A-module M. (Indeed, any cohomology sheaf of an object of
Du([SpaC/Gy(E)], A) is a representation of the condensed group G (E) on a solid A-module, but here we
must get objects whose underlying solid module lies in Dy;s(Spa C, A) = D(A).) As Gy(FE) is locally pro-p,
any such action in fact comes from a smooth action on M: For K C Gy(F) pro-p, the K-orbit of any
m € M lies in some compact submodule, thus in M ®z, ,  Z; for some finitely generated Z,-submodule
M’ C M. The action of K on m then gives a continuous map KX — GL(M’). As the target is locally pro-,
this map has finite image, so that the action of K on m is locally constant. O

Recall that for any b € B(G), we have the cohomologically smooth chart m, : M; — Bung near
Bun’,. This comes with a projection g, : M — [*/Gy(E)] which has a natural section, given by the

preimage of Bunlé C Bung in M. Over My, we have the Gy,(E)-torsor My, — My, and for any complete

algebraically closed field C over k = F,, the base change
./\;11770 = Mb XSpdlc SpaC’

is representable by a locally spatial diamond, endowed with a distinguished point i : Spa C' < M, ¢. Recall

that M, ¢ is a successive extension of negative Banach-Colmez spaces. Iteratively restricting to small
quasicompact balls inside these negative Banach-Colmez spaces, we see that the closed subset ¢ : Spa C' —
Mb,c can be written as cofiltered intersection of quasicompact open subsets V' for which RI'(V,F,) =
Fy. (To see that one can choose small balls in negative Banach-Colmez spaces with this property, one

can present BCc(O(—n)[1]) as a quotient of a product of n different (Aép)<> by E (via taking a generic

7
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embedding of Ox(—n) into Ox,, whose cokernel is a sum of n skyscraper sheaves at different untilts

C’f /E of C), and take balls in BC(O(—n)[1]) that are similar products of balls, quotiented by a lattice in
E)

ProposITION VIL7.2. For any b € B(G) with locally closed immersion i* : Bun% — Bung, the
functor

i : Dy(Bung, A) — Dy(Bun%, A) = Dy([*/Gy(E)], A)

admits a left adjoint, given by
Toady * Diis([¥/Gp(E)], A) = Diis(Bung, A).

The unit of the adjunction is given by the equivalence id & i**m,q; arising from base change, and the

identification of the pullback of i along 7}, with [*/Gy(E)] C M.

ProoF. As D([x/Gy(E)],A) = D(Gy(E), A) is generated by c—Indf(b(E)A for open pro-p subgroups
K C Gp(F), and as we already determined the unit of the adjunction, it suffices to verify the adjunction

on these objects. Let M, ¢ = M&;/K — M. This comes with a closed immersion i : [x/K] — M k.
It suffices to see that for all A € Dy(My, i, A), the map

RI'(My,k, A) — RI([+/ K], A)

is an isomorphism, where we continue to denote by A any of its pullbacks. Assume first that A = j, A
for some Ay € Dlis(Ma 5> A). Then the result follows from Theorem In general we can then
replace A by the cone of jyA — A in the displayed formula. For this statement, we can even base change
to Spa C' for some complete algebraically closed nonarchimedean field C'|k, and allow more generally any
A € Dy(My k¢, A). We can then assume that A = f;Z, for some /-cohomologically smooth separated
qcgs map f : Y — My i . Then as in the proof of Proposition A is constant in a neighborhood
of [Spa C'/ K|, which implies the result (as Spa C' C /\;lbp is a cofiltered intersection of quasicompact open
V’s with trivial cohomology). O

ProposITION VII.7.3. For any quasicompact open substack U C Bung, the Harder—Narasimhan strati-
fication induces a semi-orthogonal decomposition of Dy;,(U, A) into the categories Dys(BunZ, A) = D(Gy(E), A)
for b € |U| C B(G). Moreover, for any not necessarily quasicompact U, the functor

Dlis(U7 A) - Dlis(U ><Spclk SPa Ca A)

is an equivalence.

PROOF. We argue by induction on |U|, so take some closed element b € |U| C B(G) and let i :
Bun?, — Uand j : V — U be the closed and complementary open substacks. We know that Dy, (U, A) —
Dyss(U xspaxSpa C, A) is fully faithful by Proposition and by induction Dy;(V, A) — Dyig(V Xspar

SpaC, A) is an equivalence.
Now by the previous proposition, i** admits the left adjoint
Ty, © Diis([*/Go(E)], A) = Dys(U, A),

and in fact the proof of that proposition shows (using our standing induction assumption) that, composed
with the embedding into Dyi(U Xspar SpaC, A), it continues to be a left adjoint to i . Dy (U X Spd k
SpaC, A) = D([SpaC/Gy(E)], A) = D([x/Gyp(E)], A).
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The unit id — ib*ﬂ'bhq; of the adjunction is an equivalence. We see that Dy;(U Xspqx SpaC, A) has
full subcategories given by j; Dy;s(V, A) and the essential image of m;g; (both of which lie in Dy (U, A)).
To see that one has a semi-orthogonal decomposition, it suffices to see that if A € Dy;(U xXspar SpaC, A)
with i*A = %A = 0, then A = 0. This can be checked after pullback to /\;lbp, where it follows from
Proposition This also shows that Dy; (U, A) — Dy;(U Xspar SpaC, A) is an equivalence. O

Now we also want to analyze the compact objects as well as the universally locally acyclic objects, and
various dualities. We start with the compact objects.

PROPOSITION VII.7.4. The category Dy;(Bung, A) is compactly generated. An object A € Dy;(Bung, A)
is compact if and only if it has finite support and i** A € Dy (Bun?, A) = D(G(FE), A) is compact for all

b € B(G),i.e.liesin the thick triangulated subcategory generated by C—Ind?(b(E)A for open pro-p subgroups

K C Gb(E )
Moreover, for each b and K C Gy(E) pro-p, letting

fr : My x — Bung

be the natural map, the object A% = fry € Dys(Bung, A) is compact, and these generate Dy;s(Bung, A).

ProoF. By Proposition |VII.7.3} the left adjoints myq; to ib* generate Dy (Bung, A); as i®* commutes
with colimits, these left adjoints also preserve compact objects. As each D(G}(E), A) is compactly gener-
ated, it follows that Dj;(Bung, A) is compactly generated, with compact generators Alk.

To see that the given property characterizes compact objects, we argue by induction over quasicompact
open substacks U C Bung. Pick any closed b € |U| C B(G), and assume the result for the complementary
open j : V C U. We first show that all of the given compact generators (coming from b’ € |U| C B(G))
have the property that all of their stalks are compact. Thisis clear by inductionif &’ € |V, so we can assume
b’ = b. Then we need to see that j*m;q; preserves compact objects. But this follows from Lemma|VIL7.5]
below. Using the semi-orthogonal decomposition structure, it now follows that conversely, all A with
compact stalks are compact. O

LEMMA VIL7.5. For K C Gy(E) an open pro-p subgroup, the functor
RF(MS,Ka -): DI<M2,K7A) — D(A)

has finite cohomological dimension and commutes with all direct sums.

PROOF. As M? . = M?/K where M? is a spatial diamond, it suffices to prove that the functor has
b,K b b P p

finite cohomological dimension. It suffices to prove this for M; (as taking K -invariants is exact). One
can formally reduce to A = Zy and then to finitely presented solid Z,-sheaves F on ./\;lg Now these can
be written as cofiltered inverse limits of constructible F;. The RF(./\;lg, Fi) are uniformly bounded; to
see that their derived limit is also bounded, it is then sufficient to see that each H’ (MZ, Fi) is finite. By
Theorem this is isomorphic to HJ T (M ° Fi). But RT'.(M3, —) preserves compact objects as its
right adjoint commutes with all colimits (as M is cohomologically smooth over Spd k, being open in a
successive extension of negative Banach-Colmez spaces). O
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Next, we study Bernstein-Zelevinsky duality. Denoting 7 : Bung — * the projection, the pullback 7*
has a left adjoint

T - Dlis(BunG)A) - Dlis(*7A) = D(A)

This induces a pairing

n
Dys(Bung;, A) x Dyg(Bung, A) = D(A) : (A, B) — my(A & B).

ProrosITION VII.7.6. For any compact object A € Dj;(Bung, A), there is a unique compact object

Dpz(A) € Dys(Bung, A) with a functorial identification
n
RHom(Dpz(A), B) = m,(A &% B)

for B € Dj;s(Bung, A). Moreover, the functor Dy is a contravariant autoequivalence of Dy;(Bung, A)%,
and D%, is naturally isomorphic to the identity.

If U C Bung is an open substack and A is concentrated on U, then so is Dpz(A). In particular, Dz
restricts to an autoequivalence of the compact objects in Dy (Bun%, A) =2 D(Gy(E),A) for b € B(G)
basic, and in that setting it is the usual Bernstein-Zelevinsky involution.

PROOF. The existence of Dgz, follows as in Theorem using the left adjoint given by Proposi-
tion|VII.7.2} this construction also shows that Dgy preserves Dj;(U, A), and for basic b it recovers the usual
Bernstein—-Zelevinsky involution by the same argument as in Theorem [V 5.1}

We also formally get a morphism D2,(A4) — A by adjunctions. We need to see that this is an iso-
morphism. It suffices to check on generators, such as the Bernstein-Zelevinsky dual of Ag{ (which is

up to twist and shift if’c—IndIG(b(E)A). As in the proof of Theorem one easily checks that the map

D2, (A) — A is an isomorphism over BunZ. To see that it is an isomorphism everywhere, one needs to see
thatif B = Rj, B, B’ € Dy,(U, A) for some open substack j : U C Bung not containing BunZ, then

| |
(A% @5 B) = 0.

Twisting a few things away and using the definition of A5, = fx; A, this follows from the assertion that
forall A’ € Dhs(Ma 5> \), with jg - M i = My, i the open immersion, one has

RFC(Mb,K, RjK*AI) =0.
Using the trace map for M, — My, K, this follows from Theorem O

As in Theorem V6.1 this has the following consequence for Verdier duality.

ProposiTION VIL.7.7. Let j : V < U be an open immersion of open substacks of Bung. For any
A € Dy(V, A), the natural map

juR%omlis(A, A) — Re%pomlis(leis*Av A)

is an isomorphism in Dy (U, A).

PrOOF. The proof is identical to the proof of Theorem O
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Using this, one can characterize the reflexive objects as in Theorem [V.6.2} we omit it here.

Finally, one can also characterize the universally locally acyclic A € Dy (Bung, A). Note that we have
not defined a notion of universal local acyclicity for lisse-étale sheaves, but in our present situation we can

simply import the characterization from Proposition and make the following definition.

DEFINITION VIL7.8. A complex A € Dy (Bung, A) is universally locally acyclic (with respect to
Bung — *) if the natural map
n
pTijomlis(fL A) ®H/§p;A - R%omlis (pTA7p;A)

is an isomorphism, where p1, p2 : Bung X Bung — Bung are the two projections.

We get the following version of Theorem

ProprosITION VIL.7.9. Let A € Dy (Bung, A). Then A is universally locally acyclic if and only if for
all b € B(G), the pullback i A to i® : Bun’, < Bung corresponds under Dy (Bun%,, A) = D(Gy(E), A)
to a complex Mj, of smooth G( E)-representations for which M is a perfect complex of A-modules for
all open pro-p subgroups K C G(E).

The proof is identical to the proof of Theorem|V.7.1} and proceeds by proving first the following propo-
sition.

ProposITION VII.7.10. Let G and G be two reductive groups over E, and let G = G'1 X G'3. Consider
the exterior tensor product

- Dlis(BunGmA) X Dlis(BunG27 A) - Dlis(BunGa A)

For all compact objects A; € Dy (Bung,,A), i = 1,2, the exterior tensor product 4; X Ay €
D¢i(Bung, A) is compact, these objects form a class of compact generators, and for all further objects
B; € Dys(Bung,, A), i = 1,2, the natural map

RHom(Al, Bl) ®% RHOIII(AQ, BQ) — RHom(A1 XAy, B X BQ)

is an isomorphism.

PROOF. The proof is identical to the proof of Proposition OJ






CHAPTER VIII

L-parameter

It is time to understand the other side of the correspondence: In this chapter, we define, and study basic
properties of, the stack of L-parameters. These results have recently been obtained by Dat-Helm-Kurinczuk-Moss
[DHKM20], and also Zhu [[Zhu20]]; previous work in a related direction includes [Hel16]], [HH20], [BG19]],
[BP19]], [LTX 22, Appendix E].

In this chapter, we fix again a nonarchimedean local field E' with residue field IF; of characteristic p,
and a reductive group G over E, as well as a prime £ # p. We get the dual group G'/Z, which we endow
with its usual “algebraic” action by Wp; the action thus factors over a finite quotient () of W, and we
fix such a quotient Q of Wg. (The difference to the cyclotomically twisted Wg-action disappears after
base change to Zy[,/q], and we could thus obtain analogues of all results below for this other action by a
simple descent along Z[,/q]/ Zy¢.) We define a scheme whose A-valued points, for a Z-algebra A, are the

condensed 1-cocycles
¢ : Wi — G(A),
where A = Agisc ®z, 4, Zs is regarded as a relatively discrete condensed Zy-module.

THEOREM VIIL0.1 (Theorem|VIIL1.3). There isascheme Z'(Wg, G) over Z; whose A-valued points,

for a Z,-algebra A, are the condensed 1-cocycles
©: Wg — G(A).

The scheme Z' (W, G) is a union of open and closed affine subschemes Z' (W /P, G) as P runs through
open subgroups of the wild inertia subgroup of Wi, and each Z' (Wy/P, G) is a flat local complete inter-
section over Z; of dimension dim G.

To prove the theorem, following [DHKM20]] and [Zhu20] we define discrete dense subgroups W C
W/ P by discretizing the tame inertia, and the restriction Z'(Wg/P,G) — Z'(W, G) is an isomorphism,
where the latter is clearly an affine scheme.

We can also prove further results about the G-action on Z' (W, (), or more precisely each Z' (W /P, G).
THEOREM VIIIL.0.2 (Theorem [VIII.5.1)). Assume that ¢ does not divide the order of Wl(é)tor.A Then
HY(G,0(Z'(Wg/P,3))) = 0 for i > 0 and the formation of the invariants O(Z'(Wg/P,G))% com-

mutes with any base change. The algebra O(Z'(Wg/P,G))“ admits an explicit presentation in terms of
excursion operators,

O(Z (Wi /P, ()% = colimy, 5, ) O(Z'(Fy, G))C
where the colimit runs over all maps from a free group F, to W C Wg/P, and Z1 (Fy, G) =~ " with the
simultaneous twisted G-conjugation.

269
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Moreover, the co-category Perf(Z! (W /P, G)/Q) is generated under cones, shifts and retracts by the
image of Rep(G) — Perf(Z'(Wg/P,G)/G),and Ind Perf(Z' (Wg /P, G)) is equivalent to the oo-category
of modules over O(Z!(Wg/P,G)) in Ind Perf( BG).

All of these results also hold with Qg-coefficients, without the assumption on /.

With Q-coefficients, these results are simple, as the representation theory of G is semisimple. However,
with Z-coefficients, these results are quite subtle, and we need to dive into modular representation theory
of reductive groups. We prove in particular the following result. The last part of this generalizes results
of Brundan [Brug8] and van der Kallen [vdKo1] that treat the case P = Z/2Z of involutions. While their
argument is case-by-case, we are able to give a conceptual argument.

THEOREM VIIL.0.3 (Section . Let GG be a reductive group over an algebraically closed field L
of characteristic /. Let P be a finite group of order prime to £ acting on G. Then H = G? is a smooth
linear algebraic group whose connected component H° is reductive, and with moH of order prime to /.
If P is solvable, the image of Perf(x/G) — Perf(x/H) generates the whole category under cones and
retracts. Moreover, still under the assumption that P is solvable, H° C G is a Donkin subgroup, i.e. for
any representation V' of G that admits a good G-filtration, also V|- has a good H °-filtration.

VIIL.1. The stack of L-parameters

VIIL1.1. Definition and representability. Recall that for a reductive group G over a nonarchimedean

local field E, we have the (pinned) dual group G over Zy, equipped with an action of the Weil group Wpg.
In this chapter, we use the standard action (compatible with the pinning).

Now let A beany Z-algebra. Asin thelast chapter, weregard it asa condensed Z-algebra, as Agisc @z, 4
Zy. Its value on a profinite set .S is the ring of maps S — A that take values in a sub-Z;-module of finite
type and are continuous. For example, if A = Q, then A(S) = h%m LCT Cont(S, L) with L|Qy finite.
£

DEFINITION VIII.1.1. An L-parameter for GG, with coefficients in A, is a section
©: Wg — G(A) x Wg
of the natural map of condensed groups
G(A) x Wg — Wg.
Equivalently, an L-parameter for G with coefficients in A is a (condensed) 1-cocycle
©: Wg — G(A)

for the given Wg-action on G.

More concretely, an L-parameter with values in A is a 1-cocycle ¢ : W — G(A) such that if G —

GL, the associated map Wr — GLy(A) is continuous. The preceding means the matrix coefficients of
its restriction to I are maps I — A that take values in finite type Z,;-modules and are continuous.

REMARK VIII.1.2. The standard action of Wg factors over a finite quotient (). This means that L-
parameters are also equivalent to maps Wr — G(A) x Q lifting Wg — Q.

The first main result is the following.
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THEOREM VIIL1.3. There is a scheme Z' (W, G) over Z; parametrizing L-parameters for G, which
is a disjoint union of affine schemes of finite type over Zj. It is flat and a relative complete intersection of
dimension dim G = dim G.

PROOF. Any condensed 1-cocycle ¢ : Wi — G(A) is trivial on an open subgroup of the wild inertia
subgroup Pg; note also that Pg acts on G through a finite quotient. Moreover, for any 7 € P acting
trivially on G, the locus where ¢(v) = 1 is open and closed: Taking a closed embedding G < GLy, this
follows from A = 1 being a connected component of the locus of all A € GLy such that AP" = 1, as
can be checked by observing that the tangent space at A = 1 is trivial. It follows that the moduli space of
L-parameters decomposes as a disjoint union of open and closed subspaces according to the kernel of ¢ on
Pg.

Thus, fix now some quotient Wz — W, by an open subgroup of P such that the action of Wg on G
factors over W},. We are interested in the moduli space of condensed 1-cocycles W, — G(A). Inside Wy,
we look at the discrete dense subgroup W C W7, generated by the image of P, a choice of generator of
the tame inertia 7, and a choice of Frobenius o. Thus, IV sits in an exact sequence

0T —=W-—=o2=0

where [ in turn sits in an exact sequence

1
P

z[3]

0P —=1—rT — 0

1

where P is a finite p-group. Moreover, in W /P, the elements 7 and o satisfy the commutation o™ '70 = 79.

Now observe that any condensed 1-cocycle Wy, — G(A) is already determined by its restriction to
the discrete group W, as G(A) is quasiseparated and W C W4, is dense. Conversely, we claim that any
1-cocycle W — G(A) extends uniquely to a condensed 1-cocycle W%, — G(A). To check this, we may
replace F by a finite extension; we can thus pass to a setting where the action of W}, on ( is trivial, and
where P = 1. Taking a closed immersion G — GL N, it then suffices to see that any representation of
TZ[%] x o” on a finite free A-module extends uniquely to a representation of the condensed group Z” x o,
For this, in turn, it suffices to see that for any A € GLx(A) such that A is conjugate to AY, the map

Z — GLy(A) :n — A"

Z

extends uniquely to Z”. The assumption on A implies that all eigenvalues of A at all geometric points of
Spec A are roots of unity of order prime to p; replacing A by a prime-to-p-power (as we may) we can thus
reduce to the case that A is unipotent, i.e. A — 1 is nilpotent. But then n — A" extends to a continuous
map

n

-y,

]

nHA"z(l—{-(A—l))”:Z(

>0
defining a map Z; — GLy(A) (and hence Z? — Z; — GLy/(A)).
Thus, we need to see that the space X = Z' (W, G) of all 1-cocycles ¢ : W — G(A) is an affine scheme

of finite type over Z; that is flat and a relative complete intersection of dimension dim G. It is clear that it
is an affine scheme of finite type over Z, as W is discrete and finitely generated.
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To prove the geometric properties, we find it slightly more convenient to argue with the Artin stack
[X /G|, which we aim to prove is flat and a relative complete intersection of dimension 0 over Z;.

We can understand the deformation theory of [X /G]: If A is a field, then the obstruction group is
H%(W,§®z,\) (where g is the Lie algebra of G), the tangent space is H! (W, §®z, A), and the infinitesimal
automorphisms are H(W, § ®z, A), where in all cases the action of W is twisted by the local 1-cocycle
. Now note that by direct computation the prime-to-p cohomological dimension of W is 2, and the Euler
characteristic of any representation is equal to 0. Thus, this analysis shows that we only have to prove that

all fibres of [X /G] — Spec Z; are of dimension at most 0.

Note that X is actually naturally defined over Z[%] (as G is, and the discretization W of W, is inde-

pendent of /). It follows that it suffices to bound the dimension of the fibre over Fy (as if we can do this
for all closed points of Spec Z[%], it follows over the generic fibre by constructibility of the dimension of

ﬁbersl. To do this, we switch back to the picture of condensed 1-cocycles on Wg. From now on, we work
over [Fy.

The stack [Z1(WE, ) ./ (] maps to the similar stack parametrizing 1-cocycles ol 1t G’E of the
prime-to-/ inertia subgroup I%, up to conjugation. By deformation theory, that stack is smooth and each

connected component is a quotient of Spec Fy by the centralizer group C ot C CA?E, which is a smooth

group, whose identity component is reductive by [PYo2| Theorem 2.1]. We may thus fix go LR (s
G(F,) and consider the closed subscheme X ot C Z'(Wg, G)F of all 1-cocycles ¢ : Wi — G(A) whose

restriction to I* is equal to o!". Our goal is to show that X(p ;¢ is of dimension at most dim C(p -

Consider the normalizer C' of ¢!" (I%) inside CA}E X Q. Then XSO ;¢ maps with finite fibres to the space
of maps
FiWp/I' =7, x 0% — O/ (IY).
Note that, by representability of X e the universal map f factors over a quotient of the form Z/{™Z x 0.
Finally, we have reduced to Lemmabelow. ]

LEMMA VIIL.1.4. Let H be a smooth group scheme over F, whose identity component is reductive.
Then the affine scheme parametrizing maps of groups

7/ % o” — H,

where o acts on Z/{™Z via multiplication by g, is of dimension at most dim H.

PrOOF. The image of the generator of Z /{7 is a unipotent element of H. By finiteness of the number
of unipotent conjugacy classes, cf. [Lus76], [FG12, Corollary 2.6], we can stratify the scheme according to
the conjugacy class of the image of 7. But for each fixed conjugacy class, one has to choose the image of o
so as to conjugate 7 into 79: This bounds the dimension of each stratum by the dimension of the conjugacy
class of 7 (giving the choices for 7) plus the codimension of the conjugacy class of 7 (giving the choices for
o, for any given 7), which is the dimension of H. ]

VIIL.2. The singularities of the moduli space

The following proposition was already implicitly noted in the proof of Theorem [VIII.1.3
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PrOPOSITION VIIL2.1. For any parameter ¢ : W — G(A) x Q corresponding to z : Spec(A) —
[Zl(WEv G)/G],
x*Lél(WE,G‘)/G = RI'(Wg, (g Xz, A)@)[l]

where (§ ®z, A), is § ®z, A equipped with the twisted action of Wg deduced from ¢.

ProOF. This would be clear if we defined the moduli problem on all animated Z,-algebras, by deforma-
tion theory. Then the cohomological dimension of Wx would imply that this moduli problem is a derived
local complete intersection, of expected dimension 0. However, we proved that Z!(Wg, G)/G is a local
complete intersection Artin stack of dimension 0, hence it represents the correct moduli problem even on
all animated Z-algebras, thus giving the result. O

PROPOSITION VIIIL.2.2. Let M be a free A-module of finite rank equipped with a condensed action of
Wg. Then RT'(Wg, M) is a perfect complex of A-modules and there is a canonical isomorphism

RT(Wg, M)* = RD(Wg, M*(1))[2].

PROOF. This follows from Poincaré duality applied to Div! — x, using Proposition|VIL.3.5/and the dis-
cussion before. It can also be proved by hand, by comparing the Wg-cohomology with the W-cohomology,
for a discretization W of W/ P as before. O

COROIZLARAY VIIIL.2.3. For any parameter ¢ : Wg — G(A) X W corresponding to = : Spec(A) —
[ZY(Wg, G)/G,
"Ly w6 = RE (W, (87 @z, M) (1)[1]

where (§* ®z, A), is §* ®z, A equipped with the twisted action of W deduced from ¢.

VIIL2.1. The characteristic zero case. Fix an isomorphism I/ Pg = ZP. There is a Gg,-equivariant
“unipotent monodromy” morphism

M ZI(WE, G)@e — N@Q[
where N Go, 18 the nilpotent cone inside § ® Q.
74

In fact, one can lift the inclusion Z, — 7P = Ir/Pg to a morphism Zy — Ip. Now,if ¢ : W —
G(A), with A a Qg-algebra, is a parameter, then ¢|z7, : Zy — G(A) is such that for n > 0, p|mz, isa
morphism of condensed groups satisfying

m

p(0™)plenz,0(0™) T = Py,

for m > 0. One deduces, using an embedding of G in GL N, that there is a unique N € N G(A) such that
forn > 0and z € ("Z,,

o) = exple ).
Using these observations, we get a comparison to Weil-Deligne L-parameters.

DEFINITION VIIL.2.4. For A a Q-algebra one defines ParGWD(A) to be the set of pairs (¢g, V') where

(i) o : Wi — G(A) is a 1-cocycle that is continuous for the discrete topology on G(A) (i.e., trivial on an
open subgroup of If),
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(ii) N € Mg ® A satisfies Ad(o(0)).0N = ¢I?|N forall o0 € Wg.

Then we have the following result, which is essentially Grothendieck’s quasi-unipotence theorem.

ProposITION VIII.2.5 ([Zhu20, Lemma 3.1.8]). Thereisa G—equivariant isomorphism

ZYWg, Q)@ Q = ParGWD.

However, we warn the reader that this isomorphism depends on some auxiliary choices, such as that of
a Frobenius element.

VIII.2.2. The singular support.

VIIL.2.2.1. General construction. Recall the following construction, see for example [AG15]. Let A —
B be a flat map of commutative rings. One has the Hochschild cohomology

HH*®*(B/A) = Extyq , 5(B, B).
Note that any M € D(B ®4 B) induces a functor D(B) — D(B), via N — M ®% N (with the “left”

B-module structure). Here, M = B € D(B ®4 B), via the multiplication B ® 4 B — B, induces the
identity functor. It follows that there is a natural map

HH'(B/A) = Extgg , (B, B) = Ext3(N, N)

forany N € D(B). Moreover, Hochschild cohomology is naturally a graded algebra, and this map is a map
of algebras

HH*(B/A) — Ext%(N, N).
There is an identification (J[ML95} Theorem X.3.1])
HH?*(B/A) = Extp(Lg,a, B)
which itself is nothing else than Exalcom (B, B) ([Gro64, Chap.o, Sec. 18.4]). We thus have an identifi-

cation
HH?*(B/A) = H'(L}, ).

Suppose now that A — B is syntomic, i.e. flat and a local complete intersection. Let X = Spec B — S =
Spec A be the associated map of affine schemes.

DEFINITION VIII.2.6. The scheme
Singy g — X

represents the functor 7'/ X — H'(Lx /g ®H@X Or).

In fact, locally on X, Ly /5 is isomorphic to a complex of vector bundles [~ — £"] and then Sing /s
is the kernel of V(£71) — V(£°). Explicitly, Sing /s is the affine scheme with

O(Singy /) = SymypH' (L} 4)-

This is an X -group scheme equipped with an action of Gy,,. The image of Sing y /¢ \ {0} — X is the closed
subset complementary of the smooth locus of X — S.
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Consider now any

N e D, (X),

coh

and the graded B-algebra Ext} (N, V). Using the map
H'(Lp,4) = HH*(B/A) — Extj(N, N),
this is in fact naturally a (graded) O(Sing /s)-algebra. This defines a Gy,,-equivariant quasi-coherent sheaf
pwEnd(NV)
on Singy /g.
Suppose now moreover that S is regular.

THEOREM VIII.2.7 (|Gul74| Theorem 3.1][[AG15 Appendix D]). For N € ch)oh (X), the quasi-coherent
sheaf /i End(IV) on Sing y ¢ is coherent.

DEerFINITION VIII.2.8. The singular support of N, SingSupp(V), is the support of y End(/V) as a closed
conical subset of Sing y .

Of course, the image of SingSupp(/N) — X is contained in Supp (V).
THEOREM VIII.2.9 (JAG15| Theorem 4.2.6]). The following are equivalent:

(i) N isa perfect complex,
(ii) SingSupp(NV) is contained in the zero section of Sing /s

PrOOF. We have to prove that if Extiz(N, N) = 0 for i > 0 then N is a perfect complex. This is
for example a consequence of [Joro8]. Since S is regular X is Gorenstein. According to [Joro8], if NV is a
B-module of finite type that satisfies Ext; (N, N) = 0 for i > n, then pd 3N < n. In general, up to taking
a shift of IV, we can findamap N — N’, where N’ is a finitely generated B-module concentrated in degree
0, such that the cone C' of N — N’ is perfect. Suppose that Extiz (N, N) = 0 for i > 0. In the long exact
sequence
-+ — Ext’(C, N) — Ext’3(N’, N) — Ext’s(N,N) — - --

one has ExtiB(C’_, N) = 0 for i > 0 since C is perfect and Ext’; (N, N) = 0 for i > 0 by hypothesis. We
deduce that Extz (N’, N) = 0 for ¢ >> 0. In the long exact sequence

-+ — Ext3(N’, N) — Ext3(N’, N') — Exth(N',C) — - --

we have Ext’z (N, C) = 0 for i 3> Osince C is perfect and B has finite injective dimension over itself since
it is Gorenstein. Thus, for i >> 0, Exts(N’, N’) =5 Extiz(N’, N) and this vanishes. We can thus apply
Jorgensen’s theorem to N’ to conclude that N’, and hence N, is perfect. O

Let us note the following corollary.

CoroLLARY VIII.2.10. The image of SingSupp(/N) \ {0} — X is the complementary of the biggest
open subset of X on which NN is a perfect complex.
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VIIL2.2.2. The case of Z!(Wg,G). Now we apply the preceding theory in the case A = Z; and
X = ZY(Wg, Q) (which is only a union of affine schemes, but this is not a problem). We can also pass
to the quotient stack Z' (W, G)/G as the formation of Sing commutes with smooth maps. According to

Corollary|VIII.2.3} there is an embedding

Sing 1 vy jcnyz, —— 187/G1 %, 6 (21 (We, G) /G

|

(21 (W, G)/G]

where § = Lie  and [§*/G] is seen here as a vector bundle on %/G = [SpecZy/G]. Let N(’*;, C ¢" be the

nilpotent cone; by this we mean the closed subset of all G-orbits whose closure contains the origin. (If there

isa G-equivariant isomorphism between g* and g, this would identify with the usual nilpotent cone.) Since
this is stable under the adjoint action this defines a Zariski closed substack

NE/G) %, 6 12 (W, G)JG) — [§7/C) % 122 (Wi, Q)G

| —

(21 (W, G)/G).
ProPOSITION VIIL2.11. For a Z-field L and a point z : Spec(L) — [Z'(Wg, G)/G] we have
in the following two cases:

(i) LIQs,
(i) f n = fg//p with Wgr = ker(Wg — Out(G)), then ¢ — 1 is not divisible by ¢ for any exponent e
of G.

PROOF. Assumption (ii) implies that £ is a very good prime for G and in particular the Chevalley
isomorphism § / G' = t // W holds, and there is an isomorphism §* 2 g.

If = corresponds to the parameter ¢ then :L’*Sing[Zl(WE &) /Gl = HY(Wg, ¢* ®z, L(1)) where the
W action on §* ®7z, L(1) is twisted by ¢. For an element v € g = §* in this subspace we thus have that
o.v and qu are in the same orbits under the adjoint action of G(L) (here 0.v is given by the action of Wg

on §* defining the L-group). We thus obtain that v is conjugated under the adjoint action to ¢"v. There is
a morphism

§g—a)G=t)W=Ap

given by m homogeneous polynomials of degrees the exponents of the root system. This implies that the
image of v in A™(L) is zero and thus v lies in the nilpotent cone. O
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The supremum of the exponents of (i is the Coxeter number / of G. The preceding condition is satisfied

if for example ¢ > ¢"™ — 1. We refer to [DHKM20, Section 5.3] for finer definitions and results about G-
banal primes; we have not tried to optimize the condition above, and it is likely that with their results one
can obtain a much better condition on /.

REMARK VIII.2.12. In the non-banal case things become more complicated and the Arinkin-Gaitsgory
condition of nilpotent singular support becomes important. This is also the case when interesting congru-
ences between smooth irreducible representations of G(F) occur, cf. [DHKM20, Section 1.5].

REMARK VIII.2.13. The appearance of g* here is another indication that the assumption that ¢ does

~

not divide the order of 71 (G)tor may be important: Indeed, this assumption determines the isomorphism
class of g* as a representation of the adjoint group, within the isogeny class of G. However, when / is a bad
prime, then the nilpotent cone is not well-behaved (for example, there may be infinitely many nilpotent
orbits), and we are not sure whether the resulting notion of nilpotent singular support is in fact the correct
notion.

VIIL3. The coarse moduli space

Let us now describe the corresponding coarse moduli space, i.e. we consider the quotient
Z'(Wg,G) | G
taken in the category of schemes. Concretely, for every connected component Spec A C Z {Wg,Q), we
get a corresponding connected component Spec A“ ¢ Z' (W, G) / G.

VIIL3.1. Geometric points. Forany algebraically closed field L over Z;, the L-valued points of Z' (W, G) 1/
G are in bijection with the closed G-orbits in Z!(Wg, G) .

We want to describe L-valued points with closed G-orbit as the “semisimple” parameters. For this,
recall (cf. [Bor79]) that parabolic subgroups of G, x W surjecting onto W, are up to G(L)-conjugation
given by Pp, x W for a standard parabolic P C G* of the quasisplit inner form G* of G. A Levi subgroup
is given by My, x Wg where M C P is the standard Levi. We now call them the parabolic subgroups
of G x W i.e. we always suppose they surject to Wg. If A are the simple roots of (i then the standard
parabolic subgroups are in bijection with the finite TWj-stable subsets of A.

DEeFINITION VIIL.3.1. Let L be an algebraically closed field over Z;. An L-parameter ¢ : W —

G(L) x Wi is semisimple if whenever the image of ¢ is contained in a parabolic subgroup of G x W, then
it is contained in a Levi subgroup of this parabolic subgroup.

In terms of the standard parabolic subgroups this means that if some G/(L)-conjugate ¢ of ¢ factorizes
through P(L) x W, then there exists g € P(L) such that
999" =iyprig 0,
where pry,, : P(L) x Wi — M (L) x Wi is the projection onto the standard Levi subgroup, and iz ; :
M(L) x Wg — G(L) x W the inclusion.

ProrositioN VIIIL3.2 ((IDHKM20, Proposition 4.13]). Let L be an algebraically closed field over Z,
and ¢ : Wg — G(L) X Wg a parameter. The following are equivalent:
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(i) The G-orbit of ¢ in Z'(Wg, G)L is closed.

(ii) For any conjugate ¢’ of p such that ¢’ : Wg — P (L) x W factors over a standard parabolic subgroup,
¢ is G(L)-conjugate to ir y;prr ,, 0 ¢’

(iii) ¢ is semi-simple.

PrOOF. We use the Hilbert—Mumford-Kempf theorem, cf. [Kem78| Corollary 3.5]. Recall that this
criterion says that an orbit is closed if and only if any degeneration along a 1-parameter family induced
by a G, has limit inside the same orbit. Thus take any A\ : G,, — G - Up to conjugation (which one
can move into a conjugation of the parameter) we can assume A € X, (T)"' For each 7 € W thereisa
morphism ev, : Z1(Wg, G’) . — G given by evaluating a parameter on 7. Thus, if lim;_,o A(t) - ¢ exists,
i.e. the associated morphism G,, 1 — Z 1(T/VE, G’) 1 extends to Al for each 7 € Wx one has AT = \ and
o(7) € QA(L) x 7, cf. Lemma One thus has Q) = P for P a standard parabolic subgroup of G*,
and o : Wy — P x Wp.

For g € P,lim;_o A(t)gA(t)~" is the projection onto the standard Levi subgroup M. Thus, using the
evaluation morphism ev, for each 7 we deduce that lim;_,o A() - ¢, if it exists, is given by the composite
We & P(L) % WE PO M(L) x Wg. Reciprocally, since the morphism G, x P — P, given by
(t,g) — At )g)\( )~! extends to A’ x P with fiber over 0 € A! given by the projection to M, for any
©:Wg — P x Wg, lim_ A(t) - @ exists.

From this analysis we deduce the equivalence between (i) and (ii). It is clear that (iii) implies (ii).
For the proof of (ii) implies (iii) we use the results of [BMRo5] and [Ric88]]. For this we see parameters as
morphisms W — G(A) x Q where W is discrete finitely generated as in the proof of Theorem and
Q is a finite quotient of W. Let o : W — G (L) x Q satisfying (ii). Let H C G, % Q be the Zariski closure
of the image of . Then if (z1, . ..,2,) € (G(L) x Q)™ are the images of a set of generators of IV, applying
the Hilbert—-Mumford-Kempf criterion we see that the G r-orbit of (21, ..., x,) via the diagonal action is
closed, cf. the proof of [BMRO5| Lemma 2. 17] We can then apply [Ric88], cf [BMROg5| Proposition 2.16],

to deduce that H is strongly reductive in G, x Q and thus G/ -completely reducible. Strictly speaking,
since we are workmg in a non-connected situation, we use in fact [BMROS Section 6] O

LemMA VIIL3.3. For A € X,(T)" and g x 7 € G(L) x W, the limit lim; 0 A(t)gA(t) " exists if
and only if g € (L), the parabolic subgroup attached to A, and A\™ = A.

PROOF. The subgroups Q) and Q- are standard parabolic subgroups of G. Let us write g = g'ug"
with ¢’ € Q\(L), 9" € Qx~(L) and w € W. Then, writing

AB)gAB) ™" = (A)g'AB)™HABDAB) A" AB) ),

one deduces that lim¢ 0 A(t)wA(t) " exists. Thus, limg—,o(A(A™7)™)(t) exists and thus A = (A7)™. Since
AT € X.(T)" we deduce A = A" and \¥ = O

The proof shows that up to replacing G(L) x Wg by G(L) x Q for some finite quotient Q of W (as we
can), semisimplicity of ¢ is equivalent to the Zariski closure of the image of ¢ being completely reducible
in the terminology of [BMROS| Section 6].
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VIIL3.2. A presentation of O(Z'(Wg,G)). It will be useful to have a presentation of the algebra
O(Z'(Wg,G)), or rather of the finite type Z-algebras O(Z'(Wg /P, G)) for open subgroups P of the
wild inertia (with the property that the action of W on G factors over Wg/P). Pick a discrete dense
subgroup W C W/ P as above, so that Z'(Wg /P, G) = Z'(W,G). Forany n > 0 with a map F,, — W,
we get a é-equivariant map

O(Z'(Fn,G)) = O(Z1(W,G)),

where the source is isomorphic to O(G"™) with appropriately twisted diagonal G-conjugation. Consider the
category {(n, F;, — W)} consisting of maps from finite free groups to 1, with maps given by commutative
diagrams F,, — F,,, — W this is a sifted index category (as it admits coproducts). The map

colim, g, w) O(Z' (Fp, G)) = O(Z'(W, Q)

is an isomorphism of algebras with G-action (as 1-cocycles from W to (' are uniquely specified by compat-
ible collections of 1-cocycles F},, — G for all F,, — W). By Haboush’s theorem on geometric reductivity
[Hab7s] it follows that the map

colim,, ., ) O(Z"(Fn, G))% = O(Z (W, ()¢

on G-invariants is a universal homeomorphism of finite type Z-algebras, and an isomorphism after invert-

ing /.
DEFINITION VIIL3.4. The algebra of excursion operators (for Z1(W, G’)) is
Exc(W, &) = colim, s, .y O(Z(Fn, G))C.

We see in particular that the geometric points of Exc(W, @) and Z' (W, G) agree.
Actually, the following higher-categorical variant is true.
ProprosITION VIII3.5. Working in the derived co-category D(Zy), the map
colim, g, w) O(Z'(F, G)) = O(Z1(W, Q)
is an isomorphism in D(Z,).

In fact, both sides naturally admit the structure of animated Z;-algebras, and the map is a morphism of
such. The proposition then implies that it is in fact an isomorphism of animated Z,-algebras.

PROOF. The left-hand side defines an animated Z,-algebra, in fact the universal animated Z,-algebra
A with a 1-cocycle W — G(A), and the right-hand side is given by myA. Now the deformation-theoretic
arguments from the proof of Theorem |VIII.1.3|show that A is a derived complete intersection, but as w9 A

has the correct dimension, we get A = myA. O]

We will later prove an even finer version, incorporating the G-action; we defer the proof to Sec-
tion|VIILS
THEOREM VIII.3.6. Assume that £ does not divide the order of m; (é)tor. Then the map
colim,, g, ) O(Z'(Fu, G)) = O(ZH(W, G))
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is an isomorphism in the presentable stable co-category Ind Perf(x/ G’)
In particular, the map

EXC(VVa é) = COIim(n,Fn—>W) O(Zl (Fna G))G - O(Zl(W¢ G))G

is an isomorphism.

In particular, we see that the algebra of excursion operators gives a presentation of O(Z(Wg /P, G))C.
In the next subsection, we analyze it more explicitly.

VIIL.3.3. Thealgebra of excursion operators. Fix a finite quotient () of Wg over which the Wg-action
on G factors. Let (G % Q)" // G be the quotient of (G x )" under simultaneous conjugation by G.

PROPOSITION VIIL3.7. The algebra of excursion operators Exc(W, G) is the universal Z-algebra A
equipped with maps
O, : O((Gx Q)" G) — Map(W", A)
for n > 1, linear over O(Q") — Map(W™", A), subject to the following relations. If g : {1,...,m} —

{1,...,n} is any map, the induced diagram

O((Gx Q)™ | G) — Map(W™, A)

| |

O((G % Q)" [ G) — Map(W", A)

commutes, where both vertical maps are the natural pullback maps. On the other hand, g also induces a
map (G x Q)" — (G x Q)", multiplying in every fibre over i = 1,..., n the terms in g~ (i) (ordered by
virtue of their ordering as a subset of {1, ...,m}). This map is equivariant under diagonal G-conjugation,
and hence descends to the quotient. Similarly, g inducesa map W™ — W". Then also the induced diagram

O((G % Q)" [ G) — Map(W", A)

| |

O((G % Q™ /| G) — Map(W™, A)
commutes.
The (-torsion free quotient of Exc(W, G) is also the universal flat Z-algebra A’ equipped with maps
), : O((G % Q)" | G) = Map((Wg/P)", A")

forn > 1,linear over O(Q") — Map((Wg/P)", A’), satisfying the same relations as in Proposition|VIII.3.7
where the right-hand side Map((Wg/P)", A’) denotes the maps of condensed sets (where as usual A’ is con-
sidered as relatively discrete over Zy). In particular, the ¢-torsion free quotient of Exc(W, () is independent

of the discretization W of Wg/P.

IThis map is also a map (and hence isomorphism) of Eo-algebras in Ind Perf(*/ G), but the question whether it is an isomor-
phism does not depend on the algebra structure.
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We do not know whether it is necessary to pass to the /-torsion free quotient for the final assertion.

Note that if £ does not divide the order of 71 (G)sr, then Exc(W, G) = O(Z'(Wg/ P, G’))G is flat over Zj.

Moreover note that the {-torsion in Exc(W, G) is always nilpotent, so passing to this quotient is a universal
homeomorphism.

PRrOOF. The datum of the O, is equivalent the datum of a map of algebras
O(Z\(F,,G)¢ - A

for each map F,, — W. The relations encode the relations arising in the diagram category (n, F,, — W)
corresponding to maps F},, — F, (over W) either sending generators to generators, or multiplying subsets
of generators. If one would also allow the inversion of elements, then this would generate all required
relations. We leave it as an exercise to see that this relation, corresponding to F;, — Fj which is the
identity on the first n — 1 generators and inverts the n-th generator, is in fact enforced by the others. (Hint:
Look at the part of ©,, 11 corresponding to (71, - -, Vn, 7V, -) and use that under multiplication of the last
two variables, this maps to (y1, . ..,7n—1, 1), which arises from (y1,...,Vn—1).)

The second description is a priori stronger as Map((Wg/P)", A’) injects into Map(W", A’) as W C
Wpg/P is dense. The /-torsion free quotient of Exc(W, @) injects into O(Z(Wg/P,G)) (as we have
an isomorphism after inverting £), and by density of W C W/ P the elements of Map(W™, Exc(W, G))

map to elements of Map((Wg/P)", O(Z'(Wg/P,G))%) (we only need to check the integrality). Thus,

this already happens on the (-torsion free quotient of Exc(W, G), which thus has the desired universal
property. O

Regarding the passage to W in place of Wy / P, where there is no natural (finite type) algebra anymore,
we still have the following result.

PROPOSITION VIII.3.8. Let L be an algebraically closed field over Z;,. Then the following are in canon-
ical bijection.

(i) Semisimple L-parameters o : Wg — G(L) x W, up to G(L)-conjugation.

(ii) L-valued points of Z'(Wg, G) / G.
(iii) Collections of maps of Z-algebras

O : (’)((G xQ)" ) G’) — Map(WE, L)

for n > 1, linear over O(Q") — Map(W}, L), such that for any map g : {1,...,m} — {1,...,n}, the
diagrams

(G x Q™ | G) 2> Map(Wp, L)

7l |

@
O((Gx Q)" | G) 2~ Map(W, L)
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induced by pullback, and
. A On n
O((G % Q)" | G) —— Map(Wp;, L)

| |

O((G % Q™ | G) 2 Map(Wp, L)

induced by multiplication, commute.

PrOOF. We already know that (i) and (ii) are in natural bijection. The recipe above gives a canonical
map from (ii) to (iii). Now take data as in (iii). Forgetting the continuity of all maps, we see that data as
in (iii) gives rise to a semisimple 1-cocycle ¢ : Wg — G(L) (of discrete groups), up to conjugation. We
need to see that if the data in (iii) are maps of condensed sets, then ¢ is also a map of condensed sets (this
condition does not depend on the representative of its conjugacy class). This follows from the proof of
[Laf18| Proposition 11.7], in particular the choice of finitely many elements of 1, ..., v, € W such that

©(7) is determined by the closed G-orbit in (G x Q)" determined by (71, . . ., Vs, ) via ©,,4 1, cf. [Laf18)
Lemma 11.10]. O

VIIL.4. Excursion operators

One can use Proposition|[VIIL3.8|to construct L-parameters in the following general categorical situa-
tion. In order to avoid topological problems, we work in the setting of the discrete subgroup W C Wg/P;
in fact, we can take here any discrete group W. Let A be a discrete Z,-algebra and let C be a Z,-linear
category. Assume that functorially in finite sets /, we are given a monoidal Rep;, (Q')-linear functor

Repzz(é Q) — End(C)BWI Ve Ty

where End(C) is the category of endomorphisms of C, and End(C)” WE is the category of I’ € End(C)
equipped with a map of groups W/ — Aut(F).
The goal of this section is to prove the following theorem; this is essentially due to V. Lafforgue [Laf18]].

THEOREM VIIIL.4.1. Given the above categorical data, there is a natural map of algebras
Exc(W, G) = colim, 5, ,w) O(Z'(Fn, ()¢ — End(idc)
to the Bernstein center of C (i.e., the algebra of endomorphisms of the identity of C).

To prove Theorem [VIII.4.1) we construct explicit “excursion operators”. These are associated to the
following data.

DEFINITION VIIL.4.2. An excursion datum is a tuple D = (I, V, a, 3, (7i)icr) consisting of a finite set
I, an object V' € Repy, ((G Q)!) with maps o : 1 — V|RepZ (@) B : V|RepZ @ — 1 and elements
] e
v eW,iel.

Here, the restriction Rep, ((G' % Q) — RepZe(CA}) is the restriction to the diagonal copy of G' C
Gl c (G x Q).
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Now consider excursion data D = (I,V, v, 3, (7i)icr). These give rise to an endomorphism of the
identity functor of C, as follows.

)i T, .
Spiid =T, Loy, Ui, 2 g

Varying the ;, this gives a map
W! — End(idc)
to the endomorphisms of the identity functor on C.

We note that if we have two excursion data D = (I, V, o, B, (Vi)ier) and D' = (I, V', &/, ', (7i)ier)
with same finite set I and elementsy; € W,andamap g : V — V’ taking o to o/ and /3’ to 3 (by post- and
pre-composition), then Sp = Spr. Indeed, the diagram

i) 1
Ty Ta Ty (ilies Ty ? Ty
T l ’ l gT
/ )i /
Ty —= Ty Oilies Ty ? Ty

commutes. Now note that (V, «, /3) give rise to an element

f=FfV,a,8) € OG\(GxQ)/G),

the quotient under diagonal left and right multiplication. Indeed, given any g; € G x Q, i € I, one can
form the composite

19y (9¢)ier V& 1,

giving an element of the base ring; as o and /3 are equivariant for the diagonal G-action, this indeed gives
an element

f=FV,a,8) € OG\(GxQ)/G).

Conversely, given f we can look at the (G x Q)”-representation V = V; C O((G' x Q) /@) generated by
f. This comes withamap ay : 1 — Vf|RepZ () induced by the element f, and a map [y Vf|RepZ @ 1
14 14

given by evaluation at 1 € (G x Q)”. If we replace V by the subrepresentation generated by a, then there
is a natural map V' — V/ taking o to oy and 37 to 3. The above commutative diagrams then imply that
Sp depends on (V, a, 3) only through f, and we get a map (a priori, of Z;-modules)

ol O(G\(G x Q)!/G) — Map(W!, End(idc)).

Restricted to O(Q?), this is given by the natural map O(Q) — Map(W?, A) (and A — End(id¢)). Also,
it follows from the definitions that for any map ¢g : I — J, the diagram

OC\(G % Q) /) —2~ Map(W!, End(ide))

| |

O(G\(G % Q)7 /G) —2*~ Map(W, End(ide)),

induced by pullback along g, is cartesian.
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We want to check that © is a map of algebras. For this, we use a version of “convolution product =
fusion product” in this situation. Namely, given f1, f» € O(G\(G x Q)!/G), we can build their exterior
product f; X fo € O(G\(G x Q)™ /G). Then one easily checks

OM(FL B o) (i vidier) = O (£1)((30)ien) O (f2) (V)ien).
Applying now functoriality for pullback under ILUI — I, it follows that indeed ©1(f; f2) = ©1(f1)O!(f2).

For any n > 0, we can identify

via pullback under (g1, ...,9n) — (1,91, ..., gn). This translates 0101} into maps of Z-algebras

0, : O((G x Q)" J G) — Map(W",End(idc))
over O(Q") — Map(W", A), still satisfying compatibility with pullback under maps g : {1,...,m} —
{1,...,n}.

Arguing also as in [Laf18| Lemma 10.1, equation (10.5)] and the resulting [Laf18, Proposition 10.8 (iii),

Definition-Proposition 11.3 (d)], one sees that the maps ©,, are also compatible with the multiplication
maps induced by such maps g, thus finishing the proof of Theorem |VIII.4.1

In particular, using the description of geometric points, Theorem|VIII.4.1/implies the following propo-
sition.
CoroLLARY VIII.4.3. Assume that A = L is an algebraically closed field and X € C is an object with
End(X) = L. Then there is, up to G/(L)-conjugation, a unique semisimple L-parameter
ox W = G(L) x W
such that for all excursion data D = (I, V, «, 3, (7i)ier), the endomorphism Sp(X) € End(X) = L,

X =Tu(X) S T (x) 22 1o x) B X)) = X

is given by the composite

Loy exOlier v, 6 p

VIIL.5. Modular representation theory

The goal of this section is to give a proof of Theorem|[VIII.3.6} In fact, we prove a slight refinement of
it, concerning perfect complexes, that will be useful in the construction of the spectral action.

THEOREM VIIL5.1. Assume that ¢ does not divide the order of 7} (G)tor. Then the map
COlim(n,Fn—>W) O(Zl(Fm é)) - O(ZI(VV, é))
is an isomorphism in the presentable stable co-category Ind Perf(* /(). Moreover, the co-category Perf(Z' (W, )/ G)

is generated under cones and retracts by Perf(+/G), and Ind Perf(Z' (W, G)/G) identifies with the oo-
category of modules over O(Z' (W, @)) in Ind Perf(x/G).

The difficulties in this theorem all arise on the special fibre. Indeed, we will show below that we can
reduce to the following version in characteristic /.
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TuaeoreM VIIIL.5.2. Assume that ¢ does not divide the order of Fl(é)tor, and let L = F,. Then the
map

colim,, g, ) O(Z (Fn, G)) = O(Z"(W,G)y)

isan isomorphism in the presentable stable co-category Ind Perf(* /(). Moreover, the co-category Perf(Z (W, G) 1,/ G)
is generated under cones and retracts by Perf(x/G).

Then we have the following reduction:

THEOREM [VIIL5.2| iMPLIES THEOREM [VIIL.5.1l For the colimit claim, we need to see that for all rep-
resentations V' of G, the map

colim,, g, ,wy RT(G, O(Z'(F,,G)) ® V) — RT(G,0(Z*(W,G)) @ V)

in D(Zy) is an isomorphism. It is an isomorphism after inverting /, as then the representation theory of

G is semisimple, and it is true on underlying complexes by Proposition [VIIL3.5 Thus, it suffices to show
that it is an isomorphism after reduction modulo ¢, or even after base change to L, which follows from

Theorem |VIII.5.2

For the other half, note first that if Perf( B() generates Perf(Z' (W, G)/G), then it follows by Barr—
Beck-Lurie [Luri6} Theorem 4.7.4.5] that Ind Perf(Z' (W, G) /G is the oo-category of modules over O(Z* (W, G))

in Ind Perf(BG). Now take any V € Perf(Z! (W, G)/G). As its lowest cohomology group is finitely gen-
erated, we can find some surjection from an induced vector bundle onto it, and by passing to cones reduce

the perfect amplitude until V' is a G-equivariant vector bundle on Z'(W, ). We may then again find a
representation V' of G and a surjection V'@ O(Z' (W, G)) — V. This map splits after inverting ¢, showing

that V is a retract of an induced vector bundle up to a power of ¢. Thus, it suffices to show that V' /¢ lies in
this subcategory, and this follows from Theorem [VIII.5.2 O

Thus, we concentrate now on Theorem |VIII.5.2} which takes place over an algebraically closed base

field L of characteristic /. For the proof, we need many preparations on the modular representation theory

of reductive groups, for G and many of its subgroups. As everything here happens on the dual side but we
do not want to clutter notation, we will change notation, only for this section, and write G for reductive
groups over L.

VIIL.5.1. Good filtrations. First, we need to recall the notion of good filtrations. Let G be a reductive
group over Lj; recall that “reductive” always means connected for us. Let 7' C B C G be a torus and Borel
for G. For any dominant cocharacter A of 7', we have the induced representation

V= HG/B,0()\)).
A representation V' of G has a good filtration if it admits an exhaustive filtration
0=V, ,cVpcwvic...cV

such that each V;/V;_; is isomorphic to a direct sum of V’s. If one picks a total ordering 0 = g, A1, . ..
of the dominant cocharacters, compatible with their dominance order, one can choose V; C V to be the
maximal subrepresentation admitting only weights \; with j < 4. In that case, (V;/V;_1)* is generated by
its highest weight space W, and by adjunction there is a map

Vi/Vier = W; @ V3
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then V' admits a good filtration if and only if all of these maps are isomorphisms. For this, it is in fact
enough that V; — W; ® V, is surjective: The kernel is necessarily given by V;_j, as it has only smaller
weights.

Akey resultisthatif V and W admit good G-filtrations, then so does V®@W; thisis a theorem of Donkin
[Don8s]] and Mathieu [Matgo]] in general. Moreover, if V admits a good filtration, then H*(G,V) = 0
for ¢ > 0: This clearly reduces to the case of V' = V, in which case it follows from Kempf’s vanishing
theorem [Kem76]. These results imply the following standard characterization of modules admitting a
good filtration.

ProprosITION VIIL5.3 ([Don8il]). A G-representation V admits a good filtration if and only if for all
A, one has
HY(G,V®Vy) =0
fori > 0.

Using this, one can define a well-behaved notion of a “good filtration dimension” of V/, referring to the
minimal i such that H/(G,V ® V) = 0 for all A and j > 4. Equivalently, there is a resolution of length
i by representations with a good filtration. In fact, this notion lets us put an interesting ¢-structure on the
stable co-category Perf(*/G) of perfect complexes of G-representations.

DEFINITION VIIL.5.4. Consider the stable co-category Perf(*/G) of bounded complexes of G-representations.
The good filtration ¢-structure is defined as follows.

(i) An object M € Perf(x/G) lies in the connective part of the t-structure if for all A one has
HY(G,M ® V) = 0 for i > 0; equivalently, if M has good filtration dimension < 0.

(ii) An object M € Perf(x/G) lies in the coconnective part of the ¢-structure if for all A one has
H{(G,M ® A)) =0fori < 0.

Equivalently, the connective part is generated under finite colimits by the V. In particular, any M
that is connective in the good filtration ¢-structure is also connective in the usual ¢-structure. Using Propo-
sition the existence of the ¢-structure is easy to see, for example by induction on the subcategories
generated by V) ,..., V) .

An important observation on this ¢-structure is the following. Note that the good filtration ¢-structure
on Perf(x/G) formally extends to one on the Ind-category Ind Perf(x/G).

ProrosITION VIIL5.5. The good filtration ¢-structure on Ind Perf(*/G) is left-complete.

We note that the standard t-structure on Ind Perf(x /G) is far from left-complete, due to issues of infinite
cohomological dimension (which is the main issue we have to address).

PROOF. Let M € Ind Perf(x/G). To see that M = 0 it suffices to see that for all \, one has RI'(G, M ®
V) = 0. But if M is co-connective for the good filtration t-structure, then also RI'(G, M ® V) is
oo-connective, and hence zero. ]

Another key result we need is the following.

THEOREM VIIL5.6 ([Kop84]], [Don88]]). The G' x G-representation O(G) (via left and right multipli-
cation) admits a good filtration.



VIIL.5. MODULAR REPRESENTATION THEORY 287

In particular, we have the following corollary. For any n > 0, let F}, be the free group on n letters.

COROLLARY VIIL5.7. For any map F,, — Aut(G), the G-representation O(Z!(F,, G)) admits a good
filtration.

PrOOE. Note that Z!(F,,G) = G", where the G-action is that of simultaneous twisted conjugation
(by the n given automorphisms of ). But O(G™) admits a good filtration as representation of G*", and re-
stricting to G C G?" it remains good by stability under tensor products (and as the induced representations
of G*" are tensor products of induced representations of each factor). O

VIIL5.2. Equivariant vector bundles. Assume that X = Spec(A) is an affine scheme of finite type over
L, equipped with an action of a linear-algebraic group G (not assumed reductive yet). We will be interested
in the question whether all G-equivariant vector bundles on X can be resolved, up to retracts, by those that
are pulled back from representations of G via X /G — */G. It is convenient to frame this question in terms
of the stable co-category Perf(X /G) of G-equivariant perfect complexes on X (i.e. the full subcategory of
dualizable objects of the quasicoherent derived co-category D (X /G)). We warn the reader that, being in
positive characteristic, these objects are usually not compact in D(X /G), even when G is reductive. Let
Perf" (X /G) C Perf(X /G) be the full subcategory generated under cones and retracts by the image of
Perf(x/G).

ProrosITION VIIL5.8. Let M € Perf(X /G), with dual M* and internal endomorphisms M ® 4 M* €
Perf(X /G). Then M € Perf"™(X /@) if and only if the natural map

colim[... > M @ A® M* - M, M*] - M @4 M*

in Ind Perf(*/G) is an isomorphism.

The left-hand side computes the tensor product M ® 4 M™ when all three objects are considered in
Ind Perf(x/G).

PROOF. If M € Perf" (X /G), we need to see that it is an isomorphism. In fact, it will be an iso-
morphism for all N € Perf(X/G) in place of M*. This can be reduced to M = My ®1, A for some
representation M of G; and then replacing N by N ® M}, we can even reduce to My = L,so M = A. In
that case, the augmented simplicial object underlying the displayed natural map has an extra degeneracy,
yielding the isomorphism.

In the other direction, let M’ be the image of M in Moda(Ind Perf(x/G)), and N’ the image of
N = M* in there. Then there is a natural map M’ ®4 N’ — A in Mod 4 (Ind Perf(*/G)) as the for-
getful functor Ind Perf(X /G) — Mod 4 (Ind Perf(x/G)) is lax symmetric monoidal (being right adjoint
to the symmetric monoidal pullback). On the other hand, we also get a map A — M’ ®4 N’ by our as-
sumption, as that tensor product agrees with M ® 4 N. This way, we see that M’ is a dualizable object
of the symmetric monoidal presentable stable co-category Mod 4 (Ind Perf(x/G)) with compact unit, and
hence M’ is a compact object, and therefore a retract of a finite complex of induced vector bundles (as those
are compact generators of Mod 4 (Ind Perf(*/()) essentially by definition). As on bounded complexes, the
forgetful functor Ind Perf(X /G) — Mod 4 (Ind Perf(x/Q)) is fully faithful, this implies the same for M,
as desired. O
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A curious consequence of Proposition [VIIL5.8|is that when G is reductive with Borel B C G, then
to check whether )M can be resolved G-equivariantly by induced G-vector bundles, it is enough to resolve
B-equivariantly by induced B-vector bundles. Slightly more generally:

CoroLLARY VIIL.5.9. Assume that G° is reductive with moG of order prime to /,and let B C G° bea
Borel subgroup of G°. Let M € Perf(X /G) and assume that the corresponding object M|p € Perf(X /B)

lies in the subcategory generated under cones and retracts by Perf(x/B). Then M € Perf"d(X /).

PROOF. By Proposition|VIIL.5.8, we have to see that the natural map
colim[... > M @, A®r M* - M & M*] - M ®4 M*

in Ind Perf(*/G) is an isomorphism. But Ind Perf(x/G) — Ind Perf(x/G°) is conservative (as moG is of
order prime to / so that its representation theory is semisimple), and Perf(x/G°) — Perf(x/B) is fully
faithful by Kempf vanishing (and of course symmetric monoidal). Thus, it suffices to prove that the same
map is an isomorphism in Ind Perf(/B). But this follows from Proposition[VIIL5.8in the other direction.

O

A variant of Proposition[VIIL5.8|is the following, which shows that the question of generating perfect
complexes by induced vector bundles has direct relations to the theory of good filtrations. We will actually
only use the easy direction of this proposition, and only in order to show that the assumption that ¢ does
not divide the order of the fundamental group is necessary.

ProOPOSITION VIII.5.10. Assume that G° is reductive and moG of order prime to /,and G actson X =
Spec(A) such that A admits a good G°-filtration. Let M &€ Perf(X/G) and assume that M, without its

A-action, has good G°-filtration dimension < 0, i.e. lies in the connective part of the good G°-filtration

t-structure on Ind Perf(x/G). Then M € Perf™(X /G) if and only if for all N € Perf(X/G) that have
good G°-filtration dimension < 0, also M ® 4 N has good G°-filtration dimension < 0.

PROOF. If M € Perf"(X /@), then the natural map
colim[... > M ®, A®L, N - M &, N| - M ®4 N

in Ind Perf(/G) is an isomorphism, as was proved in the beginning of the proof of Proposition
But if IV lies in the connective part of the good G°-filtration ¢-structure, then all terms on the left-hand side
lie in this connective part, and hence so does the colimit. It follows that also M/ ® 4 N lies in the connective
part of the good filtration ¢-structure.

For the converse, we have to see that
colim[... > M @, AQ M* - M, M*] - M @4 M*
is an isomorphism in Ind Perf(*/G). But this map is gotten by starting with the map
colim[... > A®p AL M* - A, M*] - M*

in Ind Perf(X /G) and applying M ® 4 —. Note that this colimit becomes an isomorphism in Ind Perf(*/G),
as then the augmented simplicial object has extra degeneracies. By [TvdK10| Corollary 1.5], M* has finite
good G°-filtration dimension. This implies that the preceding colimit can be written as a sequential colimit
of finite colimits, where the finite colimits become increasingly connective in the good G°-filtration -
structure. Now we can apply M ® 4 — which by assumption preserves connectivity in the good G°-filtration

t-structure, and conclude by Proposition |VIIL.5.5 O
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As an application of the preceding results, we have the following key result.

PropOsITION VIIL.5.11. Assume that G° is reductive and moG is of order prime to /. Let G act on itself
via conjugation. Let i : * — G be the inclusion of the unit element. The following are equivalent.

(i) The order of 71 (G°)tor is not divisible by .
(ii) The object i, L € Perf(G/G) lies in Perf™(G/Q).
(iii) The inclusion Perf™(G/G) C Perf(G/@) is an equality.

We are of course mainly interested in the implication from (i) to (iii), but the backwards direction tells
us that (i) is really required.

PROOF. It is clear that (iii) implies (ii). Let us first show that (ii) implies (i). We can assume that G
is connected. Let f : G — G be a central extension such that G has simply connected derived group,
with kernel Z C G of order divisible by £. Then both f+Og and i, L are in Perf(G/G) and have good
filtrations. In fact, also / = ker(Og — i.L) has a good filtration. Proposition shows that if
i»L € Perf™(G/G), then I ®o(@q) O(G) must have a good filtration. This implies that the map

O - 0(2)% =0(2)

must be surjective. But it is known that the /-primary part of the center is contained in the unipotent locus,
hence all functions in O(G)% are constant on them.

Now we show that (i) implies (ii). Using the criterion of Proposition we see that we can assume
that G is connected. We can also assume that G has simply connected derived group, via a central extension
(noting that finite free maps of degree prime to £ admit a canonical splitting on structure sheaves given by
the trace map). We use Corollary so it suffices to show that i, € Perf(G/,4B) is generated
by vector bundles induced from B-representations. (Here, B acts on G via conjugation.) Now choosing a
generic dominant cocharacter, so that pairing it with the roots induces a total order on the roots of G, we
can filter G by root spaces, and (using any auxiliary filtration of the torus part) find a B-equivariant flag
of smooth subvarieties

Xo={l}cXiC...C Xgimp =B C ... C Xgimg = G.

Each X;_1 C X; is a Cartier divisor, whose corresponding B-equivariant line bundle is induced from a
character of B. Indeed, for i < dimB one has a map from X; to the corresponding G,,, (with trivial B-
action) or root space G, (with B acting via the root). For i > dim B the situation arises via pullback from a
similar filtration on the flag variety G/ B, with each term being a closed Bruhat stratum. When the derived
group of G is simply connected, all relevant line bundles are induced from B-representations.

Thus, by descending induction on i we can show O(X;) € Perf™(G/,4B), yielding the desired result
fori = 0.

Finally, we prove that (ii) implies (iii). For any K € Perf((G x G)/G) (where G acts on both factors
via conjugation), we get an endofunctor of Ind Perf(G/G) via p2.(p; — ®K). Denoting

A:G/G = (GxG)/G

the diagonal, the object K = A,/ induces the identity endofunctor of Ind Perf(G/G). On the other
hand, if K = pj K for some K € Perf(G/G), then the induced functor is given by

p2sp] (— @ Ko) = 7w (— @ Ko)
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where 7 : G/G — %/G is the projection. In particular, this functor has image in Ind Perf™(G/G) C
Ind Perf(G/G). Thus, if AxOg/q lies in the subcategory of Perf((G x ()/G) generated under cones
and retracts by the image of pj Perf(G/G), then the identity endofunctor of Ind Perf(G/G) factors over
Ind Perf™(G/G), giving the desired result. But the map

q:(GxG)/G—G/G: (g1,92) — 9195 *

sits in a cartesian diagram
(GxG))GL1—~G/G
| |
G/G—= */G

and A.Og ¢ € Perf((G x G)/Q) arises via pullback from i.L € Perf(G/G). Thus, part (ii) gives the
desired claim by pullback. O

In fact, the proof for (iii) applies more generally, for example to the following result.

PrOPOSITION VIIL5.12. Assume that G° is reductive and the orders of myG and 71 (G°)ior are not
divisible by ¢. Let ©1, ..., ©,, be automorphisms of G, and let G act on G" via

g- (917 oo 7gn) = (991@1(9)717‘ .. ’ggn@n(g)*l)
en the inclusion Perf™4(G" oG) C Perf(G™/o(@) is an equality.
Then the incl (G /oG f(G" /oG quality

lies in Perf™(G™/@G). Indeed, this follows from Proposition [VIIL5.11| applied to the group G™ (upon
pullback from G™/G™ to G™ /(). Now arguing as in the proof of (iii) in Proposition it suffices
to generate A Ogn /¢ in Perf((G" x G™)/eG). But we have the map

q: (G"xG")/eG = G"/G: (g1, 9n 915 - 7g;z) = (919/1717 e agng;:l)
where on the target G acts by simultaneous (untwisted) conjugation, and A.Ogn /oG is the pullback of
isL € Perf(G"/G). This can be resolved by induced vector bundles, and the resulting resolution of

AxOgn /o shows that the identity endofunctor of Ind Perf(G"/oG) factors over Ind Perf"(G" /o G),
giving the result. O

Proor. First,ifall ©; =idand i : * — G" is the inclusion of the oriiin, the object i, L € Perf(G"/G)

Another situation of interest will be the following. Consider a derived fibre product
X=X
if i}
Xo—> X,
where X, X and X are classical affine schemes of finite type over L equipped with compatible actions

of G and where iy (and hence 7) is a closed immersion and a complete intersection. (Thus, only X can be

derived.) Write
X = Spec(A), X = Spec(A), Xo = Spec(Ag), Xo = Spec(Ap).

Again, we assume that G° is reductive and mG is of order prime to /.
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ProposITION VIII.5.13. Consider a derived fibre product of affine schemes of finite type with G-action
as above, where i is a closed immersion and a complete intersection. In the following statements, assump-
tions accumulate, so for example in part (iv) all assumptions from parts (i), (ii) and (iii) are active.

(i) Assume that Ay € Perf™(X,/G) C Perf(X/G). Then the map Ag ®2, A — Ais an isomor-
phism in Ind Perf(x/G).

(ii) Assume in addition that Ay, Ay and A have a good filtration. Then A € Ind Perf(x/G) lies in the
connective part of the good filtration ¢-structure.

(iii) Assume in addition that ker(Ay — Ap) has a good filtration. Then fib(A — A) € Ind Perf(x/G)

lies in the connective part of the good filtration ¢-structure.

(iv) Assumein addition that Perf(—/G) = Perf™(—/G) for X and X. Then Perf(X /G) = Perf"(X /G).

Note that if A is underived, then parts (ii) and (iii) just affirm that A and ker([l — A) have a good
filtration.

PrOOF. Under the assumption of (i), Ay admits a finite resolution by G-equivariant Ap-modules of the
form V ® Ay, and hence the tensor product Ay ® A Aisbounded. As on bounded complexes, the forgetful
functor Ind Perf(x/G) — D(x) is faithful, (i) follows. The tensor product in Ind Perf(x/G) preserves
connectivity in the good G°-filtration ¢-structure, so that part (i) together with the assumptions of (ii)
imply that A lies in the connective part. The same argument applies to the ideal, giving (iii).

For part (iv), it suffices to see that Perf(X /G) is generated by the image of Perf(X /G). Arguing as in
Proposition|VIII.5.8) we have to see that for all M € Perf(X /G) with dual M*, the natural map

colim[... = M ®; A@; M* - M @3 M*] - M @4 M"
in Ind Perf(*/G) is an isomorphism. We note that each term here is of the form
M @4 K®a M*

for certain K € D(X x 3 X/G) with perfect projection to X (in particular, bounded coherent). (Here,
X X ¢ X denotes the derived intersection.) Indeed, M ® 4 M* corresponds to the diagonal, while M ® 5 M*
corresponds to A ® 3 A, i.e. the structure sheaf of X X 3+ X /G (where the fibre product, just like all tensor
products, is derived). Moreover, all transition maps come from maps between K’s, so the cone of the above
displayed map can be written as a sequential colimit of

M®AKTL®AM*

for various K, € D(X X X /G). In fact, as i arises as the base change of ig, all the K, similarly arise as the
base change of complexes K, o € D (X X %, Xo/G)along g : X x5 X — Xp X %% Xo. Moreover, project-
ing to Xo/G, the K, ¢’s become increasingly connective in the good filtration ¢-structure (as the relevant
complex becomes split exact). Thus, to see that this sequential colimit vanishes, by Proposition|VIII.5.5| it is
enough to show that M ® 4 g* K ® 4 M™ becomes increasingly connective in the good filtration ¢-structure
if (the underlying G-representation of) Ky € D(X x %, X0/G) becomes increasingly connective in the
good filtration ¢-structure. To see this, we can use truncations in the good filtration ¢-structure to assume
that K lives in a single degree for the good filtration ¢-structure. (This step is the main reason for intro-
ducing the good filtration ¢-structure.) But then it is a module over H gOOd(Ag ®3, Ao) = Ao. (This step

uses that ker(4g — Ay) has a good filtration.) As Perf(Xy/G) = Perf"(X(/G), we can then resolve
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K by induced bundles as in Proposition |VIIIL.5.8{and hence reduce to the case Ky = V ® Ay for some
V' € Perf(*x/G), becoming increasingly connective in the good filtration ¢-structure. But then

MagKQaM =Me@A MV

whose connectivity in the good filtration ¢-structure increases with that of V' as soon as M ®4 M™ has
bounded good filtration dimension. But M ©4 M* € Perf(X/G) = Perf™(X /@), and all objects of
Perf"d(X /@) have bounded good filtration dimension O

These results are already sufficient to handle the case of the space of L-parameters of a compact Riemann
surface. Indeed, this is a certain fibre product

X —=G%

|

*4>G

and the preceding propositions apply to show Perf(X/G) = Perf"(X/G), and identify A with the ex-
cursion algebra. In fact, the same argument applies for tame L-parameters of local fields. It remains to deal
with the wild part.

VIIL5.3. Fixed point subgroups. We will need to know some properties of the fixed points H = G¥
of reductive groups G under a (finite) group P of automorphisms of G of order prime to £. (Our choice of
notation P is motivated by the later application to the wild inertia group.) For technical reasons, we will
allow G to be disconnected, but always with G° reductive and moG of order prime to ¢. First, we have the
following structural result.

ProPOSITION VIIL.5.14. Let L be an algebraically closed field of characteristic £ > 0, and let G be a
linear algebraic group over L such that G° is reductive and 7o is of order prime to . Assume that P is
a finite group of order prime to £ acting on G and let H = G be the fixed points. Then H is a smooth
linear algebraic group, H° is reductive, and moH is of order prime to /.

We note that our proof that my H is of order prime to ¢ probably uses unnecessarily heavy machinery.
Under the assumption that P is solvable (the only case relevant to us), this can be deduced much more
directly from Steinberg’s theorem [Ste68, Theorem 8.1] by reducing to cyclic P and simply connected G.

PROOF. We can assume G = G°. It is a standard fact that the fixed points of a smooth affine scheme
under a finite group of order prime to the characteristic is still affine and smooth. Moreover, by [PYo02]
Theorem 2.1], H° is reductive.

For the final statement, we consider the action of G on [] p\(1} G» where it acts on the factor enu-
merated by © € P through O-twisted conjugation. Note that O(]]p\ 1y G) has a good G-filtration. By
[TvdK10| Corollary 1.5], for any G-equivariant finitely generated O(] ] P\{1} G)-module M, the good fil-
tration dimension of M is finite, and in particular H*(G, M) = 0 for all large enough .

20ne could also cite [TvdK10] Corollary 1.5].
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Now G/H is a closed orbit of G acting on [ | P\{1} G (the orbit of the identity element). Moreover, if
7o H has an element of order ¢, then we get a subgroup H' C H with moH' = 7 /{Z. In that case,

RU(G,0(G/H")) =2 RU(H', L) = RT(Z/VZ, L)

has cohomology in all positive degrees, while O(G/H’) correponds to a G-equivariant coherent sheaf on
[Ip1y G (equipped with its ©-conjugation), so this contradicts the previous paragraph. O

Assume from now on that P is solvable. Our goal now is to prove the following result. This simul-
taneously generalizes the classical case of Levi subgroups, and the case of involutions known as Brundan’s
conjecture [Brug8], [vdKo1]. The remaining cases are for exceptional groups, and are discussed under some
restrictions on ¢ in [HM13].

THEOREM VIII.5.15. The subgroup H° C G° is a Donkin subgroup. In other words, for any represen-
tation V' of G° that admits a good G°-filtration, also V|- admits a good H °-filtration. Equivalently, for

any representation W of H° that admits a good H °-filtration, also Ind%. W admits a good G°-filtration.

A notable consequence is that the well-known assertion that Levi subgroups are Donkin subgroups can
be generalized to the statement that centralizers of regular semisimple elements define Donkin subgroups.
Thus the proof below gives, in particular, a new proof that Levi subgroups are Donkin subgroups.

PRroOF. First, Proposition|VIIL.5.3[shows that the formulations are equivalent. Indeed, Proposition|VIIL5.3
applied to the group H° shows that the first statement is equivalent to the assertion that for all represen-

tations V' of G° with a good G°-filtration and all representations W of H° with a good H °-filtration, one
has H(H®, Vo @ W) = 0. But H*(H®,V|go ® W) = H(G°,V @ Ind%. W), so Proposition |VIIL5.3
applied to the group G° translates this into the second statement.

By induction, we can assume that P is a cyclic group of prime order p # ¢,so P = Z/pZ. Let © denote
the automorphism of G corresponding to 1 € Z/pZ = P. We can do also evidently assume that G is
connected, and reduce to the case that GG is simple and simply connected: As the property of admitting a
good filtration is detected after restriction to the derived group, and also after passing to finite covers, we
can assume that G is simply connected. In fact, decomposing G into simple factors, we can assume that P
permutes the simple factors of G transitively. If G is not simple, then G = [[ » H with P-action permuting
the factors,and H C G = []p H is the diagonal embedding, so the result follows from the stability of
good filtrations under tensor products. Thus, we can assume that G is simple (and simply connected). In
particular, H is connected by [Ste68, Theorem 8.1].

We will first handle the case W = 1; or more precisely, the assertion that O(G/H) = Ind%1 has a
good G-filtration. This argument works directly for arbitrary G as in the statement of the theorem, so does
not need the previous reduction. Let

X ={(90,-:9p-1) €G" | 90O(g1) --- O (gp-1) =1} C G”
endowed with the simultaneous O-conjugation by G;i.e. g € G actson (g;); = (9o, ..., gp—1) € X via
9(9:)i = (99:0(9) )i

Moreover, endow X with the G-equivariant P = Z/pZ-action taking (go, g1 - - ., gp—1) to (g1, - - -, Gpy» 90)-
Let Y = X”. As X is smooth affine and P is of order prime to /, also Y is a smooth affine scheme, equipped
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with a remaining G-action. Concretely,
Y ={g0 € G| goO(go)--- 0" go) =1} C G

equipped with ©-conjugation. A simple calculation on tangent spaces shows that this is a finite disjoint
union of G-orbits. In particular, the orbit of 1 € Y C G is given by G/H where H = G¥ = G°.

By Lemma |VIIIL.5.16/below, the map

colimjcpO(] [ X) = O(X*) = O(Y)
P’ﬂ
is an isomorphism in IndPerf(*/G). But all terms on the left-hand side admit a good G-filtration, hence
also O(Y) lies in the connective part of the good filtration ¢-structure, and so admits a good G-filtration.
In particular, the retract O(G/H ) has a good G-filtration.

At this point, we make use of the reduction to the case that G is simple and simply connected. Assume
first that © is an inner automorphism. Thus, H is the centralizer of some regular semisimple element
g € G (with g € Gyq of order p). We can find some maximal torus 7' C G containing g, which is then
also a maximal torus of H. Choose an enumeration of the dominant weights 0 = Ag, A1, ... of G such that
all weights of V), are contained in the Weyl group orbit of A, ..., \;. We argue by induction on ¢ that
V| has a good H-filtration. More precisely, let W; C W be the subset of elements w € W such that
w); is H-dominant. Then we claim, by induction on 4, that there is a surjective map

Valr = @ Vi,
weW;
whose kernel has a good H-filtration (where all weights that occur in the kernel are in the Weyl group
orbit of A, ..., )\1;1).

Note that there isindeed such a natural map, as V, | 7 hasa w\;-weight space of dimension 1 forall w €
W;. We need to see that the homotopy fibre X of this map is connective in the good H -filtration ¢-structure.
This homotopy fibre has only weights in the Weyl group orbit of Ay, ..., A\;_1. By the characterization of
the connective part of the good filtration ¢-structure it suffices to see that

RU(H, X @ Vi)

is connective for all j < i and w’ € W;. But RT'(H, V A © Vi, )\j) = 0, so using the definition of X this
can be rewritten more easily as
H™(H, Vg ® Vi) =0
for m > 0. Equivalently, for all j < 1,
H™H,Vylue @ Vi) =0
w'eW;
for m > 0. But by induction on ¢ we have the surjective map
Tl @ Vi,
w'eW;

whose kernel has a good H-filtration (with smaller weights). Thus, doing also an induction on j, we see
that it suffices to see that
Hm(H,V,\,L.|H Y V)\j|H) =0
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form > 0. But
H™H,V|n®Vylg)=H"(G,Indfj1® V), ® Vy,) =0
as all three tensor factors admit a good G-filtration, hence so does the tensor product.

It remains to handle the case that G is simple and simply connected and © is an outer automorphism,
so necessarily p = 2 or p = 3. We could finish this off by appealing for p = 2 to the case of involutions
handled by Brundan [Brug8] and van der Kallen [vdKo1[] and for p = 3 by noting that this only occurs
when G' = Sping, where H is either G3 C Sping (for the diagram automorphism) which is handled in
[Brug8]], or the fixed points SL3 C G2 C Sping of an inner automorphism of order 3 of G2 (handled either
by the above, or by another reference to [Brug8]]). On the other hand, we can also repeat the arguments
above. Namely, we note that we can in general lift any highest weight (i.e. dominant cocharacter) u of H
to a highest weight A of GG and then a similar inductive argument shows that there is some finite set X, of
dominant cocharacters of H (with p € X,) such that there is a surjective map

\Y% )\‘ H — @ Vﬁ
weX,
for which the kernel has “smaller” weights and a good H-filtration. Now if A is general, we want to see
that V| has a good H-filtration. We have to see that for all dominant cocharacters ;1 of H, the H-
representation V) |g ® Vﬁ[ has no higher cohomology. Pick some dominant cocharacter A, of G lifting
A. By induction on p and the preceding claim, it suffices to see that V) |g @ V A |7 has no higher H-

cohomology. But this agrees with the G-cohomology of Ind%j1 ® V) ® V A, Which has no higher G-
cohomology as all three tensor factors have good G-filtrations. O]

We used the following key lemma in the proof. Its full force will be required later to prove Theo-

rem|VIII.5.2

LEmMA VIIL5.16. Let G be a linear algebraic group over an algebraically closed field L of characteristic
¢ such that G° is reductive and moG is of order prime to /. Let © be an automorphism of G of prime order
p #£ L. Let

X ={(g0,---,9p-1) € G" | 90O(g1) - - - O(gp-1) = 1}

equipped with the G-action of simultaneous ©-conjugation, and the P = Z/pZ-action of cyclic permuta-
tion. Consider the corresponding augmented cosimplicial G-space

XP—>X:;HX....
P

Then the map
colimjca O(] [ X) = O(X ")
P’ﬂ
is an isomorphism in IndPerf(*/G).

PROOF. The idea is to introduce the formal completion X of X along X and then observe that on the
one hand, replacing X by X yields an isomorphic colimit; and on the other hand, that there is a canonical
(G, P)-equivariant retraction from X onto X*. More precisely, after replacing all terms [ [ 5. X by formal
completions along X7, the augmented simplicial G-space acquires an extra degeneracy.
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To execute this strategy, we have to enlarge IndPerf(*/G) in order to allow power series algebras. The
following discussion is inspired by the theory of solid modules [[CS]. Note that IndPerf(x/G) is freely
generated, as a presentable stable co-category, by the exact category Rep(G). (So IndPerf(x /@) is the oo-
category of contravariant functors from Rep(G)°P to spectra that take exact sequences to fibre sequences.)
Let Pro(Rep((7)) be the Pro-category of Rep(G); it is again an exact symmetric monoidal category (using
that Pro-vector spaces are well-behaved). We will actually only need countable Pro-systems, so the reader is
invited to restrict to this subcategory. Let us denote by IndProPerf(x/G) the corresponding category freely
generated as a presentable stable co-category by the exact category Pro(Rep(G)). (It is a slight misnomer
as the compact objects are not all of Pro(Perf(*/G)) but only the part of bounded amplitude.)

A~

Let O(G) be the completion of O(G) at the unit element (equipped with the action of G by usual
conjugation); this is an object of Pro(Rep(G)). Formally, let G C G be the corresponding geometric
object. Critically, O(G) is an idempotent O(G)-algebra in IndProPerf(*/G). Indeed, by the usual trick

using the group structure to write the diagonal as a pullback of the unit section, it suffices to see that

~

Lo O(G) = L. If ¢ does not divide the order of 71 (G° )10y, then this follows from Proposition|VIIL.5.11
as then the left-hand side is a bounded complex and the isomorphism can be checked after forgetting the
G-action (where it is clear). In general, we can find an embedding G < GL,,, and it suffices to see that

O(GLy) @0 (G, O(G) = O(G)

in IndProPerf(*/G). For this, it suffices to see that the left-hand side is a bounded complex, for which
it suffices to show that O(G) € Perf(GL,, /G) lies in Perf"4(GL,, /G). But in fact Perf(GL, /G) =
Perf"d(GL,, /G) by the argument of Proposition (iii).

Note that X embedsinto X’ = GP with X'” = G. The corresponding augmented cosimplicial G-space

XP X =[x
P
admits an extra degeneracy and hence the map
colimpjcp O(] [ X') = O(X'F) = 0(G)
P

is an isomorphism in IndPerf(x/G). The same applies to H/Pn\X’ , the completion of [[ . X' along the

diagonal inclusion X'¥’ = G, so also the map

colimjepO([ [ X) = O(X'7) = 0(G)
Pn
is an isomorphism in IndProPerf(*/G). In particular, the natural map

o —

colim[n]erpO(H X' — colim[n]erp(’)(H X)
pPn pPn

is an isomorphism in IndProPerf(x/G). As geometric realizations of bisimplicial objects can be computed
after diagonal restriction, it now suffices to show

colimpeaO([ [ X) @01, x1 O [ X7) = 0(XT)
P P
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isan isomorphism in IndProPerf(*/G). We note that each term identifies with (’)(H/Pn\X) where m is
the completion of [ [ p» X along the diagonal embedding of X*. Indeed, this is clear without the G-action.
To see it G-equivariantly (i.e., in IndProPerf(*/()), it suffices to see that these tensor product are computed

by bounded complexes. If ¢ does not divide the order of 71 (G°)tor, this follows from Proposition [VIIL.5.12

which ensures

(’)(H X) e Perf(H X'/G) = Perfind(H X'/Q).
pr Pr Pr

In general, we can argue as above by using an embedding of GG into GL,,.

Thus, we have a cosimplicial augmented G-space

XP%X:ﬁ}j...
P

with [[pn X the completion of [, X along the diagonal embedding of X . It remains to see that this
has a G-equivariant extra degeneracy. For this, it suffices to construct a (G, P)-equivariant map

[Ix %
:

whose restriction along the diagonal embedding X — []p X is the identity of X. Indeed, this defines an
“averaging” map that can be used to construct the extra degeneracies in a standard way.

Such a map I_T};?( — X needs to take a p-tuple (goi,-- -, 9p—1,i)icp of p-tuples (go,- .., gp—1,i)
satisfying
900(g1) - O H(gp-14) = 1
and produce a new p-tuple (ho, ..., hp—1) such that
ho©(hy) -+ O H(hy ) = 1.

The G-equivariance means that this construction must be invariant under simultaneous ©-conjugation.
The P-equivariance means that the recipee for hg must determine the recipees for A1, ..., h,_1 through
suitable conjugation. And the final condition is that if one applies this in the case where all g,; = g, are
independent of ¢, then h, = g, fora =0,...,p — 1.

Now we define this retraction by

ho = (90,00(g11) - OP " (gp—1-1)) P g0,0.

Here, the element of which we are taking a p-th root is an element of G (the completion of G at the unit)
and here one can uniquely take p-th roots. Moreover, the formation of p-th roots is invariant under G-
conjugation; thus this formula has the required G-equivariance. If all g, ; = g, are independent of 7, then
this element is actually equal to 1 and hence hg = go.

We are then forced to take
hi = (91i9(gis1i41) - - O Ngim1,i-1)) P,

for the other 7 in order to get P-equivariance. Thus, we get (G, P)-equivariance, and the property that on
equal elements g, ; = g,, one has h, = g,. It remains to see that we actually defined a map to X, for which
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we have to see

ho®(hy)---OP (R, 1) = 1.
But, using that formation of p-th roots is invariant under conjugation, one can start rewriting the first two
factors

ho®(h1) = (90.00(g11) -+ O (gp-15-1)) "7 90.0(O(911)0%(92.2) - - g0.0) /PO (g1.1)
= 90,0(0(g1,1) - O (gp—1,p-1)90,0) " /P(O(91,1)0*(g2,2) - - 90.0) PO (g1,1)
= 90,0(0(g1,1)0%(g2,2) - 90,0) PO (g1,1)
= 90,00(91,1)(©*(g2,2) - -+ 90,00(g1,1)) /7.

This procedure can be continued, shifting the p-th root past each factor ©’(g; ;) using conjugation invari-
ance of forming p-th roots; and then it matches the next p-th root, so they can be combined. In the end,
one gets

ho®(hy)--- @p*l(hp_l) = 90,009(g1.1) - - epfl(9p—17p—1)(go,09(9171) .. @pfl(gp_ljp_l))fp/p —1
O

Recall that Theorem |VIIL.5.15| affirms that for a representation W of H®, if W admits a good H°-

filtration then Ind%. W admits a good G°-filtration. In fact, the converse is true as well. More precisely,
we have the following assertions.

PROPOSITION VIII.5.17. In the situation of Theorem |VIIIL.5.15 the following results hold true.

(i) Let T be a representation of H°. Then W admits a good H°-filtration if and only if Ind$. W
admits a good G°-filtration.
(ii) Let IV be a representation of H. Then W admits a good H°-filtration if and only if Ind% 1 admits
a good G°-filtration.
(iii) Let W be a representation of H° that admits a good H°-filtration. Then the kernel of

(Ind$o W) |go — W

admits a good H°-filtration.
(iv) Let W be a representation of H that admits a good H°-filtration. Then the kernel of

(IndSW)|g — W

admits a good H °-filtration.
(v) The image of the restriction Perf(*/G°) — Perf(*/H®) generates under cones and retracts.
(vi) The image of the restriction Perf(x/G) — Perf(x/H ) generates under cones and retracts.

In a previous version of this manuscript, assertion (vi) was proved by an exhaustive analysis of all
possible cases. One key issue in the proof is that the individual assertions do not generally allow simple
reductions to the case that G is simply connected and the precise form of the center matters, as the following
example shows. We are able to give a better argument now as Theorem|VIIL5.15|gives us very good control
about representations with good filtrations, making a dévissage to the simply connected case possible.

REMARK VIIIL5.18. The following example shows that the hypothesis that P is of order prime to / is
important, and cannot be weakened to “quasi-semisimple” automorphisms (preserving a Borel and a torus) or
even automorphisms fixing a pinning; also, the example shows that the precise form of the center is critical.
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If G = (SLp x SL3) /12 with the automorphism switching the two factors, then H = PGLg X (2 X p12)/ ft2.
If we had ¢ = 2, then one can show that for all objects A € Perf(*/H) in the image of Perf(x/G), the
summand A; of A with nontrivial central character has the property that the (homotopy) invariants of the
Z/2Z C PGLg-action on A; are a perfect complex. This implies that the nontrivial character of H is not
generated by Perf(x/G) under cones and retracts.

Proor. We will first show that assertions (i), (iii) and (v) are equivalent; and similarly, that assertions
(ii), (iv) and (vi) are equivalent.

Let us start by showing that (v) implies (iii) and (i). Note that (v) is equivalent to the assertion that for
all representations W of H°, the complex

... = Ind%.Ind%e W — Ind%eW — W — 0

is a resolution in Ind Perf(x/H°). Indeed, if it is a resolution, then in particular W is resolved by objects
in the image of Ind Perf(x/G°) — Ind Perf(x/H®), so the image generates. Conversely, if Perf(x/G°) —

Perf(x/H®) generates under cones and retracts, then Ind%. : Ind Perf(x/H®) — Ind Perf(x/G°) is con-
servative; but the above complex becomes split exact after this operation.

Now if W is as in (i), such that Indgc;W admits a good G°-filtration, then this resolution (and The-
orem shows that TV admits a resolution in Ind Perf(x/H°) where all terms admits a good H°-
filtration, i.e. are connective in the good H°-filtration ¢-structure. It follows that IV is connective in the
good H°-filtration ¢-structure, i.e. admits a good H°-filtration. Similarly, if W as in (iii), then the same
argument applied to the first truncation of the last displayed resolution shows that this kernel admits a
good H °-filtration.

For the converse, we show that (i) implies (iii), and (iii) implies (v). Assume (i), and take any W as in
(iii). Then to show that this kernel admits a good H°-filtration, it suffices to see that after applying Ind%.,
it admits a good G°-filtration. But after applying Ind%, the map becomes split, and Ind%- Ind%j W admits
a good G°-filtration by Theorem Now we show that (iii) implies (v). To show (v), it suffices
to see that for any H°-representation W with a good H°-filtration, there is some G°-representation V'
with a good G°-filtration and a surjection V'|go — W whose kernel admits a good H°-filtration. Indeed,
one can then inductively build a resolution of W, using that Ind Perf(«/H°) is left-complete for the good
H°-filtration t-structure. But by (iii), we can simply take V = Ind$. W

A similar analysis shows that (ii), (iv) and (vi) are equivalent. Note first that in (ii), W is a direct
summand of Ind.W (as moH is of order prime to ¢ by Proposition , and hence Ind$ W is a
direct summand of Ind%. W; using Theorem this shows that if W admits a good H °-filtration
then also Ind% W admits a good G°-filtration. So again (ii) is really about the converse direction.

Now again (vi) is equivalent to the complex
... = IndGIndGW — IndSW — W — 0

being a resolution in Ind Perf(x/H ), for all representations W of H. Assume that this holds. Then if W

is as in (ii) so that Indi admits a good G°-filtration, then all terms in this resolution have a good H°-
filtration (by Theorem VIII.5.15), hence so does W. Similarly, if W is as in (iv), then the truncation of this
sequence shows that ker(Ind7;WW — W) has a good H°-filtration. Thus, (vi) implies (ii) and (iv).
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Going from (ii) to (iv) is the same argument as going from (i) to (iii). The argument that (iv) implies (vi)
also adapts verbatim from the argument that (iii) implies (v), noting that Ind Perf(x/H) is left-complete
for the good H°-filtration ¢-structure (as o H is of order prime to ¢).

Thus, all items with an odd number are equivalent, as are all items with an even number. But it is
clear that (vi) implies (v) as the image of Perf(x/H) — Perf(x/H®°) generates under retracts, as for all
representations 1V of H°, one can split W off Ind2. W as moH is of order prime to £. On the other hand,
if G is connected, we claim that (iii) implies (iv). Take any H-representation W that admits a good H°-
filtration. Then

Inde (W] o) = Ind§ (Ind o (W 50))
admits Ind$; W as a direct summand, in a way compatibly with the map back to . This implies that the
kernel in (iv) is a direct summand of the kernel in (iii) for the representation W|o, and hence (iii) implies
(iv).

At this point, we have proved that for connected G, all six assertions are equivalent, and in general (vi)
implies all other assertions. Moreover, assertion (vi) is amenable to induction on P, so we can assume that
P = 7/pZ is cyclic of prime order p # (. If G is connected and simply connected, then the arguments
with highest weights in the proof of Theorem show that (vi) (which agrees with (v) in this case)

holds. It remains to reduce to the case that GG is connected and simply connected.

Assume that G is connected and semisimple and let G’ — G be the simply connected cover of G, with
(connected) fixed points H'. Then H' — H° is a central isogeny. We argue that (iii) for G’ implies (iii) for
G. Indeed, for a H°-representation W, one can write Ind. 1 as the part of Indg/W on which the kernel
of G’ — G acts trivially. This means that the kernel in (iii) for G is a direct summand of the kernel in (iii)
for G’ (and W considered as a representation of H'). Thus, we have handled the case that G is connected
and semisimple.

Now take a general G. Let G’ C G be the derived subgroup of G°, with fixed points H' C H. Let
D = G /G’ which is linearly reductive (more precisely, D° is a torus and 7y D is of order prime to ¢). We
get an exact sequence

1>H - H—>H-—>1

where H C D is linearly reductive (again, H ' is a torus and moH is of order prime to £). We argue
that (vi) for G’ implies (vi) for G, thereby finishing the proof. Take any representation W of H. Then
W splits off Indi,(W|z/) = W @ O(H) as H has semisimple representation theory and hence 1 is a
direct summand of O(H). Thus, it suffices to see that for all representations W' of H’, the representation
Ind2, W’ € IndPerf(+/H) is in the subcategory generated under colimits by the image of Perf(x/G).
Using (vi) for H’, and using that any representation V' of G is a retract of (Ind% V)|cr, it suffices to see
that for any representation V of G, the representation Ind%, (V| ) € Ind Perf(x/H) is in the subcategory
generated under colimits by the image of Perf(x/G). But this is given by V| g ® O(H). Thus, it suffices to
see that O(H) € Ind Perf(x/H) C IndPerf(x/H) is in the subcategory generated under colimits by the
image of Perf(*/@). This reduces us to H C D, where the whole representation theory is semisimple, so

that O(H) is a retract of O(D)|- O

To combine the results of this section with the preceding section, we also need the following observa-
tion. Note that in this section, we did not need the assumption that ¢ does not divide the order of 71 (G°)1or;
but also the operations of this section do not interfere with this condition:
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ProposITION VIIL.5.19. Assume that G° is reductive and that P is a finite solvable group of order
prime to £ acting on G with fixed points H = G. If 711 (G®)yo, is of order prime to ¢, then also 7 (H°)1or
is of order prime to /.

ProOF. By induction, we can assume that P = Z/pZ is cyclic of prime order p # ¢. We may evidently
assume that G is connected, and we can also pass to the derived group and its simply connected cover. As
before, we can also assume that G is simple. We need to see that 71 (H )sor is of order prime to ¢. There is
probably both a good reference and a good argument, but lacking both, we quickly run through the list of
possibilities. In type A, all inner automorphisms give Levi subgroups, which always have simply connected
derived subgroup. Outer automorphisms are involutions so p = 2 and £ # 2, and give either symplectic or
orthogonal groups, whose fundamental group is a 2-group. In the triality case, the fixed points of an order
3 automorphism are either G5 or SL3, in particular simply connected. In types B, C and D outside triality,
either p > 2 and the automorphism is inner and the centralizer a Levi subgroup (having simply connected
derived subgroup) or p = 2 and hence ¢ # 2 while the fixed point subgroup is a classical group, with
fundamental group a 2-group. There remain the exceptional groups. Looking at the case of involutions
(cf. [vdKo1] or its reference [Spr87]) the only possibly dangerous case is the inner involution of Fg which
has fixed points of type A5 x A; which might contribute a 3-group to the fundamental group. But Es has
center of order 3 which survives to the fixed points. There remain the inner involutions of exceptional
groups of prime order p > 2. The possible cases that are not Levi subgroups are enumerated in [HM13,
Theorem 4.3.3], but the list there includes also centralizers of elements of non-prime order. Restricting to
prime orders, there is one case for p = 5 which is Fg with subgroup of type A4 x Ay, so the fundamental
group is necessarily a 5-group. In all remaining cases p = 3. For Gy, this gives a group of Ay; for F}, of
type Aa x Ag; for Eg, of type As X Ag X Aj; these are all fine as the fundamental group is necessarily a
3-group. For E7, it is of type Ay x As. This might a priori contribute a 2-group, but again the center of £
shows that this does not happen. Finally, for Ejg, one gets a group of type Ay x Epg or Ag; in both cases, the
fundamental group is necessarily a 3-group. O

VIIL5.4. End of proof. Finally, we can prove Theorem [VIIL.5.2l The subtle part is to give a clean
account of the reduction to the tame case. We take an approach that is inspired by our construction of the

spectral action in Chapter [X]below.

As preparation, consider any discrete group W and a gerbe G — /W (on the fpqc site of SpecL)
banded by some linear-algebraic group G over L, such that G° is reductive and moG of order prime to /.
(Picking a point of G, this is given by the classifying space of £ for some extension

1—-G—E& S W —1.

This extension will later be given by the L-group.) In fact, slightly more generally, we will allow that G is
a finite disjoint union of such gerbes.

For any anima S mapping to /W, we can look at the derived fpqc stack Map, y;, (5, G) of maps S — G

over x/W. If S is a finite set equipped with a (necessarily trivial) W-torsor, and G is connected, this is
isomorphic to a product of copies of G. In general, it can be analyzed via resolutions. In fact, the co-
category of anima S over */W/ admits compact projective generators, given by finite sets equipped with a
W -torsor, so the whole co-category of such S is obtained by animating the category of finite sets equipped
with a W-torsor.
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Now we look at the functor taking any such anima S over */W to the L-linear symmetric monoidal
presentable stable co-category

Ind Perf(Map*/W(S, g)).

We can also restrict this functor to compact projective objects; then it commutes with all finite coproducts.
This commutation with finite coproducts reduces to the assertion that for G and H linear-algebraic groups
over L with G° and H° reductive and oG and 7o H of order prime to ¢, one has

Ind Perf(+/G) @ p () Ind Perf(x/H) = Ind Perf(x/G x H),

which follows from highest weight theory. We may then extend back to all S via left Kan extension, to
get a colimit-preserving functor

S +— Ind Perf(Map*Z/W(S, g))

from anima S over */W to L-linear symmetric monoidal presentable stable co-categories. (The notation
here is purely symbolic; we like to think of this symmetric monoidal category as the Ind-category of perfect
complexes on some hypothetical stack Map*E/W(S, G). The symbol ¥ here is in reference to the use in

[Lurog) Section 5.5.8] in relation to sifted colimits.) By the universal property of left Kan extensions, there
is a functorial comparison map

Ind Perf(Mapf/W (5,G)) — Ind Perf(Map, )/ (5, G)).

If S = x/F, — x/W is given by the classifying space of a finite free group F}, equipped with a
map F,, — W, and G is connected, then Map*/W(*/Fm G) is given by [\, 7~ (v;)/G where G acts by
simultaneous conjugation and ; € W is the image of the i-th generator of F, (and 7 : £ — W is the
projection). In general, one gets a finite disjoint union of such.

ProposITION VIII.5.20. In this situation, the functor

Ind Perf(Map*Z/W(*/Fn, G)) — Ind Perf(Map, yy,(+/Fp, G))

is fully faithful and the essential image is the full subcategory generated under colimits by Ind Perf(*/G),
which is equivalent to the category of O([[/_; 7! (7;))-modules in Ind Perf(x /G). If 71 (G°)1or is of order
prime to /, the displayed functor is an equivalence.

An obvious variant holds true if G is a finite disjoint union of such gerbes.

ProOF. For theidentification of Ind Perf(Mapf/W (*/Fp, G)) with O(T]"; 7 1(:))-modules in Ind Perf(x/G),

we may use that the functor commutes with colimits to reduce to n = 1. Then we can write */Z as the
pushout of % <— *LI*x — * and use that Ind Perf(x/G) is equivalent to O(G)-modules in Ind Perf(x /G x G),
and that module categories base change. This description of Ind Perf(Mapf/W(* /Fy,G)) shows that the

comparison functor is fully faithful. By Proposition [VIIL5.12} this is an equivalence when 71 (G°)1or is of
order prime to /. 0

Assume that G is connected, banded by G. Writing W as a sifted colimit of finite free groups, we see
that

Ind Perf(Mapf/W(*/W, g))



VIIL.5. MODULAR REPRESENTATION THEORY 303

is given by the category of modules over

n

colim,, i, ) O(H (%))
i=1

in Ind Perf(x/G). Thus, to prove Theorem [VIII.5.2} we have to see that if W is a discretization of W, as

in the formulation of that theorem, then the functor
Ind Perf(Mapy yy, (*/W, G)) — Ind Perf(Map, yy; (+/W, G))
is an equivalence. Indeed, Map, /W(* J/W,G) = ZL(W,G) /G, so the fully faithfulness is equivalent to the

isomorphism

colim,, 12, —w) Hﬂ' )= O(ZY(W,@))

of algebrasin Ind Perf(*/G), while the essentlal sur}ecthlty amounts to the assertion that Perf(Z1 (W, G)/G)
is generated by Perf(*/G) under cones and retracts.

We will now show more generally that if W is a discretization of Wg as in Theorem |VIII.5.2(and G
is a stack over /W that is a finite disjoint union of gerbes banded by linear-algebraic groups G with G°
reductive and moG and 71 (G°)1or of order prime to ¢, then

Ind Perf(Mapf/W(*/W, ¢)) — Ind Perf(Map, y;, (+/W,G))
is an equivalence.

We will prove this first when W is a discretization of the tame part,i.e. W = Z[%] X Z.. We can assume
that G is connected. We can also assume that the corresponding extension

1G> —-W =1
splits as otherwise both sides are zero. We can write /W as a pushout */Z <— x/Z U x/Z — %/Z, so using

Proposition |VIII.5.20|it remains to see that
Ind Perf(G /5 G) @mavet(c/,axc/, ) IndPerf(G/-G) — Ind Perf(Z*(W,G)/G)

is an equivalence. The tensor product here is dual to writing Z! (W, ) as the fibre product
Z'(W,G) —= G x G

|

* G.
The result follows from Proposition VIII.5.13) Proposition [VIII.5.12|and Proposition [VIII.5.11

It remains to analyze the wild part. This uses the full force of our results on fixed point groups.

ProposITION VIIL5.21. Let P be a finite solvable group of order prime to ¢ with a map P — W.
Assume that G is a stack over * /W that is a finite disjoint union of gerbes banded by linear-algebraic groups
G with G° reductive and 7o of order prime to {. Then Map, (x/P, Q) is itself a finite disjoint union of
gerbes over L that are banded by linear-algebraic groups H with H° reductive and moH of order prime to
¢. Moreover, the functor

Ind Perf(Mapf‘/W(*/P, G)) — Ind Perf(Map, y,(+/ P, G))
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is an equivalence.

If all G appearing as bands in G have the property that 71 (G°)yor is of order prime to ¢, then the same
holds true for the groups H appearing as bands in Map, y;,(+/ P, G).

PROOF. We can assume that W = P. We can assume that the extension
1-G—=& —P—=1

splits, as otherwise the stack Map, ,p(x /P,G) is empty (in which case Haboush’s theorem implies that
also colim,, p,, ,py O(T7_; 7 '(%))¢ = 0 and hence also Ind Perf(Mapf/P(*/P, G)) = 0). Fixing a
section, we get an action of P on G and Map, ,p(x/P,G) = ZYP,G)/G. If P = Z/pZ is cyclic of
prime order p # /, the proposition follows from the results of Section |VIIL5.3| noting that the colimit in
Lemma [VTIT.5.16]is computing

COhm (n,Fn—7Z/pZ) H T ’Yz

in Ind Perf(x /@), using a specific presentation (and that X P = ZY(P,G)). Namely, inside pointed anima
over %/ P, one can write /P as the quotient of * LIp * by the action of P; this writes /P as a colimit of
connected pointed anima over */ P of the form /F,,, i.e. P as a geometric realization of free groups inside
animated groups, which can be used to compute the displayed colimit. Dually, this writes Z!(P, G) as the

P-fixed points inside the X from Lemma |VIII.5.16l Proposition |VIII.5.17/shows that the resulting fully
faithful functor

Ind Perf(Map*E/P(*/P, G)) — Ind Perf(Map, ,p(+/P,G))
is essentially surjective. Proposition [VIII.5.19|ensures the statement about 7¢’s.

For the general case, we can find a normal subgroup P’ C P and quotient P = Z/pZ and we can
assume by induction that the result holds for P’. We can then consider the functor taking an anima S with
amap S — */P to

IndPerf(Map*/P(g X5 */ P G)).

If S is a finite set I (equipped with a P-torsor), this is given by
Ind Perf(Map*/P,(>|</P'7 o)h.
By the structure of Map, , p, (+/ P’,G), this is the I-fold tensor product of the value on a point; it follows
that in this case
Ind Perf(Mapf/P(g x,/p*/P,G)) = Ind Perf(Map*/P(g X,/P x/P,G))
is an equivalence. It follows that the functor

S +— Ind Perf(Map*E/P(g x5 */P,G))

is the left Kan extension of its restriction to finite sets with a P-torsor, where it agrees with the functor
associated to the gerbe

? = Map*/P(*/Plv g)

over */P. Thus, we conclude by appealing to the case of P = Z/pZ already established, for the gerbe
G. O
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If now W is a discretization of the Weil group W, we take P C W to be the wild part (a finite p-group,
normal in W). Using Proposition VIIL.5.21} let

G' = Map, 1y (+/P.G)

which is a finite disjoint union of gerbes over /W', where W' = W/ P is the tame quotient of W. (Equiv-
alently, this is the pushforward of the stack G along the map /W — /W', and happens to be a finite
disjoint union of gerbes again, by the previous proposition.) Arguing as in the inductive part of the proof

of Proposition [VIIL.5.21} we can replace W by W' and G by G'. This reduces us to the tame case already
handled.







CHAPTER IX

The Hecke action

The time has come to put everything together. Asbefore, let F be any nonarchimedean local field with
residue field I, of residue characteristic p, and let G be a reductive group over E. For any Zy-algebra A,

we have defined Dj;(Bung, A), we have the geometric Satake equivalence relating G' to perverse sheaves
on the Hecke stack, and we have studied the stack of L-parameters.

Our first task is to use the geometric Satake equivalence to define the Hecke operators on Dy;s(Bung, A).
As in the last chapter, we work over a Z[,/q|-algebra A in order to trivialize the cyclotomic twist in the

geometric Satake equivalence; let Q be a finite quotient of Wy over which the action on G factors. If A is
killed by a power of ¢, then we can define Hecke operators in the following standard way. For any finite

set Tand V € Rep, (G x Q)’, we get a perverse sheaf Sy on Hck(;, which we can pull back to the global
Hecke stack Hck’; we denote its pullback still by Sy. Using the correspondence

Hckl
>
Bung Bung x (Div!)!

we get the Hecke operator
Ty : Det(Bung, A) — Det(Bung x (Div')!,A) : A — Rpa.(piA @K% Sy).
By Corollary the target has D¢t (Bung x [*/ %], A) asa full subcategory, and we will see below that

Ty will factor over this subcategory. Working oco-categorically in order to have descent, and using a little
bit of condensed formalism in order to deal with Wé not being discrete, we can in fact rewrite

Det(Bung x [x/WE], A) = De(Bung, A)BWE

as the W -equivariant objects of the condensed co-category Der(Bung, A); we will discuss the condensed
structure below.

The following theorem summarizes the properties of the Hecke operators. In particular, it asserts that
these functors are defined even when A is not torsion.

THEOREM 1X.0.1 (Theorem Corollary Proposition [[X.5.1). For any Z[,/q]-algebra A,

any finite set /,and any V' € Rep A(G’ x Q)!, there is a natural Hecke operator

Ty : Dys(Bung, A) — Dys(Bung, A)BW}é.

307
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(i) Forgetting the Wé-action, i.e. as an endofunctor of Dj;(Bung, A), the functor Ty, commutes with all
limits and colimits, and preserves compact objects and universally locally acyclic objects. Letting sw™ :

Rep, G — Rep A G be the involution of Proposition there are natural isomorphisms
Dpz(Tv (A)) = Towsvv (Dpz(A)) , RAomys(Ty (A), A) = Tysyv RAomye(A, A).
(ii) As a functor of V, it induces an exact Rep A(Ql )-linear monoidal functor
Repy (G 1 Q)" — End (Dys(Bung, A)*) "%,

where the target denotes W -equivariant objects inside the condensed co-category End (Dy;s(Bung, A)*)
(equipped with the trivial W-action). Moreover, for any compact object X € Dy (Bung, A)¥, there is
some open subgroup P of the wild inertia subgroup of W such that forall / and V, the P!-action on T}/ (X))
is trivial. In particular, one can write Dy;(Bung, A)“ as an increasing union of full stable co-subcategories
DF (Bung, A)* such that the Hecke action defines functors

lis
Repy (G % Q)1 — Enda(Df; (Bung, A)*)20Ve/P)"

(iii) Varying also I, the functors of (ii) are functorial in /.

Here, functoriality in / means, more precisely, that one treats the preceding objects as coCartesian
fibrations over the category of finite sets, and the functors are then required to lift to the total space of
these coCartesian fibrations.

In particular, the categories D] (Bun¢;, A)* fit the bill of the discussion of Section 'VIH.4l so Theo-
rem |VIIL.4.1| gives a construction of excursion operators. To state the outcome, we make the following
definitions as in the introduction.

DerINITION IX.0.2.

(i) The Bernstein center of G(E) is
Z(G(E),A) = moEnd(idp(G(p),0)) = lim  Z(A[K\G(E)/K])
KCG(E)

where K runs over open pro-p subgroups of G(E), and A[K\G(E)/K] = Endg(p) (C—Indf((E)A) is the
Hecke algebra of level K.
(ii) The geometric Bernstein center of G is
ZE8M(G, A) = moEnd(idp, (Bung,A))-
Inside Z8°™(G, A), we let ZE°" (G, A) be the subring of all endomorphisms f : id — id commuting

Hecke
with Hecke operators, in the sense that for all VV € Rep(G') and A € Dy (Bung, A), one has Ty (f(A)) =

f(Tv(A)) € End(Tv (A4)).
(iii) The spectral Bernstein center of G is
Z7(G,A) = O(Z' (Wi, G)a)°,
the ring of global functions on Z* (W, G)a / G.
The inclusion D(G(E), A) — Dys(Bung, A) induces a map of algebra Z8°™(G,A) — Z(G(E), ).

This discussion will lead to the following corollary.
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COROLLARY IX.0.3. Assume that the order of m9Z(() is invertible in A. There is a canonical map

ZPC(G,A) — ZE00 (G, ) C Z8°™ (G, A),

and in particular a map

Ui Z%(G, A) — Z(G(E), A).

In particular, if A = L is an algebraically closed field over Z[,/q], we get the following construction
of L-parameters. (This works even if £ does divide the order of 7y Z(G).)

DEFINITION IX.0.4. Let L be an algebraically closed field over Z[,/q], and let A € Djys(Bung, L)
be a Schur-irreducible object, i.e. End(A) = L as condensed algebras. Then there is a unique semisimple
L-parameter

pa:Wg— G(L)xQ
such that for all excursion data (I, V,a, 3, (7;)icr) consisting of a finite set I, V € Rep((G x Q)!), a :
1= Vl]g B:V|sg — landy; € W for i € I, the endomorphism

A=Ti(A) S T(a) 22 7o) & Ay = 4

is given by the scalar

L&y eatlier, v B 1

We can apply this in particular in the case of irreducible smooth representations 7 of G(E). Concerning
the L-parameters we construct, we can prove the following basic results. (In fact, we prove slightly finer
results on the level of Bernstein centers.)

THEOREM 1X.0.5 (Sections[IX.6] [[X.7).

(i) If G = T is a torus, then 7 + ¢ is the usual Langlands correspondence.

(ii) The correspondence 7 — ¢ is compatible with twisting.

(iii) The correspondence 7 + ¢ is compatible with central characters (cf. [Bor79} 10.1]).
(iv) The correspondence 7 — ¢ is compatible with passage to congradients (cf. [AV16]).

(v)If G’ — G is a map of reductive groups inducing an isomorphism of adjoint groups,  is an irreducible
smooth representation of G(E) and 7’ is an irreducible constitutent of 7| (), then @ is the image of o

under the induced map G = G

(vi) If G = G X G2 isa product of two groups and 7 is an irreducible smooth representation of G(E), then
7 = 1 Wy for irreducible smooth representations 7; of G;(E), and ¢r = ¢r, X ¢, under G = G X G.

(vii) If G = Respy G’ is the Weil restriction of scalars of a reductive group G’ over some finite separable
extension E'|E, so that G(E) = G'(E’), then L-parameters for G|E agree with L-parameters for G'|E’.

(viii) The correspondence 7 — ¢ is compatible with parabolic induction.

(ix) For G = GL,, and supercuspidal 7, the correspondence 7 — ¢ agrees with the usual local Langlands
correspondence [LRS93], [HTo1], [Henoo].
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IX.1. Condensed oo-categories

In order to meaningfully talk about W} -equivariant objects in Dy;s(Bung;, A), we need to give Dy (Bung, A)
the structure of a condensed co-category. This is in fact easy to do: We can associate to any extremally dis-
connected profinite set S the co-category Dy;(Bung xS, A). This s a full condensed co-subcategory of the
condensed co-category Du(Bung, A), taking any profinite S to Dg(Bung xS, A). The latter defines a hy-
persheaf in S, by v-hyperdescent of Dg(X, A) (as follows from the case of D(X,,, A)). With this definition,

it becomes a direct consequence of descent that
Da(Bung x [+/W], A) = Da(Bung, A)""'%,

where the latter is the evaluation of the condensed co-category Dm(Bung, A) on the condensed anima
BWZL. More concretely, this is the co-category of objects A € Dg(Bung, A) together with a map of
condensed animated groups WZ — Aut(A). We see in particular that to define Dg(Bung, A)? WE, we
do not need to know the full structure as a condensed oco-category. Rather, we only need the structure as

an oo-category enriched in condensed anima. This structure on Dg(Bung, A) induces a similar structure
on Dj(Bung, A).

For the discussion of Hecke operators, we observe in particular the following result, that follows directly
from the discussion above.

PRrOPOSITION IX.1.1. Pullback under Bung x (Div')! — Bung x[*/W 1] induces a fully faithful func-
tor o

Dyis(Bung, A)BWE < Dg(Bung, A)BWVE = Da(Bung x[+/W}], A) — Da(Bung x (Div')!, A).

The essential image of the first functor consists of all objects A € Du(Bung x [*/WL], A) whose pullback

to Bung lies in Dy (Bung, A). O

In fact, this structure of Dj;5(Bung, A) as an co-category enriched in condensed anima, in fact con-
densed animated A-modules, can be obtained in the following way from its structure as a A-linear stable
oo-category.

PropPOSITION IX.1.2. For A € Dy(Bung, A)¥ and B € Dy(Bung, A), the condensed animated A-
module Homp, (gun;,a) (A, B) is relatively discrete over Zj.

In other words, the condensed structure on Dj;(Bung, A) can also be defined as the relatively discrete
condensed structure when restricted to compact objects, and in general induced from this. In particular,
when restricting attention to the compact objects Dy, (Bung, A)¥, it is simply the relatively discrete con-
densed structure.

PrOOF. Take some b € B(G) and K C Gy,(E) an open pro-p-subgroup, and let fx : M?/K — Bung
be the local chart. We can assume A = fgyZy, as these form a family of generators. By adjunction, it
is enough to show that for any B’ € Dy (MP/K, A), the global sections RT'(M"/K, B') have the rel-
atively discrete condensed Z,-module structure. We claim that the restriction map RT'(M/K, B') —
RT([*/K], B') is an isomorphism, where [*/K] C M"/K is the base point. Without the condensed struc-
ture, this was proved in the proof of Proposition but actually the proof applies with condensed
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structure (as Theorem remembers the condensed structure). But RT'([x/K], B') is a direct sum-
mand of the stalk of B’ at *, which has the relatively discrete condensed Z,-module structure (as this is true

for all objects of Dy(x, A)). O

IX.2. Hecke operators

The geometric Satake equivalence gives exact Rep;, v (Q')-linear monoidal functors

Repy, ﬁ](é x Q) — Sat(Hckl, Zo[\/q)) : V = Sv,

where the target category is defined as the inverse limit over n of the similar categories with Z/¢"[,/q]-
coefficients, see Section VI.7. Moreover, this association is functorial in /. We can compose with the functor
A+ D(A)Y (where the Verdier duality is relative to the projection Hckg; — [(Div!')! /LT G]) to get exact
Repy,( /4 (Q')-linear monoidal functors

Repy,( /(G * Q)" — Da(Hekg, Zi[v/a),

functorially in I. Here, the functor A +— D(A)" is monoidal with respect to the usual convolution on
perverse sheaves, and the convolution of Section [VIL.5|on the right. We note that as the convolution on
Da makes use only of pullback, tensor product, and m,-functors, all of which are defined naturally on oo-

categories, this monoidal structure is actually a monoidal structure on the co-category Du(Hck, Zy [v/a])-
(We would have to work harder to obtain this structure when employing lower-!-functors, as we have not
defined them in a sufficiently structured way.) Also, the functor from Repy, | vl (G x Q) is monoidal in
this setting, as on perverse sheaves there are no higher coherences to take care of.

This extends by linearity uniquely to an exact Rep , (Q”)-linear monoidal functor
RepA(é 3 Q) — Da(Hckl, A) : V — S

here, we implicitly use highest weight theory to show
A 1 Iy ~ A I
Perf(B(G % Q)z,1 /) Opart(BQL; ) Perf(x/Q})) = Perf(x/(G x Q)4),

and that the free stable co-category with an exact functor from Rep,, (G x Q) is Perf(x /(G x Q)}).
Pulling back to the global Hecke stack, we get exact Rep, (Q!)-linear monoidal functors
Rep, (G x Q)" — Da(Hcks, A).
On the other hand, there is a natural exact Rep, (Q!)-linear monoidal functor

Da(Hek(, A) — Endpy (psyt)r ) (Pa(Bung x (Div')’, A)),

where the right-hand side denotes the Du((Div')?, A)-linear endofunctors. In particular,any V € Rep , (G
Q)! gives rise to a functor

Ty : Dys(Bung, A) — Da(Bung x (Divl)l7 A)
via
* .]L /
Ty (A) = pay(p1A @3 Sy)
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where we consider the usual diagram

Hcké
RS
Bung Bung x (Div!)’.

Note that we have thus essentially used the translation of Proposition|VII.5.2|to extend the Hecke operators
from the case of torsion rings A to all A.

We note that if we pull back to the diagonal geometric point Spd C' — (Div'), where C' = ﬁ, then
this functor depends only on the composite

Rep, (G % Q)" — Da(Hck(;, A) — Da(Hek{; X (pyy1y: Spd C, A),
and this composite factors naturally over Rep A(GI )-

PROPOSITION IX.2.1. Forany V' € Rep, (G'), the functor
Ty : Da(Bung x Spd C, A) — Du(Bung x Spd C, A)

restricts to a functor
TV : Dlis (BunG) A) - DliS(BunG) A)

ProOOF. By highest weight theory, one can reduce to the case that V' is an exterior tensor product of
representations of G, and then by using that V' +— Ty, is monoidal, we can reduce to the tensor factors,
which reduces us to the case I = {*}. Consider the Hecke diagram

Bung ¢ da Hcka,c LN Bung ¢
where Hckg ¢ parametrizes over S € Perfe pairs of G-torsors &1, &2 on X g together with an isomorphism
over X \ S* meromorphic along S*. It suffices to see that for all B € DULA(HckG’Spd C/Divk s Zy), the
object
* .]L * RV

hgu(hlA ®-q¢"'B ) € Dhs(BunG,C, A).
Now the category of such B is generated (under colimits) by the objects R f,+Z for

fi : LTTZ\Demy, — Hek spd 0/Divk,

a Demazure resolution (modulo action of Iwahori) of some Schubert variety in the affine flag variety. Using
Proposition [VII.4.3) it thus suffices to see that for the corresponding push-pull correspondence on Bung ¢
with kernel given by the Demazure resolution, one has preservation of Dy;(Bung ¢, A). But this is a proper
and cohomologically smooth correspondence. O

THEOREM IX.2.2. Forany V € RepA(@I), the action of T} on Dj;5(Bung, A) preserves all limits and
colimits, and the full subcategories of compact objects, and of universally locally acyclic objects. Moreover,

for the automorphism sw* of Rep A(GI ) given by Proposition there are natural isomorphisms
Dpz(Tv (A)) = Tew-vv (Dpz(A)) , Rt omys(Ty (A), A) = Tyyyv R omyg(A, A).
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PrOOF. The functor V — Ty is monoidal. As V' is dualizable in the Satake category, with dual V'V, it
follows that 77 has a left and a right adjoint, given by T3,v, and hence it follows formally that it preserves
all limits and colimits, and compact objects. Now recall that A € Dy (Bung, A) is universally locally
acyclic if and only if for all compact B € Dj;(Bung, A), the object RHomp (B, A) € D(A) is perfect,
by Proposition [VIL7.9] Thus, the preservation of universally locally acyclic objects follows by adjointness

from the preservation of compact objects.

For the duality statements, we note that, for 7 : Bung — * the projection, there are natural isomor-

phisms
L oy o~ oL
m(Tv (A) ®KB) = m(A @5 Towv (B)),

as follows from the definition of the Hecke operator, and Proposition[VI.12.1} Both sides identify with the

n m
homology of HckZ, x (Divt)? Spd C with coefficientsin h] A ®%h3B @5 S;,. The displayed equation implies
the statement for Bernstein-Zelevinsky duals by also using that 7Ty, v is right adjoint to Tgy+v, and the
statement for naive duals by using that T« v is left adjoint to Tgy-y . ]

Composing Hecke operators, we get the following corollary.
COROLLARY IX.2.3. Forany V' € RepA(é x Q)?, the functor
Ty : Dys(Bung, A) — Da(Bung x (Divi)!, A)

takes image in the full subcategory Dg(Bung X [* /%], A); moreover, all objects in the image have the
property that their pullback to Dg(Bung, A) lies in Dj;(Bung, A), so by Proposition the functor

Ty induces a functor

Dys(Bung, A) — Dygy(Bung, A)BWe,

ProOF. We only need to see that the image lands in Dg(Bung x [x/W4], A); the rest follows from
Proposition One can reduce to the case that V' is an exterior tensor product of |I| representations
Vi € Rep A(G X () — one can always find a, possibly infinite, resolution by such exterior tensor products
that involves only finitely many weights of G/, and thus induces a resolution in Dg(#ckZ, A) — and thus
reduce to I = {*}. By Corollary|VII.2.7| it suffices to see that the pullback to Dg(Bung x Spd C, A) lies in
Du(Bung, A). Butby Propositior%L we know that it lies in Dj;5(Bung x Spd C, A), and Dy;5(Bung, A) —

Dyis(Bung x Spd C, A) is an equivalence by Proposition [VII.7.3 O

Finally, we get the following Hecke action.

CoRrOLLARY IX.2.4. Endowing the stable Z,-linear co-category Dj;s(Bung, A)“ with the relatively dis-
crete condensed structure, the Hecke action defines exact Rep, (Q!)-linear monoidal functors

Rep, (G x Q)" — Endy (D (Bung, A)*)FWe,

functorially in 1.
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IX.3. Cohomology of local Shimura varieties

Theorem encodes strong finiteness properties for the cohomology of local Shimura varieties,
giving unconditional proofs, and refinements, of the results of [RV14) Section 6]. For this, we first specialize
to /' = Q, as this is the standard setting of local Shimura varieties. Consider any local Shimura datum,
consisting of a reductive group G over ), a conjugacy class of minuscule cocharacters i : G,,, — G@p

with field of definition F/|Q, and some element b € B(G, 1) C B(G). (Beware that we are making a small
sin here in changing the meaning of the letter F, using it now in its usual meaning as a reflex field.) In
[SW20) Lecture 24], we construct a tower of partially proper smooth rigid-analytic spaces

(M(Gbp), k) KCG(@,)

over E, equipped with a Weil descent datum. Each object in the tower carries an action of G,(Q)), and the
tower carries an action of G(Q,). Following Huber [Hub98], one defines

RT (M Gy, k0> Ze) = lim RT'(U, Zy)
U

where U C Mg ), k,c runs through quasicompact open subsets, and one defines RT'(U, Z¢) = lim RU (U, Z/0™Z).
This carries an action of Gi5(Q),) as well as an action of the Weil group Wg.

THEOREM IX.3.1. The complex RI'c(M g ), x,0>Ze) is naturally a complex of smooth G4(Qp)-
representations, and, if K is pro-p, a compact object in D(Gy(Q)),Z;). Moreover, the action of W is
continuous.

In particular, each H(M ), k.0 Z¢) is a finitely generated smooth G,(Q,)-representation. By
descent, this is true even for all K (not necessarily pro-p).

Proor. Let fx @ Mgy u),k,c — SpaC be the projection. Up to shift, we can replace Z; by the
dualizing complex Rf}(Zg. Now by Proposition [VII.5.2} one has

RfRfxZolv =2 fryZelu
for any quasicompact U C Mg 1), k,c- As the left-hand side is perfect, it is given by its limit over
reductions modulo (. We see that H(M ¢, ), i,c'» Z¢) can be identified with H'(fx;Z¢) up to shift.

Now p gives rise to a Hecke operator 7, = Ty, where V), is the highest weight representation of
weight pi. It corresponds to the Hecke correspondence on Bung ¢ parametrizing modifications of type 1;
this Hecke correspondence is proper and smooth over both factors. We apply 7}, to the compact object

A= j[C-Ind?((Qp)Zg € Dys(Bung, Zy)

where j : Bun}, = [x/G(Q,)] < Bung is the open immersion. By Theorem also 7},(A) is compact.
By Proposition|VII.7.4 it follows that also ib*TN(A) € Dhs(Bung, Zyg) = D(G»(Qp), Zyg) is compact. But
this is, up to shift again, precisely fxyZy, by the identification of M, ., i,c With the space of modifica-
tions of G-torsors of type u from the G-bundle &, to the G-bundle &, up to the action of K (cf. [SW20,
Lecture 23, 24)).

Descending to E, note that 7}, can be defined with values in Da(Bung x Spd E /%, Z,), and takes
values in those sheaves whose pullback to Bung ¢ lies in Dy(Bung, Zy). Thus W, as a condensed group,
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acts on i**7),(A) € Dy,(Bun%,Zs) = D(Gy(Qp),Z¢) considered as representations on condensed Z-
modules. In classical language, this means that the action is continuous. ]

In particular, for each admissible representation p of G,(Q,) on a Z-algebra A, the complex
RHomg,(q,) (Rl (MG ). 1.c> Ze), p)

is a perfect complex of A-modules. Passing to the colimit over K, one obtains at least on each cohomology
group an admissible G(Q,)-representation. In fact, as 7), is left adjoint to T),v, we see that this is (up to
shift) given by

il*THv (RZZ[,OD S Dl1s(BunG7A) ( (QP) )

Here i* : Bun% < Bung is the inclusion, and [p] € D(G(Q,), A) = Dy(Bun, A) can be a complex
of smooth Gp,(Q))-representations. This shows in particular that there is in fact a natural complex of
admissible G(Q,)-representations underlying

colimy R Homg, (q,) (RUc(M (a0, 5,05 Ze), p)-

Assuming again that p is admissible, one can pull through Verdier duality,
Ty (RR[p]) 2 Ty (RIED([p)

= T (D [pY])

= D(Towe u(i7 [0"]))

= D" Toweu(it[0]))-

As Ty, also preserves compact objects, it follows that [RV14, Remark 6.2 (iii)] has a positive answer: If
A = Qy and p has finite length, then also each cohomology group of

colimg R Homg, (q,) (BT (M), k.05 Ze), P)

has finite length as G(Q,)-representation. Indeed, with Q,-coefficients, the category of smooth representa-
tions has finite global dimension, and hence being compact is equivalent to each cohomology group being
finitely generated. Compact objects are preserved under the Hecke operators, and so we see that each co-
homology group is finitely generated. Being also admissible, it is then of finite length by Howe’s theorem
[Renio, VI1.6.3].

The same arguments apply to prove Corollary Let us recall the setup. We start with a general &/
now. As in [SW20, Lecture XXIII], for any collection {; }; of conjugacy classes of cocharacters with fields
of definition E;/E and b € B(G), there is a tower of moduli spaces of local shtukas

fr + (Sht(qp ), ) KcaE) — H Spd E;
el
as K ranges over compact open subgroups of G(E), equipped with compatible étale period maps

7K : Sht(Gppua), k= GrG Tlic; Spd Bi<pe *

tw
Here, GrG e, Spd
cf. [SW20) Section 23.5]. Let W be the exterior tensor product X;c;V),; of highest weight representations,

and Sy the corresponding sheaf on Gr'¥ More precisely, away from Frobenius-twisted partial

— [Lier Spd F is a certain twisted form of the convolution affine Grassmannian,

GIlicr SpdE
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. tw . . .1e . . .
diagonals, Gr C.I1,e, Spd B is isomorphic to the Beilinson-Drinfeld Grassmannian GrG’HieI Spd B2 and we

have defined Sy on this locus. One can uniquely extend over these Frobenius-twisted partial diagonals
to universally locally acyclic, necessarily perverse, sheaves, as in the discussion of the fusion product. We
continue to write Syy for its pullback to Sht (¢, ., i - Let Sy = D(Sw )" be the corresponding solid sheaf.

By Proposition [VII.5.2} with torsion coefficients fxSyy agrees with R fx1Sw, but fx1 Sy is well-defined

in general.

ProprOsITION IX.3.2. The sheaf
xSy € Da([*/Gy(E)] x [ Spd Ei, A)

iel

is equipped with partial Frobenii, thus descends to an object of
Da(lx/Gy(E)] x [ [ spd i/, A).
iel
This object lives in the full co-subcategory
D(Gy(E), A)PHier Wei € Da([x/Gy(E))] x [[Spd Ei/ o7, M),
el

and its restriction to D(G(E), A) is compact. In particular, for any admissible representation p of Gy(E),
the object

RHomg, ) (fxySiy, p) € D(A)P ier We;

is a representation of [ [;.; W, on a perfect complex of A-modules. Taking the colimit over K, this gives
rise to a complex of admissible G(E)-representations

1& RHomg, () (fx:Sw )

equipped with a [[,.; WE,-action.
If p is compact, then so is

lg RHomg,(r)(fK:Siv: )

as a complex of G(E)-representations.

PrOOF. The key observation is that xSy, can be identified with Ty (ji [c-IndIG{( A)) |Bun A priori,

for the latter, we have to look at the moduli space M of modifications of type bounded by jie from &,
to the trivial vector bundle, up to the action of K, and take the homology of M with coefficients in Sj;;
more precisely, the relative homology of M — [],.;Spd E; /%, After pull back to [Lic; Spd E;, there
is a natural map from M to Sht(g ., i) that is an isomorphism away from Frobenius-twisted partial
diagonals. Indeed, Sht(q, .\, i) parametrizes G-torsors over Y together with an isomorphism with their
Frobenius pullback away from the given points, together with a level- K -trivialization of the G-bundle near
{m = 0}. This induces two vector bundles on Xg, given by the bundles near {7 = 0} and near {[w] = 0},
and these are identified away from the images of the punctures in Xg. As long as their images in X are
disjoint, one can reverse this procedure. Now the fusion compatibility of Sy (and thus Sj;,) implies the
desired result.
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In particular, this shows that fx;Sy;, admits natural partial Frobenius operators. The rest of the proof
is now as before. ]

IX.4. L-parameter

We can now define L-parameter.

DEFINITION/PROPOSITION IX.4.1. Let L be an algebraically closed field over Z[,/q], and let A €
Dy;s(Bung, L) be a Schur-irreducible object, i.e. End(A) = L as condensed algebras. Then there is a unique
semisimple L-parameter

oa: Wi — G(L)xQ
such that for all excursion data (I, V, «, 3, (7i)icr) consisting of a finite set I, V € Rep((G’ xQ)D), o
1= V]|gB:V]|g— landy; € W for i € I, the endomorphism
A=Ty(A) S TyA) S 1pa) B 1a) = 4
is given by the scalar

L%y abidier, o B, p

PROOF. By the arguments of Section |VIII.4} we can build excursion data as required for Proposi-
tion|VIIL3 8 0

IX.5. The Bernstein center

As before, there is the problem that the stack Z!(Wg, G)/ G of L-parameters is not quasicompact, but
an infinite disjoint union. We can now actually decompose Dj;(Bung, A) into a direct product according
to the connected components of Z! (W, G). We start with the following observation.

ProPOSITION IX.5.1. Let A € Dy(Bung, A)“ be any compact object. Then there is an open subgroup
P C W of the wild inertia subgroup such that for all finite sets [ and all V' € Rep((G' x Q)?), the object

Ty (A) € Dys(Bung, A)PVE
lies in the full co-subcategory

Dys(Bung, A)ZWe/P)' Dy (Bung, A)BVE.

PRrROOF. First, note that indeed the functor
Diis(Bung, A)BWE/P)' _y Dy (Bung, A)PWe.
is fully faithful; this follows from fully faithfulness of the pullback functor
f* : Du(Bung x[+/(Wg/P)'], A) — Da(Bung x[+/Wg], A).

which in turn follows from fyA = A (and the projection formula for f;), which can be deduced via base
change from the case of [«/WL] — [x/(Wg/P)!], or after pullback to a v-cover SpaC' — [x/(Wg/P)!],

for [Spa C'/ P!] — Spa C, where it amounts to the vanishing of the A-homology of P’.
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Now note that if P! acts trivially on Ty (A) and on Ty (A) for two V, W € Rep;, ((G % Q)!), then it
alsoacts trivially on Ty gw (A) = Tv (Tw (A)) = Tw (Ty (A)): Indeed, the W -action on Ty (T (A)) =
Tymw (A) = Tyw (Ty (A)) is trivial on P10 and PP thus on PV, and hence the diagonal W] -action
is trivial on P!. Using reductions to exterior tensor products, we can also reduce to I = {*}. Then if

V € Repy, (G % Q) is a @-generator, it follows that it suffices that P acts trivially on T}/ (A). But

(Dis(Bung, A)*) PV = U(Dhs(BunG, A))BWe/P)
P

as for any relatively discrete condensed animated Z-algebra R with a map Zy[Wg| — R, the map factors
over Z¢[Wpg/P)] for some P. Indeed, we may restrict to Z¢[Ig], and then (as I is compact) the image is
contained in some finitely generated Z,-submodule Ry C R, so we can assume that I is finite over Z; but
then Autz, (R) is profinite, and locally pro-/, so the map I — R* C Autz,(R) factors over I /P for
some P. t

Fix some open subgroup P of the wild inertia subgroup of Wg, and let
Df (Bung, A)¥ C Dys(Bung, A)

be the full co-subcategory of all A such that P! acts trivially on T}/ (A) for all V € Rep((G x Q)7). Pick
W C Wg/P adiscrete dense subgroup, by discretizing the tame inertia, as before. Then Theorem [VIII.4.1]

gives a canonical map of algebras

Exc(W,G) — Z(DL (Bung, A)*) = MoEnd(idpp (pung, 4+ )

As Exc(W,G) @ A — O(Z'(Wg/P,G) A)G is a universal homeomorphism, there are in particular
idempotents corresponding to the connected components of Z!(Wg /P, G) . Theiraction on DY, (Bung, A)*
then induces a direct sum decomposition

D (Bung, A = @ Dy (Bung, A)“.
cemo Z1(Wg/P,G)a

Taking now a union over all P, we get a direct sum decomposition

Dis(Bung, A)* = €D Diu(Bung, A)*.
cempZt (WE,G)A
On the level of Ind-categories, this gives a direct product
Dyis(Bung, A) = H Dy (Bung, A).

CGTI'QZI(WE,G)A

Note in particular that any Schur-irreducible object A € Dj;(Bung, A) necessarily lies in one of these
factors, given by some connected component ¢ of Z!(Wpg, G); and then the L-parameter ¢ 4 of A neces-
sarily lies in this connected component.

Using excursion operators, we get the following result on the “Bernstein center”. Thisisa generalization
of results of Helm—~Moss, [HM18]], noting that by the fully faithful functor D(G(E), A) — Dys(Bung, A),
there is a map of algebras

z8om(G A) — Z(G(E), A)
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to the usual Bernstein center of smooth G (F)-representations on A-modules. From now on we assume that
the order of m9Z(G) is invertible in A.

THEOREM IX.5.2. Assume that the order of m9Z(() is invertible in A. There is a natural map
ZFE(G,N) — Z8°M (G, A)

compatible with the above decomposition into connected components. Moreover, for all finite sets /, all

V € Rep, (G'),and all A € Dy;(Bung, A), the diagram

Z%<(G, A) End(A)
End(Ty (A))

commutes, so the map factors over Z5 ) (G, A) C Z&°™(G, A).

Proor. This follows from the decomposition into connected components, the map Exc(WV, G —
Z(D{. (Bung, A)“) above, and Theorem|VIIL.3.6 The statement about commutation with Hecke operators
follows from the construction of excursion operators and the commutation of Hecke operators. O

Before going on, we make the following observation regarding duality. The Bernstein—Zelevinsky du-
ality functor Dpz on Dj;(Bung, A) induces an involution D™ of Z8%°™((G, A). On the other hand, on
ZY(Wg, G), the Chevalley involution of G induces an involution; after passing to the quotient by the con-

jugation action of G, we can also forget about the inner automorphism appearing in Proposition
Let D*P¢¢ be the induced involution of Z*(G, A).

ProPOSITION IX.5.3. The diagram

ZSPeC(G, A) N, deom(G’A)

l spec \L pgeom

Z9(G, A) — Z8OM(G, A)
commutes.

The formation of L-parameters for irreducible smooth representations of G(E) is compatible with
passage to Bernstein-Zelevinsky duals, and to smooth duals.

PrROOF. The commutation follows easily from the construction of excursion operators and Proposi-
tion For the final part, it now follows that the formation of L-parameters is compatible with pas-
sage to Bernstein—Zelevinsky duals. For supercuspidal representations, this agrees with the smooth dual.
In general, the claim for smooth duals follows from the compatibility with parabolic induction proved
below. O

IX.6. Properties of the correspondence

In this section, we check various basic properties of the correspondence. Throughout, we assume for
simplicity that the order of m9Z(G) is invertible in A. All results admit an obvious variant replacing the
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spectral Bernstein center by an excursion algebra when this assumption is omitted, and in particular the
claims about L-parameters of Schur-irreducible objects work in any characteristic (# p, of course).

IX.6.1. Isogenies.

THEOREM [X.6.1. Let G’ — G be a map of reductive groups inducing an isomorphism of adjoint groups,
inducing a dual map G — G/, and 7 : Bungr — Bung. Then for any A € Dy;(Bung, A) the diagram

Zspee((', A) — End(7*A)

| |

2Ze¢((, \) — End(A)

commutes. In particular, if A = L is an algebraically closed field, A is Schur-irreducible and A’ is a Schur-
irreducible constituent of 7* A, then ¢ 4/ is the composite of p4 with G — G'.

ProoF. Consider any excursion operator for G/, given by some finite set I, a representation V' €
Rep, ((G' x Q)"), mapsa: 1 — V|5, 8: V'| 5, — 1 and elements 5; € I as usual. Consider the diagram

/ /

h h

Bung <—— Hck’, —2> Bungr x (Div')!
Lﬂ lﬂ'H lﬂ'

h I he s 1N

Bung <—— Hckgy —— Bung x(Div')”.
Then
* / Ik __x = NP
TV/ (7[' A) = 2u(h1 Vs A ®ASV’)

We are interested in computing an endomorphism of 7* A; in particular, it is enough to compute 7, Ty (7% A).
But

T *A _ h/ h/* *A.]LS/
my Ty (" A) = myhly (R’ A @ Sy)
| |
= hogym iy (T hi A ®%S))
~ * .]L /
| |
= hoy(hi A @xhimA ®5S)) = Ty (A ® mA).

This identification is functorial in V"’ and I, and is over Bung x (Div!), hence implies the desired equality
of excursion operators. Here, to identify 7Sy, we write 7 as the composite

HckIG, — HckIG X Bung Bungr — HckIG .

The first map is locally (over Bun) isomorphic to the map Grk, — Grl, and hence pushforward takes
Sy to the pullback of Sy, by the compatibility of the geometric Satake equivalence with the map G — G’
inducing isomorphisms of adjoint groups, as in the proof of Theorem[VL.11.1, Now the projection formula

shows
Sl = Bim,A @k S!
7THu V! = 17Tt| ®ASV ]
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IX.6.2. Products.
PROPOSITION IX.6.2. If G = G X G2 is a product of two groups, then the diagram
ZSPQC(G:l?A) ®A ZSpeC(G2’A) - 5 deom(Gl,A) ®A deom(Gl’A)

- |

ZSPeC(G, A) deom(G’ A)

commutes.

In particular, if A = Lisan algebraically closed fieldand A;, A € Dy (Bung, L) are Schur-irreducible,
and A is a Schur-irreducible constituent of A1 X Ay, then

oA = (91, 045) : WE = G(L) = Gi(L) x Ga(L).
PROOF. The statement can be checked using excursion operators, and the proof is a straightforward
diagram chase, noting that everything decomposes into products. O
1X.6.3. Weil restriction.

PROPOSITION IX.6.3. If G = Respy pG’ is a Weil restriction of scalars of some reductive group G’ over
some finite separable extension E’ of E. Choose P to be an open subgroup of the wild inertia of Wy C
W, and let W/ C Wy /P be the preimage of W C Wg/P. Then there are canonical identifications
Bung = Bung, Z' (Wg, G)/G = Z'(Wg/, G') /G’ and Exc(W, G) =2 Exc(W', G'), and the diagram

Zspec(Gl’ A) - deom(G/’A)
Z%e(G, ) —— Z8°™ (G, A)
commutes. In particular, L-parameters are compatible with Weil restriction.
PROOF. The most nontrivial of these identifications is the identification
Exc(W, Q) = Exc(W', G").
One way to understand this is to use the presentation
Exc(W, &) = colim, s, .y O(Z"(Fn, @)

(and the similar presentation for Exc(W’, () and the natural isomorphism Z'(F,,, G) J G = Z'(F, xw

W’ ,G") /| G of affine schemes (and then passing to global sections), noting that F}, xy W’/ C F, isa
subgroup of finite index, and thus itself a finitely generated free group. This shows in fact that restricting
to those maps F),, — W factoring over W’ produces the same colimit, and so

Exc(W, Q) = colim(,, 12, ) O(ZN(Fy, G’))G
& colimy, f, _wn O(ZY(F, ()
> colim, ) O(Z (Fn, G'))%
= Exc(W',G").
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Now consider an excursion operator for , including a representation V’ of (é’ x Wg)!. Note that
G x W contains G X Wy as a subgroup, and this admits a surjection onto G/ x W (noting that G =
[lpon G, where we picked out an embedding ' < E and hence a projection G — G’ when we regarded
Wpg C Wg as a subgroup). In this way, one can inflate V” to a representation of (G x Wg)! and then

induce to (G % Wg)! to get a representation V of (G' x Wg)!. Geometrically, this procedure amounts to
the commutative diagram

n ,
Bung <—— Hekl, —2> Bungy x (Div'!)!

o

Bung S Hckl, B Bung x (Div!)!

and taking 1), on sheaves. More precisely, we note that
Hckl, — Hckl X (Divly! (Div'h)!

is a closed immersion (compatibly with a similar closed immersion of Beilinson-Drinfeld Grassmannians).
Now the claim follows from a diagram chase. O

1X.6.4. Tori. If G = T is a torus, then
Dyjs(Buny, A) = 11 D(T(E),A)
beB(T)=m1(T)r
and in particular
Z8°m (T, A) H Z(T
beB(T
where Z(T(E), A) is the Bernstein center of T( ); exphc1t1y, this is
Z(T( L AT
KCT(E

where K runs over open subgroups of T'(E).

PROPOSITION IX.6.4. There is a natural isomorphism

ZP(T,A) = lim  A[T(E)/K].
KCT(E)

PROOF. One can resolve 7' by products of induced tori and then reduce to the case that T’ is induced,
and then by Weil restrictions of scalars to 7' = G,,. In that case Z}(Wg,G,,,) = Hom(E*, G,;,) by local
class field theory, giving the result. O

ProprosITION IX.6.5. Under the above identifications
ZPT,A) = lim  A[T(E)/K]
KCT(E)

and

zemrA) = [ lim AT(E)/K],

beB(T) KCT(E)
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the map
ZPE(T,N) — Z&8°™(T, A)
is the diagonal embedding.
PrROOF. We may resolve 7" by induced tori and use Theorem Proposition and Proposi-
tion[IX.6.3|to reduce to the case of T' = G,;,. It is enough to compute the excursion operators corresponding

to I = {1,2},V = std K std" and the tautological maps o : 1 — std ® std” and 3 : std @ std” — 1. It is
then an easy consequence of Section O

Proposition in particular shows that the L-parameters we construct for tori are the usual L-
parameters, and together with Theorem [X.6.1/and Proposition [[X.6.2implies that L-parameters are com-
patible with central characters (in case of connected center) and twisting, by applying Theorem to
themaps 7 x G — G and G — G x D where Z C G is the center and G — D is the quotient by the
derived group. To deduce compatibility with central characters in general, one can reduce to the case of
connected center using z-extensions [Kal18, Section 5].

IX.7. Applications to representations of G(E)

Finally, we apply the preceding results to representations of G(E). We get the following map to the
Bernstein center.

DEFINITION IX.7.1. The map
Vg Z%9€(G,A) — Z(G(E),A)
is the composite
Z¥E(G,N) = Z8°M(G,A) = Z(G(E),A)
induced by the fully faithful functor

ji : D(G(E), A) = Dys(Bung, A) — Dy(Bung, A).
More generally, for any b € B(G), we can define a map
Ul 1 Z9°9(G, A) — Z(Gy(E), A)
to the Bernstein center for G, (E) by using the fully faithful embedding
D(Gy(E), A) = Dy(Buny, A) — Dyg(Bung, A)

determined for example by the left adjoint to i%*, where i® : Bun%, < Bung is the locally closed embedding
(see Proposition [VIL.7.2)). (Recall that in the Dy;-setting, we do not have a general i{’-functor, although it

can be defined in the present situation. All these maps will induce the same map to the Bernstein center.)
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IX.7.1. Compatibility with Gip. One can describe the maps \I/lé for b # 1 in terms of the maps ¥, .
Note that G}, is naturally a Levi subgroup of G, as G, i C Gy is the centralizer of the slope morphism
vy : D — G This extends naturally to a morphism of L-groups

éb X Q — é X Q

where as usual @ is a finite quotient of W over which the action on G factors. However, from geometric
Satake we rather get the natural inclusion

Zl/b xWg — G Wg
where the Wg-actions include the cyclotomic twist. The latter induces a map
Z'(Wg,Gy) = Z'(Wg, G)
that in terms of the usual W p-action is given by sending a 1-cocycle ¢ : W — Gy(A) to the 1-cocycle
Wg = G(A) : w — (2p¢ — 2péb)(\/§)\w|¢(w)

where | - | : Wg — Wg/Ig = Z is normalized as usual by sending a geometric Frobenius to 1.

THEOREM IX.7.2. Forall G and b € B(G), the diagram

2’7spec(G7 A) l’é Z(D(Gb(E)7 A))

\L ¥a,

ZSpeC(Gb’ A)

commutes.

PrOOF. We note that to prove the theorem, we can assume that A is killed by power of ¢ (if £ divides
the order of m9Z(G), replacing the left-hand side with an algebra of excursion operators), as the result for
A = Zy[/q] implies it in general, and the right-hand side

Z(DGE),N) = lim  Z(AGy(E) / K])
KCGy(E)

is (-adically separated in that case. This means we can avoid the subtleties of Dy; in place of De.

If b is basic, the theorem follows from the identification Bung = Bung, of Corollary [I11.4.3, which is

equivariant for the Hecke action.

In general, we first reduce to the case that G is quasisplit. Take a z-embedding G — G’ as in [Kal18,
Section 5], with quotient a torus D, so that the center Z(G’) is connected. Then Bung = Bungs Xpun,, {*}
and the map B(G) — B((G’) is injective. To see the latter, by the description of the stacks, it suffices to
see that for all b € B(G) with image i/ € B(G'), the map G},(F) — D(E) is surjective. But for any
b € B(G), the map Gy — G, is a z-embedding with quotient D, and Z'(E) — D(F) is surjective by
[Kal18] Fact 5.5], where also Z’ C G}, so in particular G},(E) — D(E) is surjective. An element of

ZDGE)A) = lim  Z(AGHE) | K))
KCGy(E)
of the Bernstein center of Gi(E) is determined by its action on 7’|, (g for representations 7’ of G, (E).
By Theorem we can thus reduce to G’ in place of G, i.e. that the center of G is connected. When
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Z(G) is connected, there is some basic by € B(G) such that Gy, is quasisplit. Using the Hecke-equivariant
isomorphism Bung = BunGb0 we can thus assume that G is quasisplit.

Now if G is quasisplit, fix a Borel B C G. Any b € B(G) then admits a reduction to a canonical
parabolic P = P, C G containing B. Pick a cocharacter i : G,, — G with dynamical parabolic P. For
any N > 0,let by = bu(m"): This is a sequence of elements of B((G) associated to the same parabolic P
but increasingly instable. Moreover, G, = G},,. We note that the diagram

b
\IIG

Z(G,N) — Z(Gy(E), A)

- ]

259G, A) —S= Z(Gyy (E), A)

commutes. For this, take any representation o of G,(F) and consider the sheaf Ay € Det(Bung, A)
concentrated on BungN , corresponding to the representation 0. Let V' € Rep G be the highest weight
representation with weight ;~. We claim that T/ (Ax) \Bunz& is given by the representation 0. As Hecke

operators commute with excursion operators, this implies the desired result. To compute Ty (A ) |Bun’& ,

we have to analyze the moduli space of modifications of &, of type bounded by ;”V that are isomorphic to
Epy - There is in fact precisely one such modification, given by pushout of the standard modification of line
bundles from O to O(1) via ¥ : G,,, — Gj its type is exactly pV. This gives the claim.

Now to prove the theorem, we have to prove the commutativity of the diagram for any excursion
operator, given by excursion data (I, V, a, 3, (7i)icr). For any such excursion data, we can pick NV large
enough so that any modification of &, to itself, of type bounded by V/, is automatically compatible with
the Harder—Narasimhan reduction to P. In that case, for 0 and Ay as above, to analyze the excursion
operators

Ax = Ty(An) % Ty (An) 225 1, (An) 2 Ty (Ay) = Ay,
we have to analyze the moduli space of modifications of &, at I varying points, of type bounded by V, and
that are isomorphic to &, . By assumption on NV, this is the same as the moduli space of such modifications
as P-bundles. This maps to the similar moduli space parametrizing modifications as M -bundles, where M is
the Levi of P (and Gy, = M,,,, forabasicby; € B(M)). We want to compute 7y (A ). Note that Ay comes
from A’ € De(Bunp, A) as it is concentrated on BuanN = Bun?gN C Bunp, by the Harder-Narasimhan
reduction.

Consider the diagram

/7 /1

Bunj; <~—— Hckfmp —2> Bunp x(Div!)!

e

R h
Bunp <—— Hckl, —2— Bunp x (Div!)!

Bunj, SR Hck!, e Bunj; x (Div!)

1
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where Hckﬂm p is defined as the fibre product Hckfp X Bunp Bun s, and thus parametrizes modifications from
an M -bundle to a P-bundle.

We need to compute 77 (An) ‘Bunb ~» Which by the above argument that any modification of &, to itself
a
of type bounded by V' is a modification as P-bundles, can be computed in terms of the middle diagram, as

Rhiy (b Aly @ Sv) Bty

where Sy € Hckf, is the perverse sheaf determined by V' under the geometric Satake equivalence, and we
continue to denote by Sy any of its pullbacks.

There is some By € Det(Bunys, A) such that A, = RiyyBy. In fact, one can take By = RmAY,
noting that on the support of A’, the map 7 : Bunp — Bunyy is (cohomologically) smooth, so R is
defined on A’y (although 7 is a stacky map). (Indeed, everything is concentrated on one stratum, and the

relevant categories are all equivalent to D(G}(FE), A).) Moreover, to compute the restriction to Bunlj)jN it
is enough to do the computation after applying Rm. We compute:

RmRhly (W Al @% Sy) = RmRhb Ripa (h)* By ®% Sy)
= Rha(hi By @5 RgSv)
where ¢ : Hckﬂm p — Hck; is the projection. But this is the pullback of the map L+ M\ Grl, —

LM\ Gr}; = #ck}, under Hck:, — Hck},. This means that RSy arises via pullback from CT p(Sy) €
Det(Hckl;, A). Up to the shift [deg p), this agrees with SV|<M e where the restriction involves a cyclo-

tomic twist, as above. (It is the canonical restriction along M — G for the canonical Wp-actions arising
geometrically.) Now the excursion operators, which involve maps from and to the sheaf corresponding to
V' = 1, require only the connected component where deg,, = 0, so we can ignore the shift.

With these translations, we see that the excursion operators on BunléN and on Bun?\ﬁf agree, giving the
desired result. O
IX.7.2. Parabolic induction. A corollary of this result is compatibility with parabolic induction.

COROLLARY IX.7.3. Let GG be a reductive group with a parabolic P C G and Levi P — M. Then for

all representations o of M (E) with (unnormalized) parabolic induction Indggga, the diagram

Z%(G, A) — End(Ind5( ) o)

| |

Zpe<( M, A) End(c)

commutes. In particular, the formation of L-parameters is compatible with parabolic induction: If A = L
(E)

is an algebraically closed field, o is irreducible and ¢ is an irreducible subquotient of Indg(g)a, then 5 is
conjugate to the composite

Wg 2% M(L) x Wi — G(L) x Wg

where the map M x Wg — G x W is defined as above, involving the cyclotomic twist.
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PROOF. It suffices to prove the result for 0 = c—Indﬁ(/l(E)A for K C M(FE) an open pro-p-subgroup,
and then one can assume A = Zy[,/q], where one can further by /-adic separatedness reduce to torsion
coefficients.

Let i1 : G, — G be a cocharacter with dynamical parabolic P and let b = u(7~!) € B(G). Then
G, = M, and we can build a sheaf A € D¢ (Bung, A) concentrated on Bun%, given by the representation
o. Then T, (A)‘Bun}; is given by a parabolic induction of o, more precisely Indggga(—%)[—d] where
d = (2p, u): To see this, we have to understand the moduli space of modifications of the trivial G-torsor
of type bounded by p that are isomorphic to &,. This is in fact given by G(E)/P(E), the G(E)-orbit
of the pushout of the modification from O to O(1) via u. All of these modifications are of type exactly

p (so the Satake sheaf is simply a twist (—g)[—d] of the constant sheaf). This easily gives the claim on

Tuﬂ (A)|Buné ﬂ Now as Hecke operators commute with excursion operators, the excursion operators on

Indgggga agree with those on A, and these are determined by Theorem [[X.7.2} giving the result. O

IX.7.3. The case G = GL,,. For the group G = GL,,, we can identify the L-parameters with the usual
L-parameters of [LRS93]], [HTo1]], [Henoo]. This is the only place of this paper where we rely on previous
work on the local Langlands correspondence, or (implicitly) rely on global arguments. More precisely,
we use the identification of the cohomology of the Lubin-Tate and Drinfeld tower, see [Boy99]], [Har97],
[HTo1]], [Hauos], [Dato7]. In the proof, we use the translation between Hecke operators and local Shimura
varieties as Section together with the description of these as the Lubin-Tate tower and Drinfeld tower
in special cases, see [SW13].

THEOREM IX.7.4. Let 7 be any irreducible smooth @g—representation of GL,(E). Then the L-parameter
o agrees with the usual (semisimplified) L-parameter.

PrOOF. By Corollary [IX.7.3) we can assume that 7 is supercuspidal. We only need to evaluate the

_— 9
excursion operators for the excursion data given by I = {1, 2}, the representation V = stdXstd” of GL,,
and the unit/counit maps v : 1 — std®std” and 3 : std®@std” — 1, as these excursion operators determine
the trace of the representation (and thus the semisimplified representation).

First, we analyze these excursion operators on the sheaf B which is the sheaf on Bun%Ln for b cor-
responding to the bundle O(—1), given by the representation ¢ = JL(7) of D*; here D is the division
algebra of invariant 1. The Hecke operator T} is the composite of two operators. The first Hecke operator,
corresponding to std, takes minuscule modifications O(—2) C & with cokernel a skyscraper sheaf of rank
1. Such an & is necessarily isomorphic to O™, and the Hecke operator will then produce the o-isotypic part
of the cohomology of the Lubin-Tate tower, which is T ® pr, where p, is the irreducible n-dimensional
W g -representation associated to 7 by the local Langlands correspondence. (Note that the shift [n — 1], as
well as the cyclotomic twist (251 ) that usually appears, is hidden inside the normalization of the perverse
sheaf corresponding to the standard representation.) Now the second Hecke operator, when restricted to
BuanLn, produces the 7-isotypic component of the cohomology of the Drinfeld tower, which is o ® p}. In

total, we see that Ty (B) is given by 0 ® pr ® p% as representation of D* x Wg x Wg. By irreducibil-

|Bunb
GL.

ity of pr, the Wg-equivariant map 0 — 0 ® p, ® p’ induced by « (and the similar map backwards induced

by () must agree up to scalar with the obvious map. The scalar of the total composite can be identified by

ISee [GI16) Theorem 4.26] for more details on the analysis of Hodge-Newton reducible local Shimura varieties.
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taking both elements of W to be equal to 1. This shows that B has the correct L-parameter. Now use that
the sheaf corresponding to 7 appears as a summand of Ty,4(B) (after forgetting the IWp-action) to conclude
the same for 7. O

In particular, it follows that the map Z%*¢(GL,,, Q;) — Z(GL,(E), Q) to the Bernstein center agrees
with the usual map. But this refines to a map

Z¥%(GLn, Ze[V4)) = Z(GLn(E), Z¢[v/q))

to the integral Bernstein center, recovering a result of Helm-Moss [HM18].



CHAPTER X

The spectral action

As a final topic, we construct the spectral action. We will first construct it with characteristic 0 coefhi-
cients, and then explain refinements with integral coefficients.

Let A be the ring of integers in a finite extension of Q(/q). We have the stable co-category C =
Dyis(Bung, A)“ of compact objects, which is linear over A, and functorially in the finite set I an exact

monoidal functor Rep A(G x Q) — Enda(C)BWE that is linear over Rep A(QT). A first version of the
following theorem is due to Nadler-Yun [NY19] in the context of Betti geometric Langlands, and a more
general version appeared in the work of Gaitsgory-Kazhdan-Rozenblyum-Varshavsky [GKRV22]. Both
references, however, effectively assume that G is split, work only with characteristic 0 coefficients, and work
with a discrete group in place of Wg. At least the extension to Z-coefficients is a nontrivial matter.

Note that Z1(Wg, G) is not quasicompact, as it has infinitely many connected components; it can be
written as the increasing union of open and closed quasicompact subschemes Z!(Wg /P, G). We say that
an action of Perf(Z'(Wg, G)/G) on a stable co-category C is compactly supported if for all X € C the
functor Perf(Z' (Wg, G)/G) — C (induced by acting on X ) factors over some Perf(Z'(Wg/P,G)/G).

The goal of this chapter is to prove the following theorem. Below, “functorially in the finite set I”
means a map on total spaces over Fin of the corresponding coCartesian fibrations.

THEOREM X.0.1. Assume that ¢ does not divide the order of 71 (G)tor. Let C be a small idempotent-
complete A-linear stable co-category. Then giving, functorially in the finite set 7, an exact Rep , (Q)-linear
monoidal functor

Rep, (G x Q) — EndA(C)BWé
is equivalent to giving a compactly supported A-linear action of

Perf(Z (Wi, G)a/G).

Here, given a A-linear action of Perf(Z' (W, G)A/G), one can produce such an exact Rep A(Q7)-linear
monoidal functor

Rep, (G'x Q) — EndA(C)BWé
functorially in I by composing the exact Rep , (Q')-linear symmetric monoidal functor
Repy (G % Q)1 — Perf(Z' (W, G)a/G)PVE

with the action of Perf(Z}(Wg, G)A /).
The same result holds true if A is a field over Q;(,/q), for any prime /.

329
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Here, the exact Rep, (Q7)-linear symmetric monoidal functor
Rep, (G x Q) — Perf(Z (W, G)r/G)PWVE
is induced by tensor products and the exact Rep, (@)-linear symmetric monoidal functor
Rep, (G x Q) — Perf(Z}(Wg, G)A/G)BVE

corresponding to the universal G % Q-torsor, with the universal WE-equivariance as parametrized by
ZYWg,G)/G.

Before starting the proof, we note that the proof of Proposition shows that we may replace Wg
by Wg/ P in the statement of Theorem[X.0.1] Choosing moreover a discretization W C Wg /P, we reduce

to the following variant.

A~

THEOREM X.0.2. Assume that ¢ does not divide the order of 71 (G)tor. Let C be a small idempotent-
complete A-linear stable co-category. Then giving, functorially in the finite set /, an exact Rep , (Q!)-linear
monoidal functor

Rep, (G » Q)' — Enda(C)P""

is equivalent to giving a A-linear action of
Perf(Z1 (W, G)a/G),

with the same compatibility as above. The same result holds true if A is a field over Qy, for any prime /.

X.1. Rational coefficients

With rational coefficients, we can prove a much more general result, following [GKRV22]. Consider
a reductive group H over a field L of characteristic 0 (like G’ over Q) with an action of a finite group Q.
Let S be any anima over */(Q (like */W, where W C Wpg/P is a discretization of Wy /P for an open
subgroup of the wild inertia, as usual). We can then consider the (derived) stack Map, /Q(S ,x/(H % Q))
over L, whose values in an animated L-algebra A are the maps of anima S — */(H x Q)(A) over x/Q.
This recovers the stack [Z1(WV, G)@e /G in the above example, using Proposition

In general, Map, (S, */(H x Q)) is the fpqc quotient of an affine derived scheme by a power of .

Indeed, pick a surjection S" — S X /g * from a set 5. Then Map, (S, */(H x Q)) maps to «/HS'; we
claim that the fibre is an affine derived scheme, i.e. representable by an animated L-algebra. For this, note
that
Map, (S, #/(H % Q)) = Map(S x.q *,*/H)

is relatively representable, as it is given by the )-fixed points. To show that the right-hand side is relatively
representable over */HS', we can replace S x, /@ * by a connected anima 7', and S’ by a point. Then
Map(T',*/H) X,y * parametrizes pointed maps 7' — */H, which are equivalent to maps of [E;-groups
Q(T) — H , cf. [Lurog) Lemma 7.2.2.11 (1)]. Writing Q(7T") as a sifted colimit of finite free groups F},, one
reduces to representability of maps of groups F;, — H, which is representable by H".

THEOREM X.1.1. Let C be an idempotent-complete small stable L-linear co-category. Giving, functo-
rially in finite sets J, an exact Rep; (Q')-linear monoidal functor

Rep, ((H x Q)') — End;(C)®

I
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is equivalent to giving an L-linear action of Perf(Map, /0 (S,*/(H xQ))) onC. Here, given such an action
of Perf(Map*/Q(S, */(H x @Q))), one gets exact Rep; (Q)-linear monoidal functors

Rep, ((H % Q)7) = Endy(C)*"
by precomposing the exact monoidal functor Perf(Map, (S5, * /(H % Q))) — Endf(C) with the natural

exact Rep; (Q!)-linear symmetric monoidal functor

Rep, ((H »x Q)') — Perf(Map, (S, +/(H » Q)%

given by I-fold tensor product of the exact Rep, (Q)-linear symmetric monoidal functor
Rep, (H x Q) — Perf(Map, ,,(S, */(H x Q)))®
assigning to each s € S pullback along evaluation at 5, Map, (S, */(H x Q)) — =/(H % Q).

PROOF. Note first that, for any L-linear idempotent-complete small stable co-category C, giving an
exact L-linear functor Rep, ((H x Q)’) — C is equivalent to giving an exact L-linear functor of stable
oo-categories Perf((H x Q)!) — C, as the co-category of perfect complexes is freely generated by the
exact category of representations. Indeed, such functors extend to the co-category obtained by inverting

quasi-isomorphisms in Chb(RepL(H x Q)1), and this is Perf(x/(H x Q)7).
For any S, we have the anima F;(S) of L-linear actions of Perf(Map*/Q(S, x/(H % Q))) on Cﬂ and
the anima F5(S) of functorial exact monoidal functors
Rep, ((H » Q)') — End,(C)%

linear over Rep, (Q'), and a natural map Fy(S) — F5(S) functorial in S (where both F} and F} are
contravariant functors of S). Both functors take sifted colimitsin S to limits. Thisis clear for F (as S +— S
commutes with sifted colimits). For F, it is enough to see that taking S to Perf(Map, /0 (S,*/(H % Q)))

commutes with sifted colimits (taken in idempotent-complete stable co-categories), which is Lemma[X.1.2]
below.

Therefore it suffices to handle the case that S is a finite set, for which the map S — */() can be factored
over *. Then Map, /Q(S ,%/(H x Q)) = x/H®. Similarly, exact monoidal functors

Rep, ((H x Q)) = End (€)'
linear over Rep, (Q?) are equivalent to exact monoidal functors
Rep, (H') — EndL(C)SI

linear over L. Here, we use Perf(x/(H x Q)!) perf(s/q1) Perf(L) = Perf(x/H'), which follows easily
from highest weight theory.

The latter data is equivalent to maps

Hom(I,S) = ST — Funemx‘:E(RepL(H]),EndL(C))

Hndeed, any co-categorical datum will naturally produce an anima, or co-groupoid, via incorporating all isomorphisms and
higher isomorphisms.
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functorially in I, where Fun[,’} denotes the exact L-linear monoidal functors. Both sides here are functors

in I, and on the left-hand side we have a representable functor. By the Yoneda lemma, it follows that this
data is equivalent to L-linear exact monoidal functors

Rep, (H®) — Endy(C).

Such actions extend uniquely to Perf(x/H®) by the observation explained in the first paragraph of this
proof, giving the desired result. t

LEMMA X.1.2. The functor taking an anima S over */Q to Perf(Map, (5, */(H » Q))), regarded
as an idempotent-complete stable co-category, commutes with sifted colimits. More precisely, as a functor
into L-linear symmetric monoidal idempotent-complete stable co-categories, it commutes with all colimits.

We use here [Lur16| Corollary 3.2.3.2] to see that sifted colimits agree with or without symmetric
monoidal structure.

Proor. We first check that it commutes with filtered colimits. For this, let S;, ¢ € I, be a filtered
diagram of anima over */(), and choose compatible surjections S; — S; X, /¢ * from sets Sj. Let S =
colim; S; and S” = colim; S}, which is a set surjecting onto .S Xy /q *- Letting G = HS and G = H”', we
get presentations Map, ,,(5i, */(H X Q)) = X;/Gj as quotients of affine derived L-schemes X; by the pro-
reductive group G, and similarly Map, (5, */(H x Q)) = X /G, with X = ml Xiand G = ml G;.
We claim that in this generality

I'EPerf(Xi/Gi) — Perf(X /QG)

is an isomorphism of idempotent-complete stable co-categories.

Assume first that all X = Spec L are a point. Then note that Perf(x/G) is generated by Rep(G), which
is easily seen to be the filtered colimit h%ml Rep(G;), and (by writing it as limit of reductive groups) is seen
to be semisimple. The claim is easily checked in this case.

In general, Perf(X /G) is generated by Rep(G) as an idempotent complete stable co-category. Indeed,
given any perfect complex A € Perf(X /G), we can look at the largest n for which the cohomology sheaf
H"™(A) is nonzero; after shift, n = 0. Pick V € Rep(G) withamap V — H"(A) such that V @1 Ox ¢ —
HY(A) is surjective. By semisimplicity of Rep(G), we can lift V' — HY(A) to V — A, and then pass to the
cone of V ®1, Ox /g — A to reduce the projective amplitude until A is a vector bundle. In that case the
homotopy fibre B of V @, Oy — A is again a vector bundle, and the map V @, Ox /¢ — A splits, as
the obstruction is H! (X /G, AY ®0, /¢ B), which vanishes by semisimplicity of Rep(G).

This already proves essential surjectivity. For fully faithfulness, it suffices by passage to internal Hom’s
to show that for all A;, € Perf(X;,/G;,) (for some chosen i() with pullbacks A; € Perf(X;/G;) fori — iy
and A € Perf(X /G), the map lim, RI'(X,/Gi, Ai) — RI'(X /G, A) is an isomorphism. By semisimplicity
of Rep(G;) and Rep(G), it suffices to see that lim, RT'(X;, Ai) — RI'(X, A) is an isomorphism, which is

clear by affineness.

This handles the case of filtered colimits. For the more precise claim, it is also easy to see that it com-
mutes with disjoint unions. It is now enough to handle pushouts, so consider a diagram S; < Sy — S of
anima over */(), with pushout S. We can assume that the maps Syp — S; and Sy — S2 are surjective, as
otherwise we can use compatibility with disjoint unions (replacing S by the disjoint union of the image
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of Sp and its complement). Then choose a surjection S" — Sy X, * which induces similar surjections

in the other cases. Thus, we get affine derived L-schemes X; — X - X3 with actionsby G = H 5’ and
X = X1 Xx, X»,and we want to see that the functor

Perf(Xl/G) ®Perf(X0/G) Perf(XQ/G) — Perf(X1 X x XQ/G)

is an equivalence. On the level of Ind-categories, Ind Perf(.X; /G) is the co-category of O(X;)-modules in
Ind Perf(*/G): This is a consequence of Barr-Beck-Lurie [Lur16, Theorem 4.7.4.5] and the fact observed
above that Perf(x /() generates Perf(.X; /G), so that the forgetful functor Ind Perf(X;/G) — Ind Perf(x/G)
is conservative. It follows that the tensor product is the oo-category of O(X1) ®¢(x,) O(X2)-modules
in Ind Perf(x/G), the tensor product O(X1) ®p(x,) O(X2) taken in the symmetric monoidal stable co-
category Ind Perf(*/G). The map O(X1) ®o(x,) O(X2) — O(X) is an isomorphism in Ind Perf(*/G):
This can be checked after the forgetful functor Ind Perf(x/G) — D(L) as it is conservative (using that G
is pro-reductive, hence Rep(G) is semisimple), and then it amounts to X = X; X x, Xo. O

In particular, we get the following corollary.

COROLLARY X.1.3. Let L bea field over Q;(,/q). Thereisa natural compactly supported L-linear action
of Perf(Z' (Wg, ()1 /G) on Dy (Bung, L), uniquely characterized by the requirement that by restricting
along the Rep, (Q')-linear maps

Rep, (G 1 Q)1) = Perf(Z! (W, G)1/ )™
it induces the Hecke action, which gives functorially in the finite set I exact Rep, (Q!)-linear functors

Rep, (G x Q)") — Endy,(Dy(Bung, L)*)5Ve.

PROOF. We can reduce to the subcategories DHPS(Bung, L)* C Dys(Bung, L) for open subgroups P of
the wild inertia of W, acting trivially on (. Then we can replace Wg by Wg /P throughout. In that case,
restricting the given Hecke action to W C W/ P, Theorem E@I gives an action of Perf(Z' (W, G)1/G),
and Z' (W, Q) = Z'(Wg/ P, G), so we get the desired action of Perf(Z*(Wg/P,G)1/G). O

With this action, we can formulate the main conjecture, “the categorical form of the geometric Lang-
lands conjecture on the Fargues-Fontaine curve”. Recall that for a quasisplit reductive group G over FE,
Whittaker data consist of a choice of a Borel B C G with unipotent radical U C B, together with a generic

character ¢ : U(E) — Q, . As usual, we also fix V3 € Q. Let
Wy € Diig(Bung, Q)
be the Whittaker sheaf, which is the sheaf concentrated on Bun}, C Bung corresponding to the represen-
tation ¢-Ind;j\ 1)1 of G(E).
CoONJECTURE X.1.4. Consider the functor
Dycon(Z' (Wi, G)g,/G) = Ind Perf®(Z' (Wi, G)g,/G) = Dis(Bung, Qp) : M +— Actar(Wy)

given as the colimit-preserving extension of the spectral action Act on the Whittaker sheaf. The corre-
sponding right adjoint functor is fully faithful when restricted to the compact objects, and induces an
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equivalence of (Perf(Z!(Wpg, ) ,/ G)-linear small stable) co-categories
Dii(Bung, Q) = DL (2" (W, G)g,/G).

:qC
coh

coherent cohomology that also have qua51compact support, i.e. only live on finitely many connected com-
ponents.

To be precise, D3 (Z1 (W, ) ./ () refers here to the co-category of those bounded complexes with

REMARK X.1.5. There is an orthogonal decomposition

Dhs(BunGa QZ = @ Dhs BunG ; QZ)
aemi (G)r

given by the connected components of Bung. There is a morphism Z(G)T — Aut(Idzl(W ) /G)

Z(G)T C G acts trivially on Z' (WE, G) There is an associated “eigenspace" decomposit1on
b,qc b,qc
XEX*(Z(G))
Compatibility with the spectral action implies that via the identification 71 (G)r = X*(Z(G)") those two

decompositions should match.

Another way to phrase the preceding conjecture is to say that, noting * the spectral action, the “non-
abelian Fourier transform’f]

Perqu(Zl(WE, ) /G) — Dhs(BunG7 Qﬁ)
M — M % W¢

is fully faithful and extends to an equivalence of Q,-linear small stable co-categories
Dfocl'llc(Zl(WE7 ) /G) —> Dhs(BunG> @6) .

ExampLE X.1.6. Fully faithfulness in the categorical conjecture, applied to the structure sheaf, implies
that
Z%(G, Q) = End(c- IndUEE§¢)

ExampLE X.1.7 (Kernel of functoriality). Conjectureimplies the existence of a kernel of functo-
riality for the local Langlands correspondence in the following way. Let

f:LH—>LG

be an L-morphism between the L-groups of two quasi-split reductive groups H and G over E. This defines
a morphism of stacks

Z'(Wg, H)g,/H — Z'(Wg, G)g,/G,
and pushforward along this map induces a functor

Ind DU (2! (Wi, H)g,/H) = Ind Dot (21 (Wi, G)g,/G).

2No precise meaning is implied by these words.
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(There may be slightly different ways of handling the singularities here. One way to argue is to observe
that pushforward is naturally a functor

Do (Z' (Wi, H)g,/H) = D2,

20 (2 (W, G)g, /0,

and quc =In dDb 9920 and then extend by shifts.) The categorical equivalence then leads to a canonical
functor

Dys(Bungg, Q) — Diis(Bung, Q).
By the self-duality of Dj;; coming from Bernstein—Zelevinsky duality, and Proposition any such

functor is given by a kernel

Af S Dhs(BunH X Bung,@g).
One could, in fact, identify the image of A; under the categorical equivalence for H x Gj; up to minor
twists, it should be given by the structure sheaf of the graph of Z' (W, H )g,/ H — Z'(Wg, G)@e /G.

It would be very interesting if some examples of such kernels A; can be constructed explicitly.

Since D(H(E),Qy), resp. D(G(E),Qy), are direct factors of Dy (Buny, Qy), resp. Dy;(Bung, Qy),
this should give rise to the “classical” Langlands functoriality D(H (E), Q) — D(G(E), Q).

REMARK X.1.8. Above, we assumed G and H are quasisplit, in order to define the Whittaker sheaf. To
some extent, this is necessary, as the Jacquet-Langlands correspondence cannot be given by a completely
canonical functor (in particular, one defined over Qy): In fact, as is well-known, any discrete series rep-
resentation of GL,,(E) is defined over its field of moduli but this is not the case for smooth irreducible
representations of D if D is a division algebra over E.

Let us now explain how Fargues'’s original conjecture fits into this context. Let ¢ : Wg — G(Q,) bea
Langlands parameter. Consider the map i : Spec Q, — Z}(Wg, ) L/ G corresponding to ¢, and let

Lp = Z*@E € choh(Zl(WEa ) /G) Ind Perch(Zl (WE7 ) /G)

(We take the pushforward here in the sense of Dycoh- One could a priori produce a more refined object of

Ind Df:ic, but we do not consider this here.) Factoring the map i via [Spec Q;/S,], one actually sees that

&, carries naturally an action of S,. Moreover, if one acts via tensoring with a representation V' of G xQ,
then by the projection formula the sheaf £, gets taken to itself, tensored with the W g-representation V o .
Using the spectral action, we find an S-equivariant “automorphic complex”

Aut, = £, % Wy, € Dy(Bung, Q).

It already follows that Aut, € Dyis(Bung, Qy) is a Hecke eigensheaf, with eigenvalue ¢, so the spectral
action produces Hecke eigensheaves. Except, it is not clear whether Aut,, # 0. Under the fully faithfulness
part of the categorical conjecture, one sees that it must be nonzero, and moreover have some of the properties
stated in [Far16]], in particular regarding the relation to L-packets. The particular case of elliptic parameters
is further spelled out in the next section.

X.2. Elliptic parameters

Let us make explicit what the spectral action, and Conjecture entails in the case of elliptic pa-
rameters. As coefficients, we take L = Q, for simplicity.
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DEFINITION X.2.1. An L-parameter ¢ : Wg — G(Q,) is elliptic if it is semisimple and the centralizer

S, C CAJ@[ has the property that S,/ Z (CA?)%Z is finite.

By deformation theory[Jit follows that the unramified twists of ¢ define a connected component
Cp = [2'(WE, G)g, /G-

Thus, the spectral action (in fact, the excursion operators are enough for this, see the discussion around

Theorem [IX.5.2]) implies that there is a corresponding direct summand
C =~ —
Dy;” (Bung, Qy)* C Diis(Bung, Q¢)*,

explicitly given as those objects on which the excursion operator corresponding to the function thatis 1 on

C, and 0 elsewhere acts via the identity. For any Schur-irreducible A € Dlic; ?(Bung, Qy)“, the excursion
operators act via scalars on A, as determined by an unramified twist of . In particular, they act in this
way on i** A for any b € B(G). By compatibility with parabolic induction, it follows that for any A €

DHC; ?(Bung, Q)% the restriction i* A is equal to 0 if b is not basic (if it was not zero, one could find an
irreducible subquotient to which this argument applies). Thus,

Dy (Bung.Q)* = D D (Gy(E). Q).
bEB(G)pasic
Moreover, all A € D% (Gy(E), Qy)“ must lie in only supercuspidal components of the Bernstein center,
again by compatibility with parabolic induction. If Z(G)" is finite (equivalently, if the connected split
center of G is trivial), then C,, = [*/S,] is a point and it follows that all A are finite direct sums of shifts
supercuspidal representations of G}(E), and so

c =\ —
Dy’ (Bung,Q)* = P EPPerf(Q) @,
beB(G)basic 0
where 7 runs over supercuspidal Q-representations of Gj(E) with L-parameter ¢, = .

In general, acting on DHC_; ? (Bung, Q)*, we have the direct summand
Perf(C.,)
of
Perf([Z (Wi, G)g,/G))-
Co

If Z(G)' is finite, one has Cy, = [*/S,), and hence we get an action of Rep(S,) on D, * (Bung, Q;)“. In
general, one can get a similar picture by fixing central characters; let us for simplicity only spell out the
case when Z(G)! is finite, i.e. the connected split center of G is trivial.

If 7y is a supercuspidal representation of some Gy,(E) with ¢r, = ¢, and W € Rep(S,) then acting
via W on mj, we get some object

Actyy (mp) € EB EB Perf(Q,) @ .

b’ eB(G)basic 7T

30ne has H*(Wg, ad ¢) = 0 using Tate duality, and the H® reduces to the Lie algebra of Z(G)'. The H' must thus be of
the same dimension and be accounted for by the unramified twists.
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Assume that W] 7(¢r 1s isotypic, given by some character x : Z(G)' — Q, . As Z(G)T is the diagonal-
izable group with characters 71 (G)r, it follows that we get an element b, € 71(G)r = B(G)pasic.: Then
Actyy () is concentrated on b’ = b + by, and so

Actyy (mp) = @ Vi, & Ty

Tyt

for a certain multiplicity space Vﬂb, S Perf(@g), where 7y runs over supercuspidal representations of
Gy (E), b = b+ by, with L-parameter Oy = P

The conjectural description of L-packets [Kal14]] then suggests the following conjecture, which is (up
to the added ¢-exactness) the specialization of Conjecture to the case of elliptic L-parameters. (If
one projects the Whittaker sheaf to the C,,-component, a priori it could break into a direct sum of several
supercuspidal representations; but then the functor would not have a chance of being an equivalence.)

CoNJECTURE X.2.2. Assume that G is quasisplit, with a fixed Whittaker datum, and that the connected
split center of G is trivial. Then there is a unique generic supercuspidal representation 7 of G(E) with
L-parameter ¢, = ¢, and the functor

Perf([Spec Qy/S,]) — Dy? (Bung, Q,)* : W s Actyy ()

is an equivalence. In particular, the set of irreducible supercuspidal representations of some G(E) with
L-parameter ¢ is in bijection with the set of irreducible representations of S.,.

Moreover, the equivalence is ¢-exact for the standard ¢-structures on source and target.

Thus, the conjecture gives an explicit parametrization of L-packets.

Let us explain what the compatibility of the spectral action with Hecke operators entails in this case.
Given V' € Rep(G x Q), the restriction of V' to S, admits a commuting Wg-action given by ¢. This
defines a functor

Rep(G x Q) — Rep(S,)5"e.

Now the diagram of monoidal functors

Rep(é X Q) —— End@e (DHCS“D (Bung, Q,))BWe

|

ReP(Sw)BWE

commutes; this follows from the compatibility of the spectral action with the Hecke action.

Concretely, given 7 as above and V' € Rep(G x ), decompose the image of V in Rep(S,)?"" asa

direct sum ;. ; W; ® o; where W; € Rep(S,,) is irreducible and o; is some continuous representation of
WE on a finite-dimensional Qy-space. Then

Tv(ﬂ) = @ACtWi (7T) ® 0;.
i€l

Recall that 77/ (7) can be calculated concretely through the cohomology of local Shimura varieties, or
in general moduli spaces of local shtukas. Noting that the functor Actyy, is realizing a form of the Jacquet-
Langlands correspondence relating different inner forms, the formula above is essentially the conjecture of
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Kottwitz [RV14) Conjecture 7.3]. In fact, assuming Conjecture it is an easy exercise to deduce [RV14)
Conjecture 7.3], assuming that the parametrization of the Conjectureagrees with the parametrization
implicit in [RV14} Conjecture 7.3].

X.3. Integral coefficients

We want to construct the spectral action with integral coefficients. Unfortunately, the naive analogue
of Theorem [X.1.1is not true, the problem being that the analogue of Lemma[X.1.2fails. However, the rest

of the argument still works, and gives the following result.

Consider a split reductive group H over a discrete valuation ring R with an action of a finite group Q).
Let S be any anima over /(). As before, we can define a derived stack Map,_ /Q(S, x/(H x Q)) over R,

whose values in an animated R-algebra A are the maps of anima S — */(H X Q)(A) over */Q). In general,
the functor S +— Perf(Map, /Q(S, x/(H % @Q))) does not commute with sifted colimits in .S.

However, we can consider the best approximation to it that does commute with sifted colimits. Note
that the co-category of anima over */() is the animation of the category of sets equipped with a )-torsor;
it is freely generated under sifted colimits by the category of finite sets equipped with a ()-torsor. Thus,
the sifted-colimit approximation to S — Perf(Map, /Q(S ,*/(H % @Q))) is the animation of its restriction
to finite sets with Q-torsors; we denote it by

S Perf(Mapf/Q(S, */(H % Q))),

with the idea in mind that it is like the co-category of perfect complexes on some (nonexistent) derived
stack Map*Z/Q(S, */(H % Q)), gotten as a (co-)sifted limit approximation to Map, (S,*/(H x @Q)). The
symbol X here is in reference to the notation used in [Lurog} Section 5.5.8] in relation to sifted colimits.
Thus Perf(Map*Z/Q(S, */(H % @))) is an R-linear idempotent-complete small stable co-category, mapping
to Perf(Map, (S, */(H x Q))).

PROPOSITION X.3.1. Let C be an R-linear idempotent-complete small stable co-category. Giving, func-
torially in finite sets I, an exact Rep ,(Q’)-linear monoidal functor

Repp((H % Q)") — Endp(C)*"
is equivalent to giving an R-linear action of Perf(Map> 0 (S,%/(H xQ))) onC. Here, given such an action
of Perf(Map*E/Q(S, +/(H % @Q))), one gets exact Rep ,(Q)-linear monoidal functors

Repp((H % Q)") — Endp(C)*"
by composing the exact monoidal functor Perf(MapE/Q(S, x/(H % @Q))) — Endg(C) with the natural

exact Rep,(Q’)-linear symmetric monoidal functor
I
Repp((H x Q)") — Perf(Mapy) (S, */(H x Q)))*
given by I-fold tensor product of the exact Rep ,(Q)-linear symmetric monoidal functor
Rep,(H x Q) — Perf(Map*E/Q(S, «/(H % Q)))°

assigning to each s € S pullback along evaluation at s, Map, ,,(S,*/(H x Q)) — */(H x Q); more
precisely, it is defined in this way if S is a finite set, and in general by animation.
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Proor. This follows from the proof of Theorem O

To make use of Proposition[X.3.1} we need to find sufficiently many situations in which the functor
Perf(Mapy) (S, +/(H » Q))) — Perf(Map, ;o (S, /(H » Q)))

is an equivalence, and specifically we need to prove this for Map, /Q(* IW, /(G x Q) =Z"W,QR)/G.
First, we have the following result.

ProposITION X.3.2. The functor S — Perf(Map*E/Q(S, x/(H x Q))) from anima over */() to sym-
metric monoidal idempotent-complete stable [2-linear co-categories commutes with all colimits.

PROOF. As the functor commutes with sifted colimits by definition, it suffices to show that when re-
stricted to finite sets S equipped with (-torsors, it commutes with disjoint unions. But for such .S, the map
S — /(@ can be factored over a point, and then Map*/Q(S, %/(H x Q)) = */H". Thus, one has to see
that for two finite sets Sp, S, the functor

Perf(+/ H™") @per(r) Perf(x/H"?) — Perf(x/H>'">?)

is an equivalence. But this follows easily from highest weight theory, which for any split reductive group
H filters Perf(x/H) in terms of copies of Perf(R) enumerated by highest weights. O

PROPOSITION X.3.3. Assume that S = x/F), is the classifying space of a free group. Then the functor
Perf(Map® o (S, */(H » Q))) — Perf(Map, oS, /(H % Q)

is fully faithful, and the essential image is the idempotent-complete stable co-subcategory generated by the
image of Rep,(H).

PROOF. Represent x/F,, — */Q) by amap F,, — (), and let 01,...,0, € @ be the images of the
generators. Then Map, (S, */(H x Q)) can be identified with [H"/H], where H acts on H" via the

(o1,...,0n)-twisted diagonal conjugation action. We claim that
Perf(Map® (S, +/(H x Q)

is the co-category of compact objects in the co-category of modules over O(H") in Ind Perf(x/H ); in fact,
this is equivalent to the claim, as by Barr-Beck-Lurie [Lur16, Theorem 4.7.4.5] this gives a description of
the full co-subcategory of Perf([H" /H|) generated by Perf(x/H ).

As O(H") = O(H) ® ... ® O(H) in Ind Perf(*/H ), one reduces to the case n = 1. In that case

S = x/F} is a circle, which we can present as a pushout of * LI + = *. Thus, we have to compute
Perf(x/H ) ®perf(x/p2) Perf(x/H)

where the two implicit maps H — H? are given by the diagonal and the o;-twisted diagonal, respec-
tively. As the pullback functors Perf(x/H?) — Perf(x/H) generate the image, we can write Perf(x/H) =
Perf(H / H?) as the compact objects in the co-category of O(H )-modules in Ind Perf(*/ H?). Similarly, the
expected answer Perf([H /H|) = Perf([H x H/H?]) is given by the compact objects in the co-category of
modules over O(H x H) = O(H) ® O(H) in Ind Perf(x/H?), thus implying the result. O
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PROPOSITION X.3.4. Let S = % /T, where I is any discrete group, and lift the map S — */Q) to a map

I' = @. One can write
/I = colim,, g, _,ry*/Fn
as a sifted colimit (in anima). Then Perf(Mapf/Q (S,%/(H % Q))) is the co-category of compact objects in
the co-category of modules over
colim,, i, _,r) O(H")

in Ind Perf(x/H), where O(H") is equipped with the twisted (via the map F,, — I' — @) diagonal
conjugation of H.

PROOF. As[E;-groups in anima are equivalent to animated groups, with compact projective generators
the free groups F;,, it follows that /T is the sifted colimit colim(, r,, .1y */Fy. Now the result follows
from the previous proposition (and its proof), together with the commutation with sifted colimits. O

Combining this with Theorem |VIIL5.1, we have finished the proof of Theorem In particular,
this gives the spectral action on Dy;5(Bung).

Let us end by stating again the main conjecture with integral coefficients. The formulation may have
to be adapted at very small primes (i.e., bad primes) as then the nilpotent cone implicit in the formulation

of nilpotent singular support of Section [VIII.2.2|may not be well-behaved.

CoNJECTURE X.3.5. Assume that G is quasisplit and choose Whittaker data consisting of a Borel B C GG
and generic character ¢ : U(E) — O; of the unipotent radical U C B, where L/Q is some algebraic
extension; also fix \/q € Op,. Let n be the order of 7 Z(G) and let A = O [1]. Let

W¢ € Dlis(Bung, A)
be the Whittaker sheaf, which is the sheaf concentrated on Bun/, corresponding to the Whittaker repre-

Ugglb, and let

sentation c—IndG

Ind Perf®(Z! (Wg, G)a/G) — Dis(Bung, A) : M — Actpr(Wy)

be defined as the colimit-preserving extension of the spectral action on WV,,. Then the corresponding right
adjoint functor is fully faithful when restricted to the compact objects, and induces an equivalence of

(Perf(Z'(Wg, Q)5 /G)-linear small stable) co-categories

D(Bung, A)* = Doty (2! (Wp, G)r/G).
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